Spectral element agglomerate AMGe * T. Chartier¹, R. Falgout², V. E. Henson², J. E. Jones⁴, T. A. Manteuffel³, S. F. McCormick³, J. W. Ruge³, and P. S. Vassilevski² - Department of Mathematics, Davidson College, P.O. Box 6908, Davidson, NC 28035, U.S.A. email: tichartier@davidson.edu - ² Center for Applied Scientific Computing, UC Lawrence Livermore National Laboratory, P.O. Box 808, L-561, Livermore, CA 94551, U.S.A. email: {rfalgout, vhenson, panayot}@llnl.gov - Applied Math Department, Campus Box 526, University of Colorado at Boulder, Boulder, CO 80309-0526, U.S.A. email: {tmanteuf, stevem, iruge}@colorado.edu - ⁴ Department of Mathematics, Florida Institute of Technology, 150 West University Blvd., Melbourne, FL, 32901, U. S.A. email: jim@fit.edu ## 1 Introduction In recent years, several extensions of the classical AMG method (see [B84] and [RS87]) to handle more general finite element matrices have been proposed (see, e.g., [Br00], [JV01], and [Ch03]). Other extensions are related to the so-called smoothed aggregation method; see e.g., [Vn98] and the papers cited therein. For the most recent versions of both the AMG and smoothed aggregation approaches, we refer to [Br05] and [Br04]. In this note, under the assumption that one has access to the fine-grid element matrices, we combine the effectiveness of element interpolation given in [Br00] with a "spectral" approach to selecting coarse degrees of freedom, as proposed in [Ch03]. The method presented here selects the coarse degrees of freedom from the eigenvectors in the lower parts of the spectra of certain small matrices- special Schur complements of assembled neighborhood matrices. These Schur complements are associated with so-called minimal intersection sets, which in turn are derived from the partitioning provided by an algorithm (e.g., from [JV01]) that creates agglomerated elements. The idea of selecting coarse degrees of freedom from the eigenvectors of small matrices has been used previously in connection with certain aggregation methods; see, e.g., [FB97] and the report [Br99]. ^{*} This work was performed in part under the auspices of the U. S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract W-7405-Eng-48. ## 2 The spectral way of selecting coarse degrees of freedom Assume we are given the fine-grid symmetric positive (semi-) definite matrix A and have access, for a given set of finite-elements $\{\tau\}$, to the symmetric semi-definite fine-grid element matrices A_{τ} . Here, we consider each element τ to be a subset (list) of fine-grid degrees of freedom, or dofs. We let \mathcal{D} denote the set of fine dofs, and identify \mathcal{D} with the index set $\{1, 2, \ldots, n\}$. For any vector \mathbf{w} , we use the notation \mathbf{w}_{τ} to denote the restriction of \mathbf{w} to the subset τ of \mathcal{D} . Armed with these notational conventions, we note that the original matrix A is assembled from the element matrices in the usual way, that is, for any vector \mathbf{v} , one has $$\mathbf{v}^T A \mathbf{v} = \sum_{\tau} \mathbf{v}_{\tau}^T A_{\tau} \mathbf{v}_{\tau}.$$ Let $\mathbf{V} = V(\mathcal{D})$ denote the vector space (or the space of discrete functions) of vectors with indices from \mathcal{D} ; that is, one can identify \mathbf{V} with the vector space \mathbf{R}^n . Based on an agglomeration algorithm (e.g., as originally proposed in [JV01]; see also [Va02]) one generates a set of agglomerated elements $\{T\}$ from the fine–grid elements $\{\tau\}$. Every agglomerated element T consists of a number of connected fine–grid elements and every fine–grid element τ belongs to exactly one agglomerated element T. Note that every agglomerated element T can also be considered as a set of fine degrees of freedom, namely, as the union of the fine degrees of freedom that belong to the fine–grid elements τ that form T. One can partition the fine degrees of freedom (dofs) into non-overlapping sets $\{\mathcal{I}\}$, based on the relationships between agglomerated elements and dofs. This relationship is described by the incidence matrix \mathcal{E} , defined as $$\mathcal{E}_{ij} = \begin{cases} 1, & \text{if dof } j \text{ is in the agglomerated element } i, \\ 0, & \text{otherwise.} \end{cases}$$ Note that $\mathcal{E} \in \mathbf{R}^{n_E \times n}$, where n_E is the number of agglomerated elements and n is the number of fine dofs. Consider next $\mathcal{Z} = \mathcal{E}^T \mathcal{E} \in \mathbf{R}^{n \times n}$, and observe that $\mathcal{Z}_{ij} = |\{T: i \in T \text{ and } j \in T\}|$, where $|\cdot|$ indicates cardinality. That is, \mathcal{Z}_{ij} equals the number of agglomerated elements containing both dofs i and j. We then split the set of dofs $\{1, \ldots, n\}$ into non-overlapping sets $\{\mathcal{I}_k\}_{k=1}^{\ell}$ (called minimal intersection sets) with the property that i and j are in one and the same set \mathcal{I}_k if and only if $\mathcal{Z}_{ij} = \mathcal{Z}_{ii} = \mathcal{Z}_{jj}$. With the minimal intersection sets \mathcal{I} , one is able to define a change of basis from "nodal" to "spectral" dofs through the following process. For every minimal intersection set \mathcal{I} , define the neighborhood $\mathcal{N}(\mathcal{I}) = \cup \tau_{\mathcal{I}}$, where the union consists of all fine elements $\tau_{\mathcal{I}}$ that share a dof from \mathcal{I} . Let the assembled local matrix be denoted $A_{\mathcal{N}(\mathcal{I})}$ and compute its Schur complement $S_{\mathcal{I}}$ by eliminating the dofs outside \mathcal{I} . (Note that, in the case where \mathcal{I} is a single dof and $A_{\mathcal{N}(\mathcal{I})}$ is a semidefinite matrix, this Schur complement may be the zero matrix). Next, we compute all the eigenvalues of $S_{\mathcal{I}}$ and the associated eigenvectors $\{\mathbf{q}_{\mathcal{I}:k}\}$, $k=1,\ldots,|\mathcal{I}|$. Whenever necessary, we extend the eigenvectors by zero outside \mathcal{I} . If $S_{\mathcal{I}} = [0]$ we use the standard unit vectors $\mathbf{q}_{\mathcal{I}; k} := \mathbf{e}_i$ for $i \in \mathcal{I}$. We may observe that the set $\{\mathbf{q}_{\mathcal{I}; k}\}$, $k = 1, \ldots, |\mathcal{I}|$, for \mathcal{I} running over all the minimal intersection sets, provides an orthogonal basis of \mathbf{R}^n . For a given minimal intersection set \mathcal{I} , the group of vectors $\{\mathbf{q}_{\mathcal{I};k}\}$ are orthogonal (as eigenvectors of symmetric matrices) and if two vectors belong to groups for different sets \mathcal{I} , they have non-intersecting supports; therefore, they are also orthogonal. For every set \mathcal{I} , we split the eigenvectors into two groups, $\mathbf{V}_{\mathcal{I}_c}$ and $\mathbf{V}_{\mathcal{I}_f}$, in the following way. Let the eigenvectors $\{\mathbf{q}_{\mathcal{I};\,k}\}$ be ordered according to the eigenvalues $0 \leq \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_{|\mathcal{I}|}$. For any given integer $1 \leq p_{\mathcal{I}} \leq |\mathcal{I}|$, the first $p_{\mathcal{I}}$ eigenvectors define the orthogonal basis of the space $\mathbf{V}_{\mathcal{I}_c}$. This space, representing the set of "c"-dofs (or coarse dofs), corresponds to a lower portion of the spectrum of the Schur complement $S_{\mathcal{I}}$. The remaining eigenvectors span $\mathbf{V}_{\mathcal{I}_f}$. Together, they form an orthogonal decomposition of the space spanned by the eigenvectors for $S_{\mathcal{I}}$ and, taking all such spaces for all \mathcal{I} , we observe that $$\mathbf{R}^n = \mathbf{V} = \mathbf{V}_{\mathcal{I}_c} igoplus_{\mathcal{T}} \mathbf{V}_{\mathcal{I}_f}.$$ We denote the direct sums, over all \mathcal{I} , of the coarse and fine spaces, respectively, as \mathbf{V}_c and \mathbf{V}_f . The motivation for this splitting is given next. **Lemma 1.** The block A_{ff} , representing the restriction of A to the subspace \mathbf{V}_f , is well-conditioned if $p_{\mathcal{I}}$ for all \mathcal{I} are sufficiently large, in particular, if $\lambda_{p_{\mathcal{I}}+1}[S_{\mathcal{I}}] > 0$ and $\lambda_{p_{\mathcal{I}}+1}[S_{\mathcal{I}}] \simeq ||A_T||$ for all neighboring T that contain \mathcal{I} . *Proof.* Define the vector norm $\|.\|$ as $\|\mathbf{w}\| = \sqrt{\mathbf{w}^T \mathbf{w}}$. Let $\mathbf{v}_f \in \mathbf{V}_f$, that is, $\mathbf{v} = \mathbf{v}_f$ is a vector with vanishing coarse–grid component. We can split the inner product $\mathbf{v}^T A \mathbf{v}$ over the agglomerates T, using the local matrices A_T , and then rewrite the sum $\sum_T \mathbf{v}_T^T A_T \mathbf{v}_T = \sum_T \sum_{T \in T} C_T \mathbf{v}_T^T A_T \mathbf{v}_T$ for some constants $C_{\mathcal{I}}$ (depending on the number of agglomerates T that share \mathcal{I}). Using well known minimization properties of Schur complements of symmetric positive (semi-)definite matrices, one readily obtains the inequalities $$\min_{\mathcal{I}} C_{\mathcal{I}} \lambda_{p_{\mathcal{I}}+1}[S_{\mathcal{I}}] \|\mathbf{v}_f\|^2 \leq \mathbf{v}_f^T A_{ff} \mathbf{v}_f \leq \max_{T} \|A_T\| \|\mathbf{v}_f\|^2. \quad \text{QED} \quad (1)$$ Remark 1. The $C_{\mathcal{I}}$ are topological constants (i.e., independent of the matrix). However, we have the option to choose the integers $p_{\mathcal{I}}$ sufficiently large to lead to an improved minimal eigenvalue of A_{ff} . Hence, by selecting the $p_{\mathcal{I}}$ appropriately, we can insure that A_{ff} is well–conditioned. We may also observe that, for the model case where A is the discretization of the 2D finite element Laplacian, both bounds in (1) are mesh independent. The property that A_{ff} is well conditioned gives rise to a special form of the so–called compatible relaxation principle introduced in [B00]. In the new (orthogonal) basis, the matrix A has a block, A_{ff} , that is well—conditioned. With the coarse dofs identified, the interpolation matrix P can be #### 4 T. Chartier et al. computed locally by building, for every agglomerated element T, a prolongator P_T such that fine dofs that are shared by two or more agglomerated elements are interpolated by the coarse dofs from that common set. More specifically, for every dof i, consider its neighborhood $N(i) = \bigcap \{T : i \in T\}$. Then i is interpolated from all coarse dofs that belong to N(i). Further details about this construction are found in [JV01]. It can be proven, in the manner given in [JV01], that the locally constructed P satisfies a weak approximation property. That is, for some constant $\eta \geq 1$, $$||A|| ||\mathbf{v} - P\mathbf{v}_c||^2 \le \eta \mathbf{v}^T A \mathbf{v}$$ for any $\mathbf{v} = \mathbf{v}_f + \mathbf{v}_c$, where $\mathbf{v}_f \in \mathbf{V}_f$, $\mathbf{v}_c \in \mathbf{V}_c$. This implies (see e.g., [Br00]) an optimal convergence result for a two–grid method based on P and simple Richardson smoothing. ## 3 Numerical Experiments We describe here results of numerical experiments designed to illustrate the use of the spectral agglomerate AMGe algorithm. We first stress that, in 2D, the minimal intersection sets are the vertices of the agglomerated elements (all of which naturally become coarse dofs), the interior of the faces of the agglomerated elements (or AEfaces), as well as the interior of the agglomerated elements (or AEs). For either of these two minimal intersection sets, we can form the appropriate Schur complement, S_{AEf} or S_{AE} , and compute the associated eigenvalues and eigenvectors. Fig. 1. Unstructured triangular mesh: 1600 elements (left) Tri-linear hexahedral mesh for 3D elasticity problem (right). For the sets of eigenvectors of S_{AEf} or S_{AE} , we select an eigenvector with index k to define a coarse dof if, given a tolerance $\tau \in [0, 1)$, the corresponding eigenvalue λ_k satisfies $$\lambda_k < \tau \lambda_{\max}$$ We have the option to use different values of τ for the sets of eigenvectors; one, denoted τ_{AEf} , is used on the eigenvectors of S_{AEf} , while another one (denoted by τ_{AE}) is applied to select coarse dofs from the eigenvectors of S_{AE} . To save some computation in the setup phase, one may choose to set $\tau_{AE} = 0$. (Note that when $\tau = 0$ for both sets, the resulting spectral agglomerate AMGe reduces to the agglomeration based AMGe method from [JV01]; that is, the coarse dofs are the vertices of the agglomerates only.) In general, we recommend choosing $\tau_{AE} < \tau_{AEf}$. In 3D, there are additional minimal intersection sets: subsets of the boundary of the faces of the agglomerated elements. We also select these sets as coarse dofs. For thin body elasticity (the particular 3D application we consider in this section), choosing these additional sets as coarse dofs is acceptable in terms of computational complexity. The problems utilized for this study are: (1) a **2D anisotropic diffusion** problem, given by $$-\operatorname{div}((\epsilon I + \underline{bb}^T)\nabla u) = f,$$ posed in a unit square. Three different selections of the parameter ϵ are considered, $\epsilon=1,\ 0.01,\ 0.001,$ which control the strengths of the anisotropy in each experiment. The anisotropy is not grid aligned, and its direction is controlled by $\underline{b} = \begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix},\ \theta = \frac{\pi}{4}.$ For this 2D problem, results computed on unstructured triangular meshes with 6400 and 25600 elements are presented. A mesh typical of the problem, with 1600 elements, is shown in Fig. 1 (left). (2) a **3D** thin body elasticity problem posed on a domain $\Omega = (0,1) \times (0,1) \times (0,d)$ and discretized on a number of uniform trilinear hexahedral meshes. The problem is formulated as follows: for a given vector function $\mathbf{f} = (f_i)_{i=1}^3$, find the displacements $\mathbf{u} = (u_i)_{i=1}^3$ such that, for all $\mathbf{x} = (x_i)_{i=1}^3 \in \Omega$ $$\sum_{j=1}^{3} \frac{\partial}{\partial x_j} \left(\sum_{k,l=1}^{3} E_{i,j,k,l} \frac{\partial u_k(\mathbf{x})}{\partial x_l} \right) = f_i(\mathbf{x}),$$ for i=1,2,3. Homogeneous boundary conditions are imposed: A Dirichlet condition of $u_i=0,\ i=1,2,3$ is imposed on the side of the body $\Gamma_D=\{(x,y,z=0)\}$, and, on the remainder of the boundary $\partial\Omega\setminus\Gamma_D$, we apply a Neumann condition $$\sum_{j=1}^{3} n_j \left(\sum_{k,l=1}^{3} E_{i,j,k,l} \frac{\partial u_k(\mathbf{x})}{\partial x_l} \right) = 0$$ for i=1,2,3. Here, $\mathbf{n}=(n_i)_{i=1}^3$ is the outward unit normal to $\partial\Omega$. The coefficients $E_{i,j,k,l}$ are expressed in terms of the Lame coefficients $\lambda=113$ and $\mu=81$ as follows: $$\begin{split} E_{1,1,1,1} &= E_{2,2,2,2} = E_{3,3,3,3} = 2\mu + \lambda, \\ &\qquad E_{i,i,j,j} = \lambda, \quad i \neq j, \ i,j = 1,2,3, \\ E_{i,j,i,j} &= E_{j,i,i,j} = E_{i,j,j,i} = E_{j,i,j,i} = \mu, \quad i \neq j, \ i,j = 1,2,3, \\ &\qquad E_{i,j,k,l} = 0, \quad \text{all remaining indices.} \end{split}$$ We describe results for this problem using several different geometries for the body. Using the basic mesh size h=0.25, we observe results for four different choices of d, namely d=25h=6.25, d=50h=12.5, d=100h=25 and d=200h=50. The geometry for this problem is shown in Fig. 1 (right). For all experiments, we apply one iteration of symmetric block Gauss–Seidel as the smoother in a V(1,1)–cycle. The blocks in the smoother correspond to the elements of the grid at the given level and hence are overlapping. The results of the experiments are given in the several tables that follow. For each experiment, we report several quantities: the number of iterations needed to reduce the ℓ^2 -norm of the initial residual by 10^{-9} ; the asymptotic reduction factor ρ ; the grid and operator complexities; and, for the 3D case, the number of coarsening levels used in the problem. The grid and operator complexities, commonly used in AMG, are defined respectively as the total number of dofs on all levels divided by the number of dofs on the finest level and the total number of nonzero entries in the operator matrices for all levels divided by the number of nonzero entries in the fine level matrix A. The tables also indicate the mesh sizes and values for parameters of the algorithm (such as τ). The numerical results generally agree with the observations in Remark 1; it is clear that richer coarse spaces produce better convergence factors. Naturally, this gain is obtained at the expense of higher complexities of the method. The spectral agglomerate AMGe method can become a fairly expensive method; it requires a number of local computations: assembling of local neighborhood matrices, computing their respective Schur complements S_{AE} and S_{AEf} , and solving local eigenproblems associated with them. In addition, all the normal costs of the traditional AMG-type methods applies; namely, computing the respective interpolation matrices and the associated coarse-level stiffness matrices. The local dense matrices grow in size with the tolerance τ . This cost is especially noticeable in 3D problems, where the increased complexity leads to significant increases in the time required to solve the problem. steps (e.g., between 5 and 20) The operator complexities can be reduced by using more aggressive agglomeration at the initial level(s). ### References [B00] Brandt, A.: Generally highly accurate algebraic coarsening, Electron. Trans. Numer. Anal. 10, 1–20 (2000) **Table 1.** Convergence results for AMGe and the spectral agglomerate AMGe with $\tau_{AE} = \frac{1}{4}\tau_{AEf} = \frac{1}{4}\tau$; 2D anisotropic diffusion. | 6400 elements | | AMGe | Spectral agglomerate AMGe | | | | | |--------------------|---------------------|--------------|---------------------------|---------------------|---------------|--------------|--| | 10 levels | | $(\tau = 0)$ | $\tau = 0.0312$ | $25 \ \tau = 0.125$ | $\tau = 0.25$ | $\tau = 0.5$ | | | $\epsilon = 1$ | iterations | 12 | 10 | 9 | 8 | 6 | | | | ho | 0.405 | 0.432 | 0.396 | 0.313 | 0.176 | | | | grid complexity | 1.64 | 2.77 | 2.79 | 2.86 | 3.13 | | | | operator complexity | 1.86 | 4.73 | 4.81 | 5.13 | 6.83 | | | $\epsilon = 0.01$ | iterations | 25 | 16 | 11 | 9 | 7 | | | | ho | 0.614 | 0.511 | 0.378 | 0.306 | 0.185 | | | | grid complexity | 1.64 | 2.86 | 3.11 | 3.34 | 3.76 | | | | operator complexity | 1.86 | 5.09 | 6.31 | 7.99 | 14.01 | | | $\epsilon = 0.001$ | iterations | 36 | 17 | 15 | 13 | 13 | | | | ho | 0.721 | 0.517 | 0.428 | 0.388 | 0.365 | | | | grid complexity | 1.64 | 3.09 | 3.31 | 3.50 | 3.87 | | | | operator complexity | 1.86 | 6.11 | 7.46 | 9.32 | 16.18 | | **Table 2.** Convergence results for AMGe and the spectral agglomerate AMGe with $\tau_{AE} = \frac{1}{4}\tau_{AEf} = \frac{1}{4}\tau$; 2D anisotropic diffusion. | 25600 elements | | AMGe | Spectral agglomerate AMGe | | | | | |---------------------|---------------------|--------------|-----------------------------------------------------------|-------|-------|-------|--| | 12 levels | | $(\tau = 0)$ | $\tau = 0.03125 \ \tau = 0.0625 \ \tau = 0.25 \ \tau = 0$ | | | | | | $\epsilon = 1$ | iterations | 15 | 22 | 21 | 10 | 6 | | | | ho | 0.517 | 0.673 | 0.649 | 0.429 | 0.154 | | | | grid complexity | 1.62 | 2.81 | 2.82 | 2.92 | 3.21 | | | | operator complexity | 1.86 | 5.01 | 5.04 | 5.62 | 8.41 | | | $\epsilon = 0.01$ | iterations | 32 | 30 | 23 | 12 | 8 | | | | ho | 0.715 | 0.747 | 0.673 | 0.431 | 0.202 | | | | grid complexity | 1.62 | 2.90 | 3.01 | 3.42 | 3.89 | | | | operator complexity | 1.86 | 5.43 | 5.96 | 9.60 | 21.92 | | | $\epsilon = 0.001$ | iterations | 57 | 36 | 28 | 22 | 20 | | | | ho | 0.834 | 0.761 | 0.698 | 0.604 | 0.549 | | | | grid complexity | 1.62 | 3.13 | 3.25 | 3.62 | 4.04 | | | operator complexity | | 1.86 | 6.58 | 7.36 | 12.25 | 28.38 | | - [B84] Brandt, A., McCormick, S. F., and Ruge J. W.: Algebraic multigrid (AMG) for sparse matrix equations. In: Evans, D. J. (ed) Sparsity and Its Applications, Cambridge University Press, Cambridge, UK, 257–284 (1984) - [Br00] Brezina, M, Cleary, A. J., Falgout, R. D., Henson, V. E., Jones, J. E., Manteuffel, T. A., McCormick, S. F., and Ruge, J. W.: Algebraic multigrid based on element interpolation (AMGe). SIAM J. Sci. Comput. 22, 1570–1592 (2000) - [Br99] Brezina, M, Heberton, C., Mandel, J., and Vaněk, P.: An iterative method with convergence rate chosen a priori. UCD/CCM Report 140, (1999) **Table 3.** Convergence results for spectral agglomerate AMGe with $\tau_{AE} = \frac{1}{4}\tau_{AEf}$; 3D thin body elasticity. | 400 elements $d = 25h$ | Spectral agglomerate AMGe $\tau=0.03125~\tau=0.0625~\tau=0.125~\tau=0.25~\tau=0.85$ | | | | $\tau = 0.5$ | |-------------------------|-------------------------------------------------------------------------------------|-------|-------|-------|--------------| | iterations | 29 | 28 | 28 | 15 | 7 | | ρ | 0.748 | 0.738 | 0.727 | 0.553 | 0.295 | | grid complexity | 2.20 | 2.22 | 2.28 | 2.50 | 3.28 | | operator complexity | 2.84 | 2.90 | 3.04 | 3.63 | 6.94 | | coarsening levels | 7 | 7 | 7 | 7 | 7 | **Table 4.** Convergence results for spectral agglomerate AMGe with $\tau_{AE} = \frac{1}{4}\tau_{AEf}$; 3D thin body elasticity. | 1600 elements | Spectral agglomerate AMGe | | | | | | |---------------------|----------------------------------------------------------------------------|-------|-------|-------|-------|--| | d = 100h | $\tau = 0.03125 \ \tau = 0.0625 \ \tau = 0.125 \ \tau = 0.25 \ \tau = 0.5$ | | | | | | | iterations | 39 | 32 | 28 | 15 | 7 | | | ρ | 0.860 | 0.788 | 0.739 | 0.555 | 0.264 | | | grid complexity | 2.09 | 2.12 | 2.18 | 2.41 | 3.25 | | | operator complexity | 2.53 | 2.60 | 2.73 | 3.36 | 6.81 | | | coarsening levels | 9 | 9 | 9 | 9 | 9 | | - [Br04] Brezina, M., Falgout, R., MacLachlan, S., Manteuffel, T., McCormick, S., and Ruge, J.: Adaptive smoothed aggregation (aSA). SIAM J. Sci. Comp., 25, 1896-1924 (2004) - [Br05] Brezina, M., Falgout, R., MacLachlan, S., Manteuffel, T., McCormick, S., and Ruge, J.: Adaptive algebraic multigrid methods. SIAM J. Sci. Comp., (to appear). - [Ch03] Chartier, T., Falgout, R. D., Henson, V. E., Jones, J. E., Manteuffel, T. A., McCormick, S. F., Ruge, J. W., and Vassilevski, P. S.: Spectral (ρAMGe). SIAM J. Sci. Comput. 25, 1–26 (2003) - [FB97] Fish, J. and Belsky, V.: Generalized aggregation multilevel solver. Internat. J. Numer. Methods Engrg. 40, 4341–4361(1997) - [JV01] Jones, J. E. and Vassilevski, P. S.: AMGe based on element agglomeration. SIAM J. Sci. Comput. 23, 109–133(2001) - [RS87] Ruge, J. W. and Stüben, K.: Algebraic multigrid (AMG). In: McCormick, S. F. (ed) Multigrid Methods, vol. 3 of Frontiers in Applied Mathematics, SIAM, Philadelphia, PA, 73–130 (1987) - [Vn98] Vaněk, P., Mandel, J., and Brezina, M.: Convergence of algebraic multigrid based on smoothed aggregation. Numer. Math., 88, 559–579(2001) - [Va02] Vassilevski, P. S.: Sparse matrix element topology with application to AMG and preconditioning. Numer. Linear Algebra Appl., 9, 429-444(2002) - [VZ04] Vassilevski, P. S. and Zikatanov, L. T.: Multiple vector preserving interpolation mappings in algebraic multigrid. SIAM J. Matr. Anal. (to appear).