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ABSTRACT

liany wmatrix equations are either inherently discrete (e.g., in
geodesy) or for certain practical purposes remote from their origin
(e.ges a finite element discretization on a preselected irregular
grid). ANG is an algorithm designed to solve such problems by using
information contained only in the matrix while at the saue time
basing itself on multigrid principles. This paper introduces the
basic AiG concepts, develops its foundations, and describes current
AlG strategies,
1. IMCHRUDUCLION

The class of problems to which wmultigrid methods have been
applied successfully is constantly growing. So far, most of then
have been derived from continuous problems, where knowledge of the
underlying geometry is used as a guide to provide several uniform
diescretizations of the dowain. Each of these so-called grids or
levels can be used as a uniform coarsening of the next finer one.
The solution process, which involves relaxation sweeps on each grid,
fine-grid-to-coarse-grid transfers of residuals, and coarse~to-fine
interpolations of corrections, constitutes a very fast solver for
the finest~-grid equations. In fact, whether the equations are
linear or not, a solution with algebraic error smaller than trunca-

tion error is typically obtained in four to ten work units, where a

work unit is the amount of couwputer operations required to express
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. i i . These difficulties disappear in the ANG
the equations (e.g., the work of a matrix multiply for linear equa- discretizations PP

tions). approach.

I i 3. gioal CLicd i ] « Lven for uniform
Although this process seems to rely heavily on the geometry and

i ons, conventional coarsening may not be able to
continuous nature of the problem, the principles involved in solving discretizations, ng may

. X tain pathologies in the equation coeffi-
the fine grid matrix system can be abstracted and applied to various account for cer P b e

. - ients. Such is the case, for example, with five-point
classes of matrix problems. The aim of this paper is to develop clents u ' pLes P

{ i ations of two- dimensional diffusion problems
such an algorithm, algebraic multigrid (AHG), that results frow discretiz

: corad h the diffusion coeflicients are distributed in some
vpasing wultigrid concepts solely on information contained in the where

tterns (see [1; Sec. 8])]. Again, AHG would
matrix, The potential benefits or AMG include: particular patterns ( [1; DX gain, Ak

have no difficulty in such cases since it would select much

1. lBlagk pox' multigrid software. The virtues here are

better coarse grids than the 'natursl' ones.
obvious, especially in light of the present state of multi- etter ¢ &

4, Algebraic problens. AHG may be applied to large sparse

linear and nonlinear systems which are not derived from

&rid sof'tware and the substantial human design effort

needed for many wultigrid applications.
continuous probleus, including the geodetic-application

2. Applications Lo umorgapized prids. When the given grid is

ted in [3; Sect. 6] and [7]. MHany of these problems
not topologically piecewise unifiorm, as in the case of trea 1 (35 i ny P

C e . : . . such that each unknown is associated with a point in a
finite element discretizations witin arbitrary, irregular are sue P

5 . ow dimensional space (e.g., dimension 2 or 3) and that
triangulations, conventional multigrid design may be faced Low di P (eges

wost of the points exhibit pairwise couplings (i.e., matrix
with difficulties. Determination or' coarsening (i.e., the P ’

. . ; . entries) that either diminish or become smooth as the
coarse grids and their associated operators) may not be

i etween the points increase. It is this feature
practical., A further difficulty in such problems is to distances b 4

. brai roblem that should allow for efficient
choose both relaxation and coarsening when the problen of an algebraic p

. R olution by AiG.
exhibits certain directional properties. This includes solutio 4
anisotropic operators, which require either some form of

. R . . tiultilevel processing for the solution of problems not derived
block relaxation or seui-coarsening. Lbspecially severe

. . X . . . . from continuous, nor even geometrically-based, systems has for a
cases arise when the cowputational mesh is highly stretched ’ & ¥ » S

i n economi ef., [4] and the survey in [6]).
as a result or coordinate transformations or Lagrangian long time been used in economics ( » (4 v

In a sense, nobody 'invented' it; wultilevel organization is simply
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the way society itsell found erficient., This concept led to itera-
tive aggreiation algorithms (cf., [6] and [10]) in which the coars-
ening (agsregation) procedures are supposedly given by the nature of
tie problem just as they are in usual multigrid algorithms and other
seowetrically~based multilevel processing. The main point of AbG,
by contrast, is the couwplete autowation of the coarsening proce-
dures, including the selection of the coarser levels and the
inter-level transfers, basing them on the given matrix only. The
efficiency obtained by AiG is similar to the typical multigrid
efficiency, which is not approached by tihe less sopinisticated
aggregation methods,

The Al structure provides more than a fast linear solver, It
can, ror exauwple, be used to solve with similar speed nonlinear
problews, to update for negligiovle work the entire solution as the
problen changes locally, to solve large problems in small storage
and to give inexpensive representation and computation or the
inverse of large sparse matrices. (See [3; Secs. 6.7 and 71.)

Tnis paper is intended first to provide a brief description of
AlIG including its basic concepis and foundation. We rfurther treat in
brief several iuportant issues and AiiG strategies that have
arisen since our first report [3]. ilowever, even as we write this
account, new attempts are being made at fundamental iuwproveuents in
these strategies.

Brief uas special significance here. During the course of our
work on AHG an overwheluing collection of observations, concepts,
and algoritimic variations suggested themselves. By necessity,v we
used experience, analysis, and some numerical experiments in our

pursuit of efrficient and robust AlG techniques. UHMany alternatives
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Lo the A% processes described below are easy to conceive, but their
abundance prevents us frou discussing them here.

This paper is organized as follows: Section 2 describes the
algebraic properties o' the iteration error that characterize slow
convergence of relaxation methods; Section 3 motivates the basic
principles or AiG; Section 4 describes the basic AMNG processes;
Section 5 includes a note on numerical performance; Section 6
describes a few major areas of further research; and the Appendix
contains a somewhat detailed description of the current AiiG coars-

ening strategy.
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It is first iumportant to understand, in general algebraic
terns, wnat type of errors becoue dominant when basic iterative
schemes are slow to converge. A comnon feature of those iterative
scheuwes is that at each step some correction to the approximate
solution is calculated based on the current magnitute of certain
residuals, lience, the convergence must be slow if the residuals are
in some sense suall cowpared with the errors. The converse is also
true: il convergence of @ proper relaxation scheme is slow, the
residuals nust in some sense be small coupared with the errors.

To see this, consider for exzample Kzczuarz relaxation applied
to a general real or complex matrix equation

(2.1) AX=b.
ke suppose the current approximation x is converging to a solution
X. (7o treat this wost general case, wihere A need .not even be
square, we consider Kaczmarz wethod which converges whenever (2.1)
is solvable [9].) Denoting by e = x-X the current error vector, by r
= he = Ax~b the current residual vector, and by ai the i-th row of
A, then the Kaczuarz step corresponding to that row is to replace x
by x - (r./a,a t)ait, thereby forcing ri to zero. A full Kaczmarz

i"Tii

sweep is the euployuwent of such a step for each row of A, in
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the natural ordering. Let
v 2 _ 2 2
(2.2) E= z|e ]| and R =% QA § |aij| )
be square norms for errors and residuals, respectively, scaled as is
evident so that they are comparable. One can then prove the follow-
ing result [2; Thu. 3.4]:
N 1 ~
Iheorem 2.1, Let Ho and X denote the values of R before and
after one sweep of Kaczmarz relaxation, respectively, and let
a7 -
L) (Y177,
" LRI |
=iy,
- 2
gfx(j%l% ay aJAD / flaikl’ and
- 2
(| ay,a 7T] agl
+ - opx jei iX jx| £ iz

Then the decrease in E over that sweep is at least ?oﬁ‘o; it is also at

a
Y

"

least ?1&1 .

tais ;heorem says in essence that slow convergence can occur
when % is small compared with ﬁﬁ (Observe than in case & arises frou
the discretization of differential equations, or is siwilarly struc-
tured, #i are cowpletely local quantities; they do not depend on
the size of A,)

For special classes of matrices A, sinpler (and more effective)
relaxation schemes can aciieve the same goal. For example, for
symietric positive~derinite matrices, an effective method is
Gauss-Seidel relaxations Where now the step corresponding to the

i-th equation is to replace xi by x, - ri/aii’ leaving the rest of x

i
unchanged, again forcing ry to zero. The error and residual square

aorms in this case are

oo & 2
(2.3) E=er and B = 1%/ la,l,

for which we have the following result [2; Thas 3.1 and 3.2]:

263
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Lheorell 2.2« Suppose A is symuetric with positive diagonal.
Let Ro and Rl denote the values of R before and after one
Gauss-Seidel sweep and let

L) ()17,

Y ©
v, = [y v
1 -+ '
= max L a -l / a and
rEE j<l ij 110

Ml G NIt
Then the decrease in E over that sweep is at least YORO; it is also at
least YlRl.

The con:stants Yi appearing in this theorem are sharp in many
cases, wiile in oithers they are not far off and optimal constants
can be derived by local mode analyses, JSimilar results hold for all
other familiar relaxation scnemes, such as Jacobi relaxation with a
suitable under-relaxation parameter, block relaxation schemes (with
a suitable caange in the form or ), ete. (See [2;Sec. 3].)

2.2 Ugomefric and algedraic smootdness

When {(2.1) represents a discretization of a differential equa-
tion LU = 1, then small residuals r s Ae imply that e is locally an
approximate solution to LE = 0. When L is elliptie, this iwplies
that e is a smooth function. (A specialized sense of smoothness is
implied waen L is not elliptic.) This smoothness is the basis for
tie usual 'geometric' wultigrid algorithms in which the smooth error
functions produced by relaxation are subsequently approximated on

coarser grids. To develop such a foundation for AlG, we must free

the concept of smoothness frouw its geometric context.
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Since E and R (or éland §3 were scaled to be comparable, it is
only for special error cowponents that the slow-convergence condi-
tion

Y N

(2.4) R<KE (or R << E)
can be satisfied. The deeper (2.4) is satisfied, the more special
uust be the error, and hence the fewer is the number of paraneters
needed to approximate it. Thus, broadly speaking, relaxation
reduces the information content of the error and makes it
approximateable by lower dimensional spaces ('coarser grids').

To see more specifically how these lower dimensional spaces
should be constructed, consider first the special class of symmetric
positive-type matrices, which form the prototype for our initial
developuent of AMG. We call the matrix A = (aij) positive-type if
ai,ji 0 for all i# j, whereas, J}; aij->— 0 for all i. (This is
equivalent to the assumption that A is a diagonally dominant M-
watrix.) In this case,

2

2
E = z - -
B= 1/2 i ( aij)(ei ej) + E ( Eaij) e

2
172 ¢ ('aij)(ei'ej)"

i,

. . , 2
By the Cauchy-Scuwarz inequality, E2.5R zaiiei ,

so the slow-convergence condition (2.4) implies

L, (-a <ia,e?

. 2
(2.5) 3 (-a;)(e-e ) << Fae s

Since a; ;<0 for i ¥J, this means that e;-ey is on the

265

average small compared with |le |jwhenever 3 is comparable with either

nLax |aik| or ua | ajkl’ i.e., whenever i and j are strongly
kéi ki
coupled. Thus, we conclude that Gauss-Seidel
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relaxation (and similarly other schemes) smoothes the error along
strongest couplings (and couplings comparable to the strongest).

slock relaxation can give stronger smoothing. By including the
strongest couplings in tne blocks, the error will also be smoothed
along next-strongest couplings [2;Sec.3.5]. In our AlG development,
aowever, block relaxation is not usually needed; swoothing along
strongest couplings is enough because the coarser grid can be
selected so that interpolation is always done along such couplings.
(Similarly, in geometric multigrid, full sumoothing, e.g., by line
reiaxation in case o' anisotropic operators, is not needed if
seui-coarsening is used; see [11;Sec. 4.2.1].)

‘tae concept of swoothing along strong couplings can be generalized
to sparsely positive-definite pmatrices (see [2]), and pernaps to
wost other matrix types of interest. In practice, the sense in
which a given relaxation scheme smoothes for a given matrix A can
algorithuically be detected by techniques deseribed in Section 6.1
below. llow that smoothing is exploited by AlG will be described in

subsequent sections.

Brandt, McCormick & Ruge: Algebraic muitigrid

As we noted above, smooth errors can be well represented by
fewer variables. To see how this can be done, we first introduce
the notion of a two-level mulitigrid scheme. To this end, let G be a
given ('fine') grid, that is, a finite set of points in Rd, where ¢
is sowme positive integer. Suppose that a ('coarse') grid 6% is
given that represents some *coarsening' of G (e.g., Gc nay be a
subset of G) and let Ic: ¢® +g¢ ('interpolation') and I1°:¢ + ¢¢
('restriction') denote the intergrid transfers. Let A: G+ G and A

: 6% +¢°

be linear operators. (We identif'y each grid with its
associated space of grid functions.) Suppose b in G is given and
let X be a solution or the fine grid equation

(3.1) AX = b.
Vith x the current approxiwation to X, then one multigrid cycle
consists of applying, say, several Gauss-Seidel sweeps followed by a
residual equation transfer to Gc via

(3.2) A%® = 1% - Ax).
This problem is then soived (with present two-level case) and used
to correct the fine grid approximation according to

(3.3) XX+ Icvc.

The reason for the efficiency of such a multigrid schene is

that, with proper choice of the grid transfer and coarse grid

267
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operators, the error that cannot be eliminated by the coarse grid
éorreetion (3.4) is effectively reduced by relaxation. To ensure
that the coarse grid correction actually does what it is intended to
do, it is necessary to define A® in the right way. HNote that (3.2)
and (3.3) imply that the coarse grid correction is given by

(3.4) X X + IcA°-1Ic(b - Ax).

Letting e = x - X denote the error, then (3.4) can be rewritten
as
-1

(3.5) e «(I-1I4° I%e.

Hence, the goal of the correction is roughly to eliminate error in
B(Ic), the range of the interpolation operztor. Thus, if e = Icvc
for soue v°, it is :\esirable that

(1-14° 1%) 1% =0
or, since Ic should be full rank, that

(3.6a) 4% = ICAIc.
liote that, with this choice if Ac, the coarse grid correction
becowes a projection.

For the special case that A is a real symuetric positive
definite matrix, we can derive this same form for A¢ together with a
prescription for 1° by way of a variational condition for the energy
noru ||e||E = eAe . Specifically, by seeking a veotor v° in G°
that miniuizes || e - Icvc I v Wwe are led to (3.6) with

(3.6D) °=1"
These 'variational relations' (3.6) are in fact used in AMG for such
watrices to form I° and A° once Ie has been determined.

In wany applications for geometric multigrid algorithms, the

coarse grid approxinates swooth fine grid vectors in a fairly strong

sense. Specifically, suppose E and R represent the error measures
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in either (2.2) or (2.3), which we use interchangezble wita || e “EZ
and |{e||R2, respectively, when we need to depict the error e on
which they depend. Then we are often assured that, for any e in G,
there exists an e in G° so that
(37) || e = T g <y e e

(Here, as in Section 2, we use y generically to denote quantities
that depend only locally on A.) Let e1,e2, and e3, respectively, be
the errors in such a multigrid application just after the previous
coarse grid correction, after relaxation has slowed, and after the
subsequent coarse grid correction. Then the e2c for e2 guaranteed
by this approximation condition, together with the variational
property of the coarse grid correction, the slow-convergence rela-
tion (2.4), and the ract that E decreases in relaxation, all iuply

that

les lle < llee = Lo llg < v lleg lge< Megll = el e
Thus, E must be substantially reduced in each full cycle.

ifficient two—-level algorithms can in fact be obtained under
uuch weaker conditions. Thus, in terms of the norm || e Hu =

La it is enough that, for any e in G, there exists an e in

2
11%
¢t satisfying

(3.8) | e~ Icecﬂ usY lle Hﬁ.
(See [2; Thu. 4.1J.) Such a condition, which is weaker than (3.7),
can be guaranteed by interpolation along strong connections. For
example, iu our prototype symmetric positive-type case, interpola-
tion can be (and is) taken to be regular averaging, i.e.,

i = (w > z -
(3.9) L= (el W 20, v st

269
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in which case (3.8) is satisfied if, for every e in G, there exists
an e in G° so that

; 2 z 2
(3.10) (e ) S.% ('aij)(ei'ej) .

b e ©
1,k 111k 61 "% 1.3

& sicple way to satisfy (3.10) is to regard ¢ as a subset of G and

let the interpolation coefficient wi be proportional to the

k

strength of comnection a,, . More precisely, let ¢ denote the

ik

indices thnat correspond to G¢ in G and let F denote the other

ingices. Then v = Icvc is defined so that

vi© iin C
(3.11) v, = 4
¢ o
z -a. Vv,
jic ( a”)vJ iin F

. jEF (-aij)

Then it is easy to see [2; Sec. 4.3] that (3.10) is satisfied by

(3.12) v= 1/2 T%E ng (-aij) /.

The important conciusion here is that, if there is sufficient
total direct strength to C points for every F point, then by
(2.3) we are guaranteed that a full coarse-grid correction followed
by one relaxation sweep uust reduce the error measure E by a sub-
stantial factor independeni of the matrix size. Actually, for
satisfying (3.10), we do not need to be so restrictive as to guaran-
tee that the strength to the C points is direct, nor do we need to
interpolate frow all available ¢ points; but we defer these issues

te Section 4.

270
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3.2 Hulti-level scheme

The two-level algorithm described in the previous section in
effect reduces the problem of solving an équation in A to that in
A%, To solve the latter effectively, we must continue to process to
yet coarser levels. Thus, we define a multi-level (multigrid)
algorithm by applying the two-level algorithm recursively.

In particular, the set-up process for a multi-level algorithm

starts with Go = G and AO = A and determines Gc, Ac, Ic’ and 1I° from
G and A according to the principles of Section 3.1. Let G' = G°,a!

z Ic’ and I1 = I°. Then this coarsening process continues

1
by determining gl, a%, 1,, and 1* from ¢! i-1

= 4% 1
and 4 for each i = 2,
3, eeey i in turn according to the same procedures. Thus, Ai is the
grid Gi operator and Ii:Gi ’*Gi.1 and Ii:Gi'1 -+ Gi are the intergrid
transfers.

To describe the multi-level solutionprocess, let the number v
of relaxation sweeps per grid be specified. Given fi on grid Gi and
an approxiwation, xi, on Gi to the solution of

(3.13) st - ft,
then one uwulti-level V-cycle on grid Gi is denoted by
xi - MGV(i,xi,fi) and is defined recursively
by:

-1

If i =i, set xi « at fl.

Otherwise, do the following:

perform v Gauss-Seidel sweeps or (3.13);

xi+1+ 0 and f1+1 *11+1(f1_ﬁixi);

S ievaen, Y, e ana.

i 4 i+l
XTE X+ Ii+1x .
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The two primary tasks in developing an AlG solver for a given
symuetric matrix A are the determination of C, the coarse grid
variables, and the couputation of Ic' the interpolation formula.
The fine-grid-to-coarse~grid transfer Ic and the coarse grid
operator 4% zre then determined by the variational relations (3.6).
Other AliG processes, such as the relaxation ordering (C-F ) and
cyeling schemes, are usually straightforward (cf.[3]). In this
section, we discuss issues that relate {o these two primary tasks
for symmetric positive-type watrices.

4.1 Brototype ANG and itz limitations

For each i in F, let SI(i) denote the set of points
in C that are used in the interpolation formula for i, that is,
SI(i) ={kin C:w, #0}. As we noted at the end of Section 3.1
for our prototype matrices (i.e., symuetric positive-type), to
develop an AliG with good two-grid convergence rates, it is enougil
to ensure that every point i in F has sufficient total direct
strength to SI(i). In our early efforts, this premise was used to
develop a prototype AlG which was based on ensuring that each i inF
had at least a certain fraction of its total direct strength to
st(a).

& wajor diriiculty with this prototype AlG is its tendency to

exhibit fairly high total relative complexity , where by this we
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wean the total nuwber of non-zero entries of all grid matrices
divided by the number of nonzeros in A. This ;s because this com-
plexity depends very sensitively on the numober of connections used
in interpolation - and this is large when AMG is forced to achieve
sufficient direct strength.

A second difficulty with our prototype is that it can in fact
exhibit slow V-cycle convergence. That is, even though it achieves
the approximation conditions in (3.8) that guarantee acceptable
two-grid convergence rates, the stronger conditions (3.7) needed for
V-cycle convergence may be violated. Simple geometric examples in
[2; Sec. 4.7] show in fact that this prototype AlG can produce
low-order interpolation that results in slow V-cycle rates.

4.2 Iodirect strengih

Condition (3.10) is easily satisfied by taking sufficiently
strong direct connections into account in interpolation, but it can
also be satisfied through indirect connections. For example, cer-

tainly

c,2

e, )

Vi (ei - <2 LR (ei - ej)2 + 2 L (ej - ekc)z.
Suppose point i strongly depends on point J which in turn strongly
depends on point k; we say that point 1 is strongly but indirectly
coupled to point k. Such indirect strength can thus be used to
satisty (3.10). This means that, even when large neighborhoods of
strong couplings exist, suitable approximation can still be achieved
provided the neighbors of the points in SI(i) largely overlap the
peighbors of i. (See [2; Sec.h.d].)

To take indirect strength into account, we first modified our

prototype algorithm, using what we call [3] *p-point interpolation'.
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ilore specifically, we adopted the new objective of requiring essen~
tially that eaci point i in F have its p strongest connections to
SI(i), p a swdall fixed integer. This limited the connections to
sl(i) S0 that cowmplexity was better controlled (ecr.[3] and [6]), but
it did not go far enough to ensure toial strength (direct and
indirect) to SI(i). Consider the geometric example of a fully
uniform five-point discretization of the LaPlacian in two dimensions
with p = 2. There is no wmeans ror AlG as such to decide which of
the four neighbors of a given i to place in SI(i), yet only by
interpolating from points on two opposing sides of i can linear
interpolation be obtained. Such 'two-sided' interpolation is the
only way here to achieve the stronger approximation conditions
(3.7).

Gur current version of AliG places no artificial bound on the
nguber of points in SI(i), but rather attempts to make SI(i) as
small as possible while ensuring that the total direct and indirect
strength is sufficient. Specifically, the objectives of the
point choice strategy for our current algorithu are:

1)} For every point i in F, each point j on which it strongly
depends most either be in SI(i) or must itself depend
strongly on a point in SI(i).

2) Total relative complexity should be uinimized, that is,
there snould be as few C points as possible and SI(i)
should be as small as possible.

3) ‘the set-up processes should be fast., Its speed is limited
by the time, t, it takes to compute A® once Gc and Ic have
been defined, s0 the goal here is to keep the set-up time

at about 2t. (t is determined by how well Objective 2 is

Brandt, McCormick & Ruge: Algebraic multigrid

achieved and the speed of the solution process depends on
this and the nature of the approximation by the coarse
grid.)

Note that Objective 1 overcomes some of the difficulty with the
previous algorithms of achieving the stronger approximation condi-
tions (3.7). For instance, for the five-point exauple of the pre-
vious paragraph, our current strategy produces a red-black coars-
ening so that all neighbors of each point are in SI(i).

In order to achieve speed, a quick first approximation to the
coarse grid is obtained with Algoritiam A, a brief description of
whieh is ineluded in the Appendix. This distributes the ¢ points
over the grid in such a way that few c~-point-to-c -point strong
connections exist and the F points have connections to at least one
(though usually more) C points. For geometric operators with
fairly uniform strong connections, this tends to give a uniform
distribution of C points suitable for interpolation. The ¢ point
density is controlled by a parameter €qe

Of course, this algorithm does not guarantee that Objective 1
is achieved. liowever, this may be tested and corrected at the same
time the ‘interpolation coefficients are being couputed. This is
done in Algorithu 3, which is also described in the Appendix. Here,
an F point is interpolated from a subset of the strong connections,
as defined by another paraueter, 22 (usually

€ 2< 51), and points not used in interpolation must be

strongly connected to SI(i). Thnere are several ways that this
strength can be weasured, but in any case, a third paraneter, 53. is
used to control it. If, while couputing the coeificients for a

point 1 in F, a point j also in F is found not to be strongly

275
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connected to SI(i), J is itself wmade a 'cohditional' ¢ point. If,
after waking j such a point, there is yet another strong connection
of 1 which is not a ¢ point and is not strongly connected to the
new set SI(i) (including j), then i itself is made a ¢ point and J
regains its status as an F point. (It is not worth the added
coﬁplexity to keep i an F point if it requires more than one addi-
tional C point to do it.)

4.3 Improved interpolation Iormulac

This revisecd coarse grid point choice strategy described in the
previous section lends itself to an improvement in the interpolation .
rormula. To be specific, suppose i is in F. Then the motivation
for the operator interpolation depicted in (3.11) starts with the
assupption for relaxed errors that ri = 0 (approxiuately). ‘Thus,
for sucih errors,

(4.1) e = kﬁi ('aik) e, (approximately).
The points not in SI(i) in this summation are then eliminated by
using the suoothness condition which, for our prototype matrices,
is written as

(4.2) (approxiuately).

1Er%i5 % T 58215
This leads directly to (3.11). lowever, the revised <C point
choice strategy provides more information at points not used in
interpolation. Thus, for each point j not in SI(i) v {i} it can be
assuwed that

= I
(4.3) ej ajkek /I ajk’

where the suumation here is take over all k in SI(i) U {i}. That

is, to deteruine Wi any aiJ in (4.1) can be replaced by changing

!
the values of aik according to the stencil for point j. The values

Wil thai result frou this nced not be represented explicitly here,

il

i
i
H
H
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5. NOTES QN NUWERICAL PERFORMANCE

The purpose of this paper is to desoribe thé current status of
AMG, not to report extensively on its performance characteristics.
Numerial results for earlier ALG algorithms have been reported
elsewhere (ef. [3] and [8]) so that its potential is well estab-
lished. However, the current algorithm is an improvement in several
iuportant ways that bear on its performance:

Complexity. The present strategy exhibits total relative

operator complexities that are typically about 2.5, well below

earlier AMG values.

Convergence rates, Asymptotic convergence factors are more

consistent and usually better than those reported in (3] and

[el.

Robustness » The current algorithm is more robust in that its

performance does not degrade as it did for certain pathological

cases.

However, even the current strategy is not without room for
iwprovement and is currently undergoing basic modification. (See
the next Section.) We therefore defer reporting on numerical

results to future efforts.
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There are many aspects that are currently under study for AiG,
out the main objective for tie basic algoritiuz that will aave
seneral iwpact on Al is Lo ensure that error suootuness is properly
exploited. We discuss below two of the wain approaches that we are
now considering in this direction. They will be discussed brierly
in the countext or' positive-type problems, although their generaliza-
tion to other cases (especially systews) may provide an important
vehicle for extending AliG to broader classes. Botn approaches can
be viewed as atieupis to obtain information on coupling strength
beyond direct connections. The first attempts to do this
iwplicitly, wnile the second takes a more expliecit approach.

6.1 Pre-relazation.

For simplicity, imagine first that A is a symmetric !l-matrix
but is scaled so that some of its row sums are negative. Though a
aiagonal scaling exists that can convert A to positive-type, thus
waking AlMG application straightrorward, it can generally be too
expensive to precisely deteruine. lowever, A need only be essentially
positive-iype [3] so that such scaling need only be approxinate,
The point here is that we would like to autouaticaliy determine an
approximate sense of swoothness, that is, a sense of the nature of

errors that produce swall residuals for A.
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the concept of pre-relaxation is to attempt this by performing
relaxation on the houwogeneous equation

(6.1) AL = 0
and examining the resulting approxiuate solutions, which of course
are now also the actual errors. For the siuplest case,
pre-relaxation starts with one initial guess e that, without further
information, is probably best chosen as the inverse square roots of
the diagonal entries of A. Severzl Gauss-Seidél relazation sweeps
are then perforued on e for (6.1) with the result (possibly normal-
ized) defining entries of the diagonal matrix De' A is then
replaced by DeA De' The first level of' coarsening is determined, and
the pre-relaxation process is continued until all levels are chosen.

Initial experiments with a wodified version of the above algo=-
rithm have proved very successful. In fact, just a few
pre-relaxation sweeps starting with a constant vector seem to be
enough to restore AiiG efficiency for positive-type matrices that
have been mis-scaled by random powers of 10 between 1 and 20,

iiore sophisticated vector pre-relaxation techniques would use a
simultaneous set of several vectors that are forced to maintain
local independence, are subjected to several relaxation sweeps for
(6.1), and are subsequently examined to determine interpolation
formulae that optimally represent the local subspaces that these
vectors generate.

6.2. ZIotal strength of comnection

Sinply stated, it is important to ensure for each F point that
the strength to points SI(i) used to interpolate to it is a

reasonable fraction of its total dependence. However, this strengtn

279
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to the points in SI(i) should account not only for the direct coup~
lings, aij’ but for indirect ones as well. Thus, if i is connected
to j which is not in SI(i), then we should assess the contribution
to the strength of point j via its connections to SI(i). The objec~
tive nere is to measure the degree of 'overlap' (described in [2;

Sece 4.4]) to ensure a suitably large Y in (3.8). Precisely how

this should be done is a subject of our current efforts.
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The matrix A = (aij)nxn is assumed to be syumetric and of
positive-type. lle use the following notation:
G = {1, +esy n} (thé ‘grid' points for &)
W(i) = {j # i: aij # 0} (the neighborhood of a point i)
S(i, €) = {j £ i: “Ryy 2 CopRx - aik} (the set of points
on which i strongly depends relative to the parameter g)
ST(i. €) ={j #i: 1 in S(j, €)} (the set of points
which strongly depend on i)
In addition, it is useful to have a measure of dependence of a point
i on a set of points P, This can be defined in several dirferent

ways, the siuplest of which is the following:

d(i, P) = J_tngalt, ( ~ aiJ)/ﬁ‘af (- 350

(An aiternative is I (- a, . )/max(- a..).) Using this function, the
jep 13 kfi ij

set of strong counections of a set of points, relative toe, can be

defined as follows: ST(P, €) = {J ¢P: d(§,P) >el. Finally, the

set of points which are used to interpolate to a point i in is

denoted by SI(i). In this algorithnm, SI(i) cs(i,ez).

ALGORITH{ A
(Initial ¢ point choice)
Paravneter ¢ 1 defines strong connections.
1. Set F« ¢ ,C+ ¢, U (undecided) « G. Set ny to the number of
elements of ST(i,sl) for all i.
2. Picit i in U with maximal nge Ir n; = 0 or U=z ¢, stop.
3. Put i in c.

For each j in ST(i, )h v , do the following:
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Put j in F. s I,.
J 3. For all k in S7(i), set Wi € =25 ¥ige Ifmo= 1, setCe Cu{jp},
For each k in S(J,el)n Vv, set LU 1 Go to 1.
4. Go to 2. #An alternative criterion here is
! I
d S7(i . (-2, (= a .
(3 SHID) 2 g0 (- p) / pgx (- 2y, )
ALGORITHd B This reduces complexity somewhat since it says that the dependence of j on
. 3 I
(Final C point choice and % S7(i) need not be large if dependence of i on j is not large.
interpolation definition)
The r t i i - a i
Parameters: € 2 and € 3 esults of this algorithm are the final Cc/F splitting and the
interpolation formula, which f i i e e

Let F and C be the fine and coarse points resulting from Algorithu L. Let ' ¢ orany 1 in rand e” in 6" e,

) . is given by
T be the set of F points which have been tested. Initially, T = ¢. Any tine

) ) ) ' e. =L 1 W e_°

a point is put in C, it is automatically resoved from T and, of course, F . i ges(q) ikk -

1. If Fer, stop. Otherwise, pick soze i in F-T , Set ST(i) =z
s(i, ez)l\ C. Set T«T v{i} and m = 0.

2. For eachkinSI(i),setw =8, . Setwii=a... Set P = H(i)AF .

ik ik ii
a. IfP= ¢, go to 3, Otherwise pick jinP. Set P « P - {j} « 1If
j is not in S(i, ez), go to e. Otheruise, proceed with b.

be If d(j, SI(i)) > € go to e. Otheruise, set < u+ 1. If

3“'
m =1, go to c. Otherwise, go to d.

c. Set jp = Js SI(i) +SI(i)u{j} , and go to 2. (J
becoses a conditional ¢ point.)

d. Put i in C . Leave jp in F and go vo 1.

e. (Distribute the weight for point Jj.)

Let b=a,.+ I a

ij ' ]

kes i) 3 g

If b =0, seb Wy, « Wi, + aij‘ Otkerwise, :

o & in s . . !
for 211 X im ST (i)v {i} , set w T + aij . aj)‘./ be

Go to a.
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