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Abstract. While several tutorials and texts exists that introduce basic and advanced aspects of
multigrid methodology, the aim here is a relatively short exposition that is simplified by focusing on
the fundamental concepts in a variational setting: a quadratic energy functional minimization principle
formulation of a symmetric positive definite matrix equation. This focus enables a simplification of the
development and supporting theory, and it clarifies the principles that lead to effective algorithms. The
development begins with the iterative form of multigrid solvers, exemplified by the so-called V-cycle.
It then introduces the full multigrid method as a direct solver in the sense that it is aimed directly
at the partial differential equation from which the matrix equation presumably arises. The aim of full
multigrid is to achieve discretization-level accuracy at a minimal cost comparable to that of a few matrix
multiplies on the finest level. This primer presents these basic multigrid methods along with some
theory and practical principles and heuristics that can guide their development. The focus here is on
understanding the general principles that lead to multigrid methods that work rather than the details of
specific algorithms.

1. Introduction. The purpose here is to provide a brief introduction to multigrid
(MG) methods together with some basic theory and practical principles and heuristics
that can be used to guide their design. Some of this presentation has been taken from
the supplemental material available with [11], while most of the following concepts can
be studied further in [6], [8], and [12]. Our focus in what follows is on symmetric positive
definite (SPD) matrix equations that arise from the discretization of elliptic partial differ-
ential equations (PDEs). Although multilevel methods have much broader applicability,
this case allows for a much simpler development and clarification of the basic principles
underlying multigrid methodology.

It is important to keep in mind that this primer focuses on general principles as
opposed to detailed prescriptions for specific problems. The point is that a good under-
standing of these principles can guide to the development of effective multigrid methods
for many diverse applications.

Multigrid methods have two essential components: smoothing and coarsening. Typ-
ically, the smoother is responsible for removing oscillatory errors in the solution, while
the coarsening strategy effectively provides a way to deal with smooth errors. For multi-
grid to work optimally, these two components must be carefully designed to complement
each other. An underlying theme of this primer is the focus on design conditions that
guarantee such complementarity.

To better understand this interplay, we start in section 2 with the assumptions on
the hierarchy of discrete matrix equations that are made available to the multigrid algo-
rithms. We continue in section 3 by characterizing the smoothers that we have in mind
together with their basic properties. In section 4, we begin by introducing a two-grid cy-
cle. After a clarification of the notion of residuals in section 5, the two-grid development
then leads into the construction of so-called V-cycles and W-cycles in section 6. These
multilevel methods aim to provide an optimal iterative solver in the sense of achieving
uniformly bounded convergence factors per cycle at a theoretical cost proportional to the
number of degrees of freedom on the finest level. In section 7, we introduce full multigrid
(FMG), a direct method in the sense that its target is the PDE: it uses a special fixed
cycle that attempts to achieve discretization-level accuracy at the truly optimal total cost
equivalent to that of just a few finest-level relaxation sweeps. In section 8, we review the
analysis of two coarse-level approximation properties that confirm theoretical optimality
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of the multigrid solvers that have been developed. Based on this analysis, we discuss how
to design effective coarse grids and interpolation operators in subsection 9.1 and how the
discretization of the underlying problem can affect multigrid performance in section 9.2.
We end the primer with a short summary in subsection 10.

2. Preliminaries. We use bold font for matrices and vectors, typewriter font for
algorithms, and roman font for functions and acronyms. For example, G signifies the error
propagation matrix for a generic stationary linear relaxation method, Gh

(
vh, gh, µ, h

)
denotes the relaxation algorithm, and G is shorthand for relaxation. For consistency with
the PDE equation that uses L for the operator, u for the unknown solution, and f for
the source term, our matrix equations appear as expressions like Lu = f and Lv = g
with mesh size superscripts to denote the grid level. Note that this use is in contrast to
the more traditional expressions like Ax = b.

We assume up through section 8 that a hierarchy of SPD matrices denoted by Lh and
intergrid transfer operators called interpolation or prolongation P h

2h and restriction R2h
h

have been determined on a sequence of coarse-to-fine grid levels that reflect increasingly
accurate discretizations of a PDE. The assumption about these discretizations is that they
are based on the simple case of a finest-level logically rectangular grid in two dimension
with uniform mesh size h in both coordinate directions. A further simplification is that
the coarse levels are constructed by eliminating every other grid line in both coordinate
directions. Accordingly, we use 2h to denote the mesh size of a coarsening of a given grid
h, where H represents the coarsest grid in the hierarchy. We do not explicitly specify
here how these discretizations are to be constructed so that the discussion applies to
virtually any procedure. However, it is probably best to think in terms of the Rayleigh-
Ritz variational approach based on lowest-order finite elements as discussed further in
section 8.2. In what follows, we assume that these constructs on all levels of the hierarchy
are internally available to the algorithms that we introduce.

It is important to keep in mind that these assumptions are only to simplify the
discussion and that multigrid and, more generally, multilevel methods (that might not
even be based on grids) have much broader applicability.

3. Smoothing. Assume that the matrix Lh ∈ Rn×n is SPD, where h is the mesh
width of the finest grid. The target problem is to find uh ∈ Rn such that

Lhuh = fh, (1)

where fh ∈ Rn is a given source term. The coarse-grid correction form of multigrid
described later involves an equation on grid 2h where the source term is different than
f2h. To accommodate this change, we generalize the notation of (1) by writing

Lhvh = gh. (2)

While (1) is our ultimate target, we focus first on (2) in our discussions on relaxation
and basic multigrid solvers. This is of course just a change in notation, but it is useful
because it allows us to emphasize the difference between treating (1) directly and treat-
ing it indirectly by way of (2). This indirect approach involves setting up (2) so that its
solution is a correction to the current approximate solution of (1). In any case, we return
to (1) when we introduce FMG that treats it directly.

The matrix equation in (2) can be solved using any of a number of simple iterative
methods like Jacobi or Gauss-Seidel relaxation (cf. [7, Section 10.1]). However, in all
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that follows, we restrict our attention to Richardson’s iteration1 given by

vh ← vh − 1

∥Lh∥
(
Lhvh − gh

)
, (3)

where ∥ · ∥ denotes the matrix norm induced by the Euclidean vector norm ∥ · ∥. (By
the notation in (3), we mean that the current approximation, vh, to the solution of (2)
is replaced by the expression involving the old vh to the right of the arrow.) As with
many other methods, Richardson relaxation corrects the current approximation by a term
involving the residual rh ≡ Lhvh − gh. Algorithm 1 illustrates µ sweeps of Richardson
iteration applied to (2).

Algorithm 1 Gh
(
vh, gh, µ, h

)
; relaxation

Given: Lh

1: i← 0
2: while i < µ do
3: vh ← vh − 1

∥Lh∥
(
Lhvh − gh

)
▷ Richardson iteration

4: i← i+ 1
5: end while
6: return vh

Unfortunately, all simple relaxation methods applied to discretizations of partial dif-
ferential equations, including Richardson’s iteration, typically stall well before they reach
an acceptable approximation to the solution. The cause of stalling comes from the resid-
ual’s inability to see smooth error, by which we mean that the matrix applied to such an
error yields a scaled residual 1

∥Lh∥ (L
hvh − gh) that is small compared to the algebraic

error eh ≡ vh − (Lh)−1gh. For many discretized elliptic equations, this algebraic sense
of smoothness of the error usually corresponds to the geometric sense, where errors vary
slowly across the grid. We adopt the algebraic sense here instead because it applies to
more general matrix equations that may not even have a geometric basis, and it sheds
important light on how to treat these errors. In any event, correcting such smooth errors
by way of the residual, as simple relaxation methods do, would therefore accomplish very
little. Worse yet, while these methods may work well for a couple of iterations when
the initial error has oscillatory components, this fast elimination of oscillatory error ex-
poses the remaining smooth error that works to stall all subsequent iterations. While
this limitation is a common smoothing property of most conventional iterative methods
applied to discretizations of partial differential equations, we shall see that it provides the
motivation and foundation for coarse-grid correction.

To clarify the source of this difficulty, we begin by studying the algebraic error eh in
more detail and by introducing ways to measure its smoothness. To this end, consider
first the following simple relationship between the error and the residual in terms of the
target equation in (2):

Lheh = Lh
(
vh − (Lh)−1gh

)
= Lhvh − gh.

If we use this relationship in (3) and subtract (Lh)−1gh from both sides of the result, we

1The reader should be warned that this primer rests on the simplicity of Richardson and other so-
called Krylov methods (whose error propagation matrices as defined in (4) below are polynomials in Lh).
For other smoothers, the analysis and attendant algebra can be much more involved, although most of
the basic principles are essentially the same. It is also important to point out that dividing the residual
by ∥Lh∥ ensures that the iteration converges, but it is not necessarily the best choice for relaxation. See,
for example, [6] for somewhat better scale factors.
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end up with the error propagation expression

eh ← Gheh, (4)

where Gh = Ih − 1
∥Lh∥L

h, with Ih ∈ Rn×n denoting the identity on grid h. Matrix Gh

is called the error propagation matrix because it governs how the iteration transforms
the error. To show that Richardson’s iteration is convergent in the Euclidean norm ∥ · ∥,
let ⟨·, ·⟩ denote the Euclidean inner product and assume that eh is any nonzero error
component. Then

0 < ⟨ 1

∥Lh∥
Lheh, eh⟩ ≤ ∥L

h∥⟨eh, eh⟩
∥Lh∥

= ⟨eh, eh⟩, (5)

which can be rewritten as

0 ≤ ⟨(Ih − 1

∥Lh∥
Lh)eh, eh⟩ < ⟨Iheh, eh⟩ = ⟨eh, eh⟩.

This bound means that ∥Gh∥ < 1, which proves that Richardson’s iteration is convergent
in the Euclidean norm because it implies that the new error in (4) must be smaller than
the old error.

For a given error, eh, the following two quantities are particularly useful for measuring
its algebraic smoothness:

Mw(e
h) =

⟨Lheh, eh⟩
||Lh||⟨eh, eh⟩

andMs(e
h) =

⟨Lheh,Lheh⟩
||Lh||⟨Lheh, eh⟩

.

The weak measure, Mw(e
h), is the relative Rayleigh quotient of eh, and the strong

measure, Ms(e
h), is the relative Rayleigh quotient of

(
Lh

) 1
2 eh, both relative to ∥Lh∥.

In either case, we call errors with a large measure algebraically oscillatory (or simply
oscillatory), while errors with small measure are called algebraically smooth (smooth).

When Lh is symmetric, as we have assumed here, any error can be written as a linear
combination of the eigenvectors, {w1, . . . ,wn}, of Lh: eh =

∑n
i=1 αiwi. Smooth vectors

are rich in eigenvectors associated with the low part of the spectrum, while oscillatory
vectors are rich in the high part. This is the basis for using the terms smooth and
oscillatory. For example, if eh is an eigenvector of L associated with eigenvalue λ, then
Mw(e

h) = Ms(e
h) = λ

∥Lh∥ . By virtue of our SPD assumption, ∥Lh∥ = max1≤i≤n λi,

where the λi are the eigenvalues of Lh. Thus,Mw(e
h) assesses how large λ is relative to

its largest possible value. For general linear combinations of eigenvectors, this measure
assesses where the error lives in terms of the spectrum of Lh. For many applications, this
value can be very small at the lower end of the spectrum (typically O(h2) for discrete
second-order elliptic operators).

These weak and strong measures are important because they identify errors that
cannot be adequately reduced by relaxation and therefore must be reduced by coarse-grid
correction. To begin to see this, note from (4) that relaxation reduces the nonzero current
error, eh, in the Euclidean norm by the factor ∥Gheh∥/∥eh∥. Using (5), we have that

∥Gheh∥2

∥eh∥2
= 1− 2

⟨Lheh, eh⟩
∥Lh∥ · ∥eh∥2

+
⟨Lheh,Lheh⟩
∥Lh∥2∥eh∥2

= 1− (1 + ξ)Mw(e
h), (6)

where ξ ∈ [0, 1). The last equality follows because

0 <
⟨Lheh,Lheh⟩
∥Lh∥2∥eh∥2

≤ ∥L
h∥⟨Lheh, eh⟩
∥Lh∥2 · ∥eh∥2

=
⟨Lheh, eh⟩
∥Lh∥ · ∥eh∥2

=Mw(e
h).
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Estimate (6) confirms that relaxation slows in the Euclidean norm if and only if the weak
measure is small. Let ⟨·, ·⟩Lh = ⟨Lh·, ·⟩ and ∥ · ∥Lh ≡

√
⟨·, ·⟩Lh denote the energy inner

product and its induced energy norm, respectively. Then an argument similar to the
above shows that

∥Gheh∥2Lh

∥eh∥2
Lh

= 1− (1 + χ)Ms(e
h),

where χ ∈ [0, 1). Thus, relaxation slows in the energy norm if and only if the strong
measure is small.

This correspondence between weak vs. strong measures and Euclidean vs. energy
norms carries over to the analysis of coarse-grid correction. As shown in what follows
(see Subsection 8.1), if the coarse grid adequately approximates errors for whichMs(e

h)
is small, then the so-called multigrid V-cycles converge well in the energy norm. For the
so-called two-grid or W-cycles (described in what follows) in the Euclidean norm, it is
enough to have the coarse grid adequately approximate errors for whichMw(e

h) is small.
This latter requirement is weaker in part because small Ms(e

h) implies small Mw(e
h),

which follows because

⟨Lheh, eh⟩2 ≤ ∥Lheh∥2∥eh∥2 = ⟨Lheh,Lheh⟩⟨eh, eh⟩,

but the converse is not true. More importantly, what we meant by adequate approxi-
mation for the strong measure, Ms(e

h), involves the energy norm, which is a stronger
requirement than that for the Euclidean norm used with the weak measure.

4. Coarse-grid correction. The coarse-grid correction phase of multigrid enters as
a way to exploit the smoothing property of relaxation. The basic idea is that smooth error
varies so slowly from one neighboring grid point to the next that it can be adequately
approximated by fewer grid points. The error components thus computed on these coarse
levels are then interpolated back to the fine grid to correct the approximation there.

To see this more clearly, consider the grid h energy functional given by

Fh(vh) ≡ ⟨Lhvh,vh⟩ − 2⟨vh, gh⟩.

To show that minimizing Fh(vh) is equivalent to solving (2), let C ≡ ⟨gh, (Lh)−1gh⟩ and
note that

Fh(vh) = ⟨Lhvh,vh⟩ − 2⟨vh, gh⟩+ ⟨gh, (Lh)−1gh⟩ − ⟨gh, (Lh)−1gh⟩
= ⟨Lhvh,vh⟩ − 2⟨Lhvh, (Lh)−1gh⟩+ ⟨Lh(Lh)−1gh, (Lh)−1gh⟩ − C

= ⟨Lh
(
vh − (Lh)−1gh

)
,vh − (Lh)−1gh⟩ − C

= ∥eh∥2Lh − C.

Thus, Fh(vh) differs from the square of the energy norm of the error by a constant
(because gh is fixed), which means that vh solves (2) if and only if it is the minimizer of
Fh(vh). (That minimum is unique because the above equation shows that the minimum
value of −C is attained only when eh ≡ vh − (Lh)−1gh = 0h.)

Assuming as we have that grid 2h and an interpolation operator P h
2h from grid 2h

to grid h are available, we can exploit this minimization principle further by noting that
the best coarse-grid correction to a fixed approximation, vh, in the sense of minimizing
Fh(vh − P h

2hv
2h) over all possible v2h, is expressed by

vh ← vh − P h
2h

((
P h

2h

)t
LhP h

2h

)−1 (
P h

2h

)t
(Lhvh − gh). (7)

(We use superscript t to denote matrix transpose.) To verify this form of the correction,
note that

⟨LhP h
2hv

2h,vh⟩ = ⟨v2h,
(
P h

2h

)t
Lhvh⟩,

5



which shows that

Fh(vh − P h
2hv

2h)

= ⟨Lh
(
vh − P h

2hv
2h
)
,vh − P h

2hv
2h⟩ − 2⟨vh − P h

2hv
2h), gh⟩

= ⟨Lhvh,vh⟩ − 2⟨LhP h
2hv

2h,vh⟩+ ⟨LhP h
2hv

2h,P h
2hv

2h⟩ − 2⟨vh, gh⟩+ 2⟨P h
2hv

2h, gh⟩
= ⟨Lhvh,vh⟩ − 2⟨vh, gh⟩+ ⟨LhP h

2hv
2h,P h

2hv
2h⟩ − 2⟨LhP h

2hv
2h,vh⟩+ 2⟨P h

2hv
2h, gh⟩

= ⟨Lhvh,vh⟩ − 2⟨vh, gh⟩+ ⟨LhP h
2hv

2h,P h
2hv

2h⟩ − 2⟨v2h,
(
P h

2h

)t
(Lhvh − gh)⟩

= Fh(vh) + F 2h(v2h),

where F 2h is the following grid 2h version of Fh:

F 2h(v2h) = ⟨
(
P h

2h

)t
LhP h

2hv
2h,v2h⟩ − 2⟨v2h,

(
P h

2h

)t
(Lhvh − gh)⟩.

This result implies that v2h minimizes Fh(vh−P h
2hv

2h) if and only if minimizes F 2h(v2h).
This grid 2h energy functional corresponds to the following grid 2h version of the matrix
equation in (2):

L2hv2h = g2h, (8)

where
L2h =

(
P h

2h

)t
LhP h

2h and g2h =
(
P h

2h

)t
(Lhvh − gh).

Thus, the grid 2h correction is given by (7) as asserted.
This is the form of the coarse-grid correction that we use here and it gives rise to the

following so-called variational conditions:

R2h
h ≡ αh

(
P h

2h

)t
and L2h ≡ R2h

h LhP h
2h,

where R2h
h is the restriction (or transfer) operator from the fine to the coarse grid and

L2h is the coarse-grid matrix. The second definition is called the Galerkin condition,
while the first allows for any desired scaling αh > 0. (The reasoning here is that the
correction in (7) is independent of scale, which allows these transfer operators to be
chosen so that they approximately preserve constants, for example.) The basic issue in
designing such a variational multigrid method is therefore to choose P h

2h, which amounts
to determining a coarse set of grid points (or variables) and a method for interpolating
functions defined on those points to functions defined on the fine-grid points. This energy-
minimization formulation is convenient in the sense that, once this is done, the coarse-
grid matrix and the restriction operator are then determined automatically from the
variational conditions.

With these constructions in hand, a two-grid version of multigrid, starting with initial
guess vh and using µ relaxation sweeps, proceeds as follows:

• Apply coarse-grid correction: vh ← vh − P h
2h(L

2h)−1R2h
h

(
Lhvh − gh

)
.

• Relax on vh: apply vh ← vh − 1
∥Lh∥

(
Lhvh − gh

)
µ times.

Note that the error propagation matrix for this scheme is given by

TGh ≡
(
I − 1

∥Lh∥
Lh

)
T h, where T h ≡ I − Sh and Sh ≡ P h

2h(L
2h)−1R2h

h Lh. (9)

This version begins with coarse-grid correction because it simplifies the theory, but multi-
grid can be constructed with these two phases reversed. The reverse form may be more
intuitive because one can then think of relaxation as smoothing the error so that coarse-
grid correction can then work effectively, but both forms actually work equally well in
that they have the same convergence bounds. Algorithm 2 illustrates the case of using
both pre- and post-relaxation with µ and ν sweeps, respectively.
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Algorithm 2 TGh
(
vh, gh, µ, ν, h

)
; Two-grid cycle

Given: Lh, L2h, R2h
h , P h

2h

1: vh ← Gh
(
vh, gh, µ, h

)
▷ Relax µ times.

2: if h < H then ▷ Keep coarsening
3: g2h = R2h

h

(
Lhvh − gh

)
▷ Transfer grid h residual to grid 2h.

4: v2h ←
(
L2h

)−1
g2h ▷ Solve the grid 2h equation exactly.

5: vh ← vh − P h
2hv

2h ▷ Correct fine-grid iterate.
6: vh ← Gh

(
vh, gh, ν, h

)
▷ Relax ν times.

7: end if
8: return vh

5. A word about residuals. Our next task is to extend this two-grid method
to multiple levels. To do so, the key is to recognize that the grid 2h equation (8) is
of the same form as the grid h equation (2). This suggests that all we have to do is
apply the two-grid solver to grid 2h to get started with three levels that includes grid
4h. This approach provides a natural way to recursively define multilevel solvers, but it
also introduces potential confusion. Grid h relaxation applies directly to (2), but (8) is
indirectly applied to finding a correction that solves an averaged residual equation for (2).
This recursion means that grid 2h ends up passing an averaged residual for its averaged
residual equation to grid 4h. We are talking here about averaged residuals of averaged
residual equations and so on down the grid hierarchy. None but the finest grid involves
the original source term gh directly. This is why we have introduced (2) here to allow
the source term to change within the multigrid cycle, while the notation in (1) is fixed.
It is perhaps advisable for the reader to begin by thinking carefully about how multigrid
works with just two grids, hopefully to better understand its recursive extension to many
levels in what follows.

6. Multilevel solvers. Two-grid versions usually only achieve true multigrid ef-
ficiency when grid h is very coarse and therefore relatively easy to solve by relaxation
alone. However, in this case, grid h is probably fairly easy also to solve by relaxation
alone. The point here is that multiple levels are usually needed for multigrid to realize its
full potential. The key to the extension to a potentially fast multilevel version is to notice
that coarse-grid correction involves the solution of L2hv2h = R2h

h

(
Lhvh − gh

)
(followed

by correction to the fine grid via vh ← vh − P h
2hv

2h). Given a hierarchy of coarse grids
from h to 2h to 4h and on down to a very coarse grid H, the idea is to simply replace
this exact solution step by a scheme that first improves the grid 2h initial approximation,
v2h = 02h, by µ pre-relaxation sweeps, a subsequent correction from grid 4h (obtained by
yet coarser levels), and ν post-relaxation sweeps on grid 2h. Continuing recursively, this
process proceeds in this way to the coarsest grid H where the equation there is subjected
to µ+ν relaxation sweeps. (In some cases, relaxation on the very coarsest grid is replaced
by a more aggressive solver, such as Gaussian elimination. This is especially important
when grid H cannot be easily chosen coarse enough for relaxation to converge quickly,
but still coarse enough that such solvers are feasible and relatively inexpensive.) This
process is called a V (µ, ν)-cycle because it starts from the fine grid and passes source
terms down through the coarser grids to the coarsest, doing µ relaxations down along the
way, and then proceeds back up to the finest, performing ν relaxations on each grid up
along the way. This V (µ, ν) cycle applied to (2) is represent by the following expression:

vh ← MVh
(
vh, gh, µ, ν, h

)
, (10)

7



where the vh on the right is a current grid h approximation and gh is a given source term.
We define MVh

(
vh, gh, µ, ν, h

)
recursively as in Algorithm 3.

Algorithm 3 MVh
(
vh, gh, µ, ν, h

)
; V-cycle

Given: Lh, R2h
h , P h

2h

1: vh ← Gh
(
vh, gh, µ, h

)
▷ Relax µ times.

2: if h < H then ▷ Keep coarsening
3: g2h = R2h

h

(
Lhvh − gh

)
▷ Transfer grid h residual to grid 2h.

4: v2h ← MV2h
(
02h, g2h, µ, ν, 2h

)
▷ Apply MV2h with zero initial guess.

5: vh ← vh − P h
2hv

2h ▷ Correct fine-grid iterate.
6: end if
7: vh ← Gh

(
vh, gh, ν, h

)
▷ Relax ν times.

8: return vh

In some cases in practice, the approximation from the coarse grid is not accurate
enough to achieve uniform V-cycle convergence, as when piecewise constant interpolation
is used in coarsening. For such cases, more work in the form of a stronger cycling scheme
would be required, which brings us to the W (µ, ν)-cycle that coarsens twice between
relaxation steps. It is represented by the expression

vh ← MWh
(
vh, gh, µ, ν, h

)
(11)

and defined recursively as in Algorithm 4.

Algorithm 4 MWh
(
vh, gh, µ, ν, h

)
; W -cycle

Given: Lh, R2h
h , P h

2h

1: vh ← Gh
(
vh, gh, µ, h

)
▷ Relax µ times.

2: if h < H then ▷ Keep coarsening
3: g2h = R2h

h

(
Lhvh − gh

)
▷ Transfer grid h residual to grid 2h.

4: v2h ← MW2h
(
02h, g2h, µ, ν, 2h

)
▷ Apply MW2h with zero initial guess.

5: v2h ← MW2h
(
v2h, g2h, µ, ν, 2h

)
▷ Apply MW2h to grid 2h iterate.

6: vh ← vh − P h
2hv

2h ▷ Correct fine-grid iterate.
7: end if
8: vh ← Gh

(
vh, gh, ν, h

)
▷ Relax ν times.

9: return vh

The respective V- and W -cycling schemes are depicted schematically of Figure 1 (a)
and (b). The FMG-cycling scheme depicted in Figure 1 (c) is described next in some
detail.

7. FMG. The aim of multigrid iterative solvers like the V-cycle is to achieve opti-
mality in the sense that they converge uniformly well at a cost equivalent to just a few
relaxation sweeps on the finest level. This optimality is often expressed theoretically as
O(n), where n is the number of grid points on the finest level2. However, this does not
mean that these solvers achieve acceptable results at such a cost because the required
accuracy increases with n (i.e., as h decreases). That is after all why one would want to

2This statement of optimality is only correct in theory, that is, in infinite precision. In practice, finite
precision must be taken into account. Since precision must increase with the higher demands on accuracy
that come with increasingly finer levels, so too must the cost of the finer-level operations in a V-cycle. It
is therefore more accurate to interpret optimality as the cost equivalent to just a few relaxation sweeps
on the finest level’. For simplicity, we nevertheless use O(n) here, but it should be kept in mind as a
theoretical statement.
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Fig. 1. Schematic of three basic multigrid cycles: (a) MV; (b) MW; (c) FMG.

have a larger n. In other words, the goal of refinement is to increase the accuracy of the
discrete approximation to the solution of the PDE, so the number of multigrid cycles must
increase accordingly. This typically leads to a total theoretical cost of at least O(n log n).
This extra cost comes from starting the cycles with a naive initial guess. After all, with
the solver starting its cycles on a given level, what better initial guess is there than zero?
The answer is that the cycles could start by computing approximations on the coarsest
up through the hierarchy so that, by the time the finest is reached, a fairly accurate
approximation has already been computed at minimal cost. This idea is the basis for
FMG, which often obtains accurate results at a truly optimal O(n) total theoretical cost.
(Theory is developed in the next section to clarify this sense of optimality.)

Returning now to the original problem of solving (1), the FMG algorithm for this
purpose is based on q cycles of a generic multigrid method denoted by MGh

(
vh, gh, µ, ν, h

)
,

which could either be MV, MW, or any other basic multigrid solver. We denote the FMG
algorithm by the expression

uh ← FMGh (µ, ν, q, h) (12)

and define it recursively in Algorithm 5.

9



Algorithm 5 FMGh (µ, ν, q, h); full multigrid

Given: P h
2h, f

h

1: if h < H then
2: u2h ← FMG2h (µ, ν, q, h) ▷ Apply FMG2h.
3: uh ← P h

2hu
2h ▷ Start FMGh with grid 2h result.

4: else
5: uh ← 0h ▷ Set initial grid H guess to zero.
6: end if
7: uh ← MGh

(
uh,fh, µ, ν, h

)
▷ Apply MGh q times.

8: return uh

See Figure 1 (c) for a schematic of FMG using a single V-cycle on each level.
The main goal of FMG is to obtain discretization-level accuracy by using the coarse

grids of a multilevel hierarchy to provide a good initial guess to a multigrid solver on
the finest grid. More precisely, it attempts to achieve a bound on the accuracy of the
final approximation to the exact discrete solution in energy that is of the same order as
the bound on the energy error in that exact discrete solution compared to the exact PDE
solution. The FMG processes for achieving this objective can be determined by theoretical
analyses as developed in the next section, with a typical theoretically optimal O(n) cost.
But a key word here is bound. FMG does not necessarily reach an approximation to
the exact discrete solution that is comparable to the discretization error simply because
that discrete solution may be much more accurate than analysis predicts. For example,
nothing prevents a discrete solution from being the exact PDE solution, and one would
not expect FMG to compute the discrete solution exactly. However, such a case is perhaps
not so common in practice, and accuracy at the level of the estimated discretization error
might be all that one can expect in any case.

On the other hand, discrete solutions often behave in a more consistent pattern in
the sense that their errors (not just their bounds) are proportional to a power of the
mesh size. This may not necessarily occur on coarse levels, but in many cases it shows up
asymptotically with decreasing mesh size, what has been called saturation. The hierarchy
of grids that FMG uses provides an opportunity for estimating such occurrences so that
discretization-level accuracy can be obtained. The assumption here is that coarse-grid
computation is very inexpensive compared to the cost of multigrid solvers on the finest
levels, so substantially more effort can be applied at negligible cost there. (Such is not
the case in a parallel processing mode, however, when the number of processors is on the
same order as the number of finest-level unknowns.) This effort can be used to develop a
strategy for deciding whether to apply more multigrid cycles on a given level or to proceed
to the next finer grid. In other words, instead of relying on error bounds that may or may
not be sharp, relatively inexpensive additional cycles can be used with cost estimates to
decide if they were worth it and to proceed ahead with the strategy adjusted accordingly.
This refinement strategy does not of course guarantee that the process is fully able to
accurately approximate the actual solutions on finer levels, but it may offer better results
in many circumstances. This strategy might be further enhanced by analysis beforehand
of the data (e.g., coefficients, source terms, boundary conditions, and domain) to estimate
when saturation might occur.

Another important benefit of FMG that is often overlooked is its ability to avoid
the pitfalls of practical error estimation. It is typical in practice for many methods
to use the residuals or similar quantities as error measures. Unfortunately, they hide
smooth errors that must be accounted for at an additional cost that grows with the
matrix condition number. Single-grid methods applied to large-scale problems typically
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exacerbate this difficulty because they tend to produce errors that are predominantly
smooth. By contrast, multigrid solvers tend to produce errors that are better balanced
in all error components, so their use of the residual is usually a better estimate of the
actual error. But FMG is in an even better position: when properly designed, it can
deliver approximations with errors that are comparable to discretization-error bounds
without appealing to any convergence estimate at all. It might be argued that solvers
should provide error measures, and that is certainly an important goal. However, one can
think of FMG as being integral to the discretization in that it aims to achieve the bound
that the discretization promises. Since discretization-error trends are usually determined
a priori and are not always estimated in the computation itself, the FMG-discretization
process is in concert with such an approach. If, however, an error measure is desired
at execution, then the errors due to the solver and the discretization can be estimated
according to the coarse-grid process described in the previous paragraph.

In terms of saturation, it should be noted that large-scale eigenproblems have histor-
ically been considered to be somewhat harder to solve than matrix equations. After all,
eigenvalues and their vectors are typically computed by solving many matrix equations
(e.g., by inverse iteration). But this is not so with multigrid for the minimal eigenvalues
of elliptic PDEs. In fact, in theory, they are generally easier than matrix equations to
solve by multilevel methods, in part because the solutions are as smooth as possible. But
there is more to it than that because the accuracy on the levels generally behaves very
regularly in the sense that it is more or less equal to some constant times a power of h, so
that sharp error bounds might be more easily obtained. This would make the optimality
of the FMG-discretization process very predictable.

Another benefit of FMG that is often overlooked in practice is its effectiveness for
many nonlinear problems. The key point here is that the solution to the grid 2h problem
is often (albeit not always) well inside the region of attraction of linearization methods,
so FMG works virtually as well in these cases as it does for linear problems. With FAS
and other multigrid ways to treat nonlinearity, it may be possible to avoid linearization
entirely. But full multigrid often makes that concern secondary in the sense that the
various ways to treat the nonlinearity often perform equally well when coupled with FMG.
This of course assumes that the coarse levels can be efficiently formed and processed in
practice, which is admittedly an issue with multigrid iterative solvers as well.

We began the discussion in this primer by providing motivation for using relaxation
on coarse levels to improve the solver on the fine grid. We followed that by showing how
to construct a multigrid solver based on this concept. We then described how FMG can
provide accurate results at a cost proportional to the degrees of freedom in the finest-level
discretization. Next, we develop some results that ensures theoretical efficiency based on
these constructs.

8. Basic theory. We begin this section by describing properties of the operators
introduced in (9) that lay the theoretical groundwork for multigrid. These properties
result from Sh and T h being energy-orthogonal projections onto R(P h

2h), the range of
P h

2h, and N(R2h
h Lh), the null space or kernel of R2h

h Lh, respectively. Clearly, Sh maps
onto R(P h

2h) because its lead operator (i.e., what is applied last) is P h
2h. Sh is also a

projection because

(
Sh

)2
= P h

2h(L
2h)−1R2h

h LhP h
2h(L

2h)−1R2h
h Lh

= P h
2h(L

2h)−1L2h(L2h)−1R2h
h Lh

= Sh.

11



Also, T h maps onto N(R2h
h Lh) because

R2h
h LhT h = R2h

h Lh(Ih − Sh)

= R2h
h Lh(Ih − P h

2h(L
2h)−1R2h

h Lh)

= R2h
h Lh −L2h(L2h)−1R2h

h Lh

= 0.

T h is also a projection because(
T h

)2
=

(
Ih − Sh

)2
=

(
Ih

)2 − 2Sh +
(
Sh

)2
= Ih − 2Sh + Sh = T h.

Finally, these projections are orthogonal to each other because

T hSh = (Ih − Sh)Sh = Sh −
(
Sh

)2
= 0.

Keep in mind that the range of P h
2h consists of vectors that can be exactly represented

by interpolation from the coarse grid, while the kernel of R2h
h Lh consists of error vectors

that cannot be represented at all by passing their residuals to the coarse grid. That is, Sh

and T h provide a decomposition into errors that can be eliminated by the coarse grid and
those that cannot (and must therefore be dealt with on the fine grid). More specifically,
we have the following:

• Any grid h vector eh can be expressed as eh = sh + th, where sh ∈ R(P h
2h) ,

th ∈ N(R2h
h Lh), and ⟨sh, th⟩Lh = 0 (that is, sh and th are orthogonal in the

energy inner product).
• T hsh = 0, Shth = 0, T hth = th, Shsh = sh, T heh = th, Sheh = sh,
⟨T hvh,Shzh⟩Lh = 0 ∀vh, zh, and ∥Sh∥Lh = ∥T h∥Lh = 1.
• ∥T heh∥Lh = minu2h ∥eh − Ph

2hu
2h∥Lh (that is, coarse-grid correction minimizes

the energy norm of the error over all possible corrections in the range of interpo-
lation).

8.1. Basic theory for multigrid cycling as an iterative method. The conver-
gence theory developed here begins with the two-grid scheme and its error propagation
matrix TGh = GhT h, where Gh = Ih − 1

∥Lh∥L
h. Each cycle converges with uniform

energy bound for any initial guess if and only if

∥TGh∥2Lh = ∥GhT h∥2Lh =

∥∥∥∥(I − 1

∥Lh∥
Lh)T h

∥∥∥∥2
Lh

≤ γ (13)

for some fixed γ ∈ [0, 1). This condition is the same as asking that the strong measure
be bounded away from zero:

Ms(t
h) ≥ δ (14)

for some fixed δ > 0 and for all th in the range of T h. To see this, note first that

∥TGh∥2Lh

= max
uh ̸=0h

⟨Lh(I − 1
∥Lh∥L

h)T huh, (I − 1
∥Lh∥L

h)T huh⟩
⟨Lhuh,uh⟩

= max
th=T hth ̸=0h,sh=Shsh

⟨Lhth, th⟩ − 2
∥Lh∥ ⟨L

hth,Lhth⟩+ 1
∥(Lh)2∥ ⟨

(
Lh

)2
th,Lhth⟩

⟨Lhth, th⟩+ ⟨Lhsh, sh⟩

= max
th=T hth ̸=0h

⟨Lhth, th⟩ − 1+ξ
∥Lh∥ ⟨L

hth,Lhth⟩
⟨Lhth, th⟩

= 1− (1 + ξ)Ms(t
h),
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where ξ is the value of
1

∥Lh∥
⟨(Lh)

2
th,Lhth⟩

⟨Lhth,Lhth⟩ at the maximizing th. Note further that

0 <

1
∥Lh∥ ⟨

(
Lh

)2
th,Lhth⟩

⟨Lhth,Lhth⟩
≤ 1,

so ξ ∈ [0, 1). As asserted, we thus have that (13) holds if and only if 1−(1+ξ)Ms(t
h) ≤ γ,

that is,Ms(t
h) ≥ δ ≡ 1−γ

1+ξ > 0. In fact, δ ∈ ( 1−γ
2 , 1− γ].

To understand the two-grid condition (14) a little better, we make a (generally un-
realistic) assumption that th is an eigenvector of Lh with corresponding eigenvalue λ.
Then

Ms(t
h) =

⟨Lhth,Lhth⟩
||Lh||⟨Lhth, th⟩

=
λ2

λ∥Lh∥
=

λ

∥Lh∥
,

so the two-grid condition requires that λ be theoretically comparable (up to δ) to ∥Lh∥,
the largest eigenvalue of Lh. Of course, the practical quality of convergence depends
on δ, and a value of δ near zero means that γ is near 1, so it signals poor expected
numerical performance. Generally, we want error components that T h cannot eliminate
to lie primarily in the upper spectrum of Lh.

Unfortunately, counterexamples (such as standard cell-centered coarsening of a dis-
crete Poisson equation; c.f., [1]) show that this two-grid condition does not suffice to
establish uniform convergence of the multilevel V-cycle. A condition that is sufficient,
however, is the following property:

Definition 8.1. Strong Approximation Property (SAP)
A coarse-grid correction scheme satisfies the Strong Approximation Property if and

only if

min
u2h
∥eh − Ih

2hu
2h∥2Lh ≤

C

∥Lh∥
⟨Lheh,Lheh⟩

for some fixed constant C <∞ and for all grid h vectors eh.

The SAP can be written a little more compactly as

∥T heh∥2Lh ≤
C

∥Lh∥
⟨Lheh,Lheh⟩. (15)

Another way to write this condition is in terms of the multigrid correction matrix and
the strong measure:

∥T heh∥2Lh

∥eh∥2
Lh

≤ CMs(e
h).

Note that this property reduces to the two-grid condition (with C = 1
δ ) when eh is in the

range of T h, that is, eh = T heh. (Remember that vectors in the range of T h are precisely
those that the coarse-grid correction leaves untouched and therefore undiminished.)

Theorem 1. (V-cycle convergence) The strong approximation property is a sufficient
condition for uniformly bounded convergence in the energy norm of the V (0, 1)-cycle in
that its error propagation matrix MV h satisfies

∥MV h∥2Lh ≤ 1− 1

C
.

Proof. Remembering that eh = Sheh + T heh and that Sheh is in the range of P h
2h,

then we can write eh = P h
2hv

2h + T heh for some grid 2h vector v2h. With (15), we thus
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have that ∥∥Gheh
∥∥2
Lh = ∥eh∥2Lh −

2

∥Lh∥
∥Lheh∥2 + 1

∥Lh∥2
⟨
(
Lh

)2
eh,Lheh⟩

≤ ∥Sheh∥2Lh + ∥T heh∥2Lh −
1

∥Lh∥
∥Lheh∥2

≤ ∥P h
2hv

2h∥2Lh +

(
1− 1

C

)
∥T heh∥2Lh . (16)

To obtain a recursion formula for MVh in terms of its grid 2h counterpart MV2h,
consider the following important relationship between the residual and the error for
uh = (Lh)−1fh + eh an approximation to the solution (Lh)−1fh of (1):

Lhuh − fh = Lh((Lh)−1fh + eh)− fh = Lheh.

Thus, the solution to the grid 2h equation is

(L2h)−1R2h
h (Lhuh − fh) = (L2h)−1R2h

h Lheh.

Letting e2h denote the error in the zero initial guess on grid 2h, we thus have the error
expansion

02h = (L2h)−1R2h
h Lheh + e2h.

Now, since MV2h is the error propagator for the grid 2h V-cycle, we must then have that
the new approximate grid 2h solution is

u2h = (L2h)−1R2h
h Lheh +MV2he2h = v2h −MV2h(L2h)−1R2h

h Lheh,

where we used the fact that

(L2h)−1R2h
h Lheh = (L2h)−1R2h

h LhP h
2hv

2h = v2h.

Finally, since P h
2hu

2h is subtracted from uh, the exact component P h
2hv

2h cancels the

smooth component sh of uh, leaving the error MV2h(L2h)−1R2h
h Lheh in its place. This

long and rather intricate argument has led us to the conclusion that the error propagations
of the fine and coarse V-cycles are related according to the recursion3

MVh = Gh
((

P h
2hMV2h(L2h)−1R2h

h Lh
)
+ T h

)
. (17)

Note that((
P h

2hMV2h(L2h)−1R2h
h Lh

)
+ T h

)
eh

=
((

P h
2hMV2h(L2h)−1R2h

h Lh
)
+ T h

) (
P h

2hv
2h + T heh

)
= P h

2hMV2h(L2h)−1R2h
h LhP h

2hv
2h + T heh

= P h
2hMV2hv2h + T heh. (18)

3It is useful to consider the two extreme cases of MV2h here by reflecting on the form of (17). If
the V-cycle on grid 2h happens to be an exact solver, then MV2h would be the zero matrix, so the grid
h V-cycle becomes an optimally convergent two-grid cycle. At the other extreme, if the grid 2h V-cycle
makes no change to the grid 2h approximation (i.e., 02h), then MV2h would be the grid 2h identity and
the grid h V-cycle would devolve effectively into fine-grid relaxation only. It is the intermediate case that
can be expected (and is assumed in (19) below), where the grid 2h V-cycle reduces a significant fraction
of grid 2h error.
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If we substitute into (16) the new error P h
2hMV2hv2h+T heh and its smooth component

P h
2hMV2hv2h in place of eh and P h

2hv
2h, respectively, then (16)-(18) together with the

induction hypothesis

∥MV2h∥2L2h ≤ 1− 1

C
(19)

shows that

∥MVheh∥2Lh = ∥Gh
(
P h

2hMV2hv2h + T heh
)
∥2Lh

≤ ∥P h
2hMV2hv2h∥2Lh +

(
1− 1

C

)
∥T heh∥2Lh

= ⟨LhP h
2hMV2hv2h,P h

2hMV2hv2h⟩+
(
1− 1

C

)
∥T heh∥2Lh

= ⟨R2h
h LhP h

2hMV2hv2h,MV2hv2h⟩+
(
1− 1

C

)
∥T heh∥2Lh

= ∥MV2hv2h∥2L2h +

(
1− 1

C

)
∥T heh∥2Lh

≤
(
1− 1

C

)(
∥v2h∥2L2h + ∥T heh∥2Lh

)
=

(
1− 1

C

)(
∥P h

2hv
2h∥2Lh + ∥T heh∥2Lh

)
=

(
1− 1

C

)
∥eh∥2Lh .

This proves our assertion that ∥MVh∥2Lh ≤ 1− 1
C .

The result of this theorem holds for any relaxation method governed by an error
propagation matrix Gh as long as (16) holds. This bound states that one relaxation sweep
reduces the square of the energy of the error by 1

C times the square of the oscillatory part
of the error. In this very general form, any relaxation scheme for which this holds (e.g.,
steepest descent or conjugate gradients) guarantees optimal performance when used in a
V-cycle.

The strong approximation property requires that vectors in the kernel ofLh be exactly
eliminated by coarse-grid correction. This follows from noting that if eh is in the kernel
of Lh, then the right-hand side of the SAP vanishes, and thus so too must the left-hand
side. However, we are assuming that Lh is SPD, so its kernel consists only of 0h and this
requirement is, therefore, trivially satisfied by setting u2h = 02h. On the other hand, the
strong approximation property also clearly shows that any vector that is in the near kernel
(in the sense of yielding a relatively small residual, Lheh) must be nearly eliminated by
coarse-grid correction. This again follows from noting that if eh is in the near kernel of
Lh, then the right-hand side of the SAP is small, and thus so too must the left-hand side
be. It is this observation that provides our motivation for constructing an interpolation
operator that adequately approximates near-kernel components. This focus on the near
kernel is generally sufficient because algebraically oscillatory vectors automatically satisfy
the SAP: by definition, an algebraically oscillatory error eh satisfiesMs(e

h) ≥ δ for some
δ ≫ 0, so it follows that

∥T heh∥2Lh

∥eh∥2
Lh

≤
∥eh∥2Lh

∥eh∥2
Lh

≤ CMs(e
h),

where C = 1
δ ≪ ∞. Finally, since the SAP involves the choice of coarse-grid points and

interpolation to the fine grid, it gives us a way to assess the quality of the coarse-grid
correction process.
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As we have just seen, the strong measure is related to the strong approximation
property in the energy inner product. We have a similar relationship for the weak case
in the Euclidean norm.

Definition 8.2. Weak Approximation Property (WAP) A coarse-grid correc-
tion scheme satisfies the Weak Approximation Property if and only if

min
u2h
∥eh − Ph

2hu
2h∥2 ≤ C

∥Lh∥
⟨Lheh, eh⟩.

At this point, it should be no surprise that the WAP can be written in terms of the
weak measure:

∥T heh∥2

∥eh∥2
≤ CMw(e

h).

By arguments similar to those for the strong approximation property, the weak approx-
imation property confirms uniform convergence of the two-grid form of multigrid in the
Euclidean norm. It can also confirm convergence of multigrid cycling schemes like the
W-cycle that is more aggressive than the V-cycle, provided the effort spent on the coarse
grids is commensurate with the size of C.

Some relationships between the SAP and the WAP, together with an additional ap-
proximation property, are developed in Appendix A. They can be useful for designing
geometrically based multilevel algorithms, but are especially so for algebraic multigrid
methods (e.g., AMG [2]).

8.2. Basic theory for FMG as a direct method for solving PDEs. With
the theory of convergence of multigrid cycles as an iterative solver at hand, we now
turn to the more direct FMG approach that uses these cycles as basic building blocks
to achieve accuracy comparable to that of the discretization at optimal cost. To explain
this optimality in some detail, we first need to delve into the world of the continuum.
To avoid too much abstraction, we settle with illustrating the general case by way of the
following model two-dimensional Poisson problem:

−∆u = f in Ω, u = 0 on ∂Ω, (20)

where ∆ = ∇ · ∇ = ∂xx + ∂yy, Ω is the unit square with boundary ∂Ω, and f is a
square-integrable function on Ω. It is tempting to define the energy functional for (20)
by ⟨−∆v, v⟩ − 2⟨v, f⟩, with angle brackets here denoting the L2(Ω) inner product ex-
pressed by ⟨w, z⟩ =

∫
Ω
wv dx dy. However, simple functions in the discretization that are

pieced together across the elements are generally not twice differentiable in any sense and
are therefore not admissible arguments for such a definition. Instead, this definition is
weakened using the Gauss Divergence Theorem, which is given by

⟨−∇ · ∇u, u⟩ = ⟨∇u,∇u⟩. (21)

This identity is valid because so-called full regularity of (20) and square integrability of
f guarantee that u is sufficiently smooth. So (21) leads to the following definitions of the
respective energy functional and energy norm for the weak form of (20):

F (u) ≡ ⟨∇u,∇u⟩ − 2⟨u, f⟩ and ∥u∥L ≡ ⟨∇u,∇u⟩
1
2 .

We use subscript L here to suggest that it is derived from the strong form (20). We can

thus take the formal view that L and ∥u∥L correspond to weak forms of −∆ and ⟨Lu, u⟩ 12 ,
respectively.

The discretization of (20) is now a matter of choosing a finite-dimensional subspace
of the admissible function space for F . To be specific, suppose that Ω is partitioned by
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a hierarchy of triangles on a uniform grid, starting with a coarsest single-point mesh size
of 1

2 and continuing with uniform refinement by a factor of 2 to the finest grid with a
sufficiently small mesh size. For each h in the hierarchy, let Hh denote the space of the
finite element functions uh that are linear in each grid h element, continuous across the
domain, and zero on the boundary. Then the discretization on each grid h is derived by
minimizing F (uh) over uh ∈ Hh, leading to the matrix equation in (1) defined in terms
of the vector uh whose entries are uh’s nodal values4. This Rayleigh-Ritz derivation is
straightforward though lengthy enough that we leave it to the interested reader to find it
in any of the available finite element texts such as [10]. A consequence of this formulation
is that the equations and induced intergrid transfers satisfy the variational conditions on
every level.

Since FMG has the PDE in mind, we need to have a measurement of the error in
its result vh compared to the function u that minimizes F . Another advantage of this
variational formulation is that, instead of the vector vh, we can compare its equivalent
finite element function vh to u as measured in the energy norm, namely, ∥vh − u∥L. (By
equivalent we mean that vh and vh have the same nodal values.) This finite element view
simplifies the discussion because all of the approximations and the exact weak solution of
the PDE are in the same space, meaning for one that we are able to avoid using intergrid
transfer operators. We are also able to avoid worrying about relative errors because all of
the errors we are about to consider are measured in terms of the fixed solution u, whose
energy norm is absorbed in the constant C introduced by assuming that

∥uh − u∥L ≤ Chm, (22)

where uh is the exact minimizer of the functional on level h, C is some fixed constant,
and m > 0 is the order of the energy discretization error. For standard continuous piece-
wise linear finite element discretization of (20) on a uniform triangulation and sufficient
smoothness of u, this estimate holds with m = 1.

The goal of FMG is to produce a grid h function that approximates the discrete solu-
tion to within the same accuracy that the discrete solution approximates the continuum
solution, that is,

∥vh − uh∥L ≤ Chm. (23)

To see what this requires of the multigrid cycles, suppose for induction purposes that (23)
is true for 2h:

∥v2h − u2h∥L ≤ C(2h)m. (24)

This holds trivially for the coarsest grid H because the matrix problem there is the scalar
equation LH

1,1u
H
1 = fH

1 at the single grid point, and that is solved exactly by one sweep

of Richardson’s iteration with the particular scale 1
∥LH∥ = 1

LH
1,1

that we have chosen.

Next, we need to appeal to an orthogonality property afforded by our variational
setting. To this end, first note that a function w minimizes F (w) over an admissible
subspace S if and only if it minimizes the energy error ∥w − u∥L over S. (This follows
directly from the same logic that we used for the discrete case to show that the energy
functional and the square of the energy error differ by a constant.) So we can think of
any subspace minimizer w of the energy functional also as a minimizer of the energy error
∥w − u∥L. But, for any such w, it must also be that w − u is energy orthogonal to S,
that is, ⟨∇(w − u),∇z⟩ = 0 for any z ∈ S. (The closest energy approximation to u ∈ S
is its energy-orthogonal projection onto that subspace.) To see this, let z be any nonzero

4This raises a subtle point. Note, in general, that uh does not satisfy (21) because the left side of the
identity is usually undefined. But (21) is valid for u and the right side is well-defined for both uh and u,
so both are admissible functions for F , meaning that it is valid to seek u by minimizing F (uh) over Hh.

17



function in S and s be any nonzero scalar in R. Then adding sz to w yields

∥w + sz − u∥2L = ∥w − u∥2L + 2s⟨∇(w − u),∇z⟩+ s2∥z∥2L.

If we assume that w− u is not energy orthogonal to S, then we must be able to choose z
so that ⟨∇(w − u),∇z⟩ ≠ 0. However, if we choose s = −∥z∥−2

L ⟨∇(w − u),∇z⟩, then

∥w + sz − u∥2L = ∥w − u∥2L − 2∥z∥−2
L ⟨∇(w − u),∇z⟩2 + ∥z∥−4

L ⟨∇(w − u),∇z⟩2∥z∥2L
= ∥w − u∥2L − ∥z∥−2

L ⟨∇(w − u),∇z⟩2

< ∥w − u∥2L.

This is a contradiction because w is assumed to be the minimizer over S. So it must be
that ⟨∇(w − u),∇z⟩ = 0 for all z ∈ S, as asserted.

Now, since uh is the best energy approximation to u from S ≡ Hh, we can thus
conclude that uh − u is energy-orthogonal to u2h − uh ∈ S, which in turn implies that

∥u2h − u∥2L = ∥u2h − uh∥2L + ∥uh − u∥2L (25)

and, hence, that
∥u2h − uh∥2L ≤ ∥u2h − u∥2L. (26)

But (25) also implies that u2h minimizes ∥u2h − uh∥2L. Thus, by an energy-orthogonal
argument analogous to the above, together with (26), we thus have that

∥v2h − uh∥2L ≤ ∥v2h − u2h∥2L + ∥u2h − uh∥2L ≤ ∥v2h − u2h∥2L + ∥u2h − u∥2L. (27)

Finally, (27), (24), and (22) (with 2h replacing h) combine to yield

∥v2h − uh∥L ≤
(
(C(2h)m)

2
+ (C(2h)m)

2
) 1

2

= 2m+ 1
2Chm. (28)

The conclusion is that, for FMG to achieve accuracy in energy comparable to that of the
discretization itself, we need only apply enough multigrid cycles on each level to reduce
the error by a factor of 2−(m+ 1

2 ). For the model problem with m = 1, the requirement is
enough V-cycles to reduce the error by about a third. A V (2, 1)-cycle is in common use,
most likely due to the recommendation by Achi Brandt in the early days of multigrid,
and it more than delivers that reduction factor for the model problem.

Other solvers applied to discrete elliptic PDEs have been able to achieve optimal
iteration cost in some cases, but it seems improbable that the true optimality that FMG
has been able to achieve could be obtained in general without appealing to the relatively
inexpensive coarser levels for reasonably accurate initial guesses. In any case, this opti-
mality of FMG came at a welcomed surprise in the early days of multigrid research, and
it ensured that multigrid would become the method of choice for many applications.

9. Development. The assertions made thus far in this primer are supported by
many theoretical and numerical results that can be found in the extensive multigrid
literature. On the other hand, several remarks that we make in this section are not yet so
well supported. The reader should keep in mind that some of the claims made here are
merely opinions of the authors, albeit based on intuition gained over several combined
decades of experience with multigrid theory and practice.

The purpose of this section stems from the limitation of the above theory in that
it does not really assure that a particular multigrid method is very efficient in practice.
This limitation is a common weakness of convergence estimates for numerical solution
methods because they typically involve indeterminant constants such as the C in the
WAP and SAP. Nevertheless, the theory is useful because it suggests certain properties
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of the algorithm components that make for a good multigrid approach. Our specific aim
is therefore to show how one might use the theory developed above to choose effective
coarse grids and interpolation operators. We also suggest how this theory might guide the
formulation of a suitable discretization method and even perhaps the PDE itself, provided
one is allowed access to this assumed source of the matrix problem. Finally, we note that
the objective of this section is to provide a broad view of the relevant methodology,
thereby omitting the many details that would be beyond the scope of this primer.

9.1. Algorithm. To suggest how to use the theory to guide multigrid development,
we focus here on the classical development of Smoothed Aggregation (SA [13]) because it
provides a natural setting for this discussion in that it deals directly with the near-kernel
components whose treatments are critical to achieving good approximation properties.
SA is an algebraic multigrid method because it is constructed with little or no knowledge
or use of a connection between the matrix equation and any geometric entity such as a
grid. Our focus here is admittedly a departure from the geometric approach that we have
so far had in mind. However, this focus not only introduces algebraic methods, but it
also has the advantage that understanding the principles that arise in this setting gives a
deeper sense of what makes multigrid work in general.

To avoid potential confusion, we need to be clear about terminology. While alge-
braic methods do not necessarily involve geometric information directly, the literature
typically uses some geometric notions in the development. We have already used smooth
in an algebraic context, which we will continue to do. But we will also use the standard
convention of nodes to refer to the unknowns in the matrix equation, that is, the vector
index or the degree of freedom. We also use neighborhood to refer to points connected
directly in the matrix Lh.

We first need to point out that, while V-cycle convergence is usually the desired target
in applications because of its superior efficiency, the nature of the energy norm that the
SAP is based on makes it more difficult to use as a design tool. The problem stems
from the need to determine interpolation locally, that is, in an algebraic neighborhood.
Using the energy norm to measure how well interpolation approximates local errors is
problematic because Lh, which is present in that norm, generally reaches to nodes outside
of the neighborhood. This lack of locality inhibits the ability to isolate the design of
interpolation. The problem comes from the need to determine what is smooth, that
is, what is locally in the null space or near null space of Lh. For this reason, it is more
common in practice to develop interpolation schemes based on the WAP because estimates
involving the Euclidean norm can be wholly restricted to individual neighborhoods. This
locality provides the foundation for smoothed aggregation, as we show below.

The practical importance of determining the coarsening process locally cannot be
overemphasized. Just as finite elements realized its true potential when it transitioned
from a global spectral approach to a local piecewise polynomial methodology, so too is
multigrid most effective when coarse-grid corrections are constructed from local approx-
imations of errors based on their local character. The dimension of the space of smooth
errors that relaxation cannot effectively reduce is typically a significant fraction of the
dimension of the fine-level space. This is generally much too large to permit an exact com-
putation of a global basis for that space. This reasoning is analogous to saying that global
spectral discretizations based on eigenvectors or Fourier modes are generally impractical.
So the approach taken by algebraic multigrid methods is to attempt to approximate al-
gebraically smooth errors over small sets dofs that are interconnected in the matrix by
using a significantly smaller number of nodes. The intent is that these approximations
can then be pieced together to provide adequate global approximation to all algebraically
smooth errors.

To get a glimpse of how this is done for smoothed aggregation, we first note that
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SA begins by partitioning the fine nodes into groups or aggregates of nodes. This is
accomplished by aggregating several nodes that are strongly interconnected in Lh =

(
ahij

)
.

The basic idea is that |ahij | is used as a measure to determine the dependency of the values

at points i and j of an algebraically smooth error, eh =
(
ehi
)
. The motivation here is

that, for scalar elliptic equations, a large value of |ahij | relative to
√
ahiia

h
jj implies that

ehi and ehj are approximately equal. Once a full set of aggregates have been determined,
SA then uses basis functions defined in each aggregate to form linear combinations that
approximate smooth error. The coefficients in these linear combinations constitute the
coarse-grid unknowns. Often, local analysis can be used to guarantee that the WAP holds
for a given proper choice of these basis functions, which would then guarantee that the
method as constructed would hopefully provide an effective two-grid solver and possibly
an effective W-cycle solver. But this unsmoothed version of SA is not likely to exhibit
optimal V-cycle performance. This suggests that the next step would be to improve this
tentative interpolation operator. The fundamental approach that SA takes is to apply a
smoother to P h

2h, whence the moniker smoothed aggregation.
To understand how SA might construct interpolation based on the WAP, assume

that the fine nodes have been partitioned into a set of aggregates, A = {a}. For each
aggregate, the aim now is to satisfy the local WAP: there exists a constant C ≪∞ such
that, for all fine-grid error eh and every aggregate a ∈ A, a coarse representative, u2h,
exists that satisfies

∥eh − Ph
2hu

2h∥2a ≤
C|a|
∥Lh∥

⟨Lheh, eh⟩,

where | · |a denotes the local Euclidean norm and |a| is the relative size of a (so that∑
a∈A |a| = 1). Note that the sum of this local WAP over all a ∈ A yields the global

WAP.
Now, it would be impractical to test the WAP to see if it holds for all eh, so the idea

is instead to choose a set of vectors that hopefully represents all near-kernel components
locally. As we noted above, focusing on such components is appropriate because those
that are algebraically oscillatory automatically satisfy the WAP, just as they do the SAP.
Fortunately, the local nature of near-kernel components are known for many problems.
As examples, for scalar elliptic equations, they are approximately constant locally and, for
linear elasticity, they look locally like rigid body modes (constant displacements and rigid
rotations). In such cases, we can take these few global vectors, normalize them in energy,
and then restrict them to each aggregate to determine an effective basis there. This
can be done by finding a minimal local basis that adequately (according to the WAP)
approximates all linear combinations of these restricted near-kernel components. The
actual computation amounts to forming a local matrix, T , whose columns consist of these
restricted near-kernel components, solving the eigenproblem for T tT , and then letting

the basis be the resulting eigenvectors whose eigenvalues are less than C|a|
∥L∥ . (Remember

that the near-kernel components were normalized in energy.) It is important to realize
that SA computes a minimal basis, which not only controls complexity, but also ensures
that redundancy does not creep into the coarse-grid problem. Any contamination by an
exact or near linear dependence of a local basis would lead to artificial singularity or ill-
conditioning of the coarse-grid matrix, making the development of the solver on coarser
levels very problematic.

As noted above, to improve interpolation approximation properties, SA applies a
smoother to the interpolation operator [14]. To understand the role of the smoothing
process in SA, consider the one-dimensional example of a uniform grid of n points on the
unit interval. If you consider three neighboring interior points and the vector function that
is 1 at these points and 0 elsewhere, such a vector might make up a typical basis element
for the coarse level that has about n

3 points. That is, you can define the coarse-level space
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as the set of coefficients of these piecewise-constant basis elements. Piecewise-constant
functions by themselves are generally unsuitable for discretization of elliptic equations.
Analogously, piecewise-constant vectors offer only a low-order approximation to finer
levels, so they are a generally poor coarsening option. But a simple averaging of the basis
elements given by the stencil ( 14

1
2

1
4 ) yields piecewise-linear basis elements, which provide

higher-order approximation. Averaging of the basis elements is typically what a properly
constructed smoother might do. This reasoning provides the motive for smoothing P h

2h

in an attempt to improve its approximation order. In other words, for the model 1D
problem, piecewise constants satisfy the WAP but not the SAP; yet, a specific smoothing
can result at least approximately in piecewise linears that do satisfy the SAP; and so the
motivation is that smoothing interpolation might provide the approximation properties
that we need to confirm good V-cycle convergence for other problems.

While the illustrations of this section have focused on smoothed aggregation, the
message is much more general: development of an effective multigrid algorithm should
pay special attention to the smooth or near-kernel errors if it is to be effective.

9.2. Problem formulation. As already noted in the previous section, there are
similarities between multigrid and finite element methods. These similarities extend fur-
ther in the sense that, just as the appropriate choice of finite elements can improve
convergence of the discretization, so too does a good PDE formulation and discretization
help convergence of the multigrid solver.

To be a little more specific, note that discretization can be viewed as an attempt
to approximate an infinite-dimensional continuum by a finite-dimensional grid h space.
This would only make sense if the target function could be pinned down somehow, which
most discretizations do by relying on some sense of smoothness. For example, continu-
ous piecewise-(bi)linear finite element spaces target solutions of elliptic partial differential
equations by relying on boundedness of their second derivatives. This is a sensible goal
when the corresponding operator exhibits full regularity because it means that the second
derivatives of the solution are bounded by the source term. The success of discretization
thus depends heavily on the behavior of the differential operator. Operators that exhibit
reduced regularity, such as those with difficulties introduced by discontinuous coefficients
or re-entrant corners, can certainly be treated effectively by discretization schemes, but
they usually require special handling that carefully addresses these difficulties. Conver-
gence of the exact solution of the discretized equations otherwise suffers.

So it is with multigrid. Effective coarse-grid correction depends heavily on the be-
havior of the matrix: if it comes from standard discretization of a fully regular elliptic
differential operator, then standard coarse-grid correction schemes that mimic the dis-
cretization itself should be effective. In fact, multigrid aims to approximate the grid h
space by the grid 2h space. This it does by pinning down the error using relaxation to
obtain small relative residuals. For the fully regular case, small residuals mean that these
errors vary slowly in any given neighborhood, that is, that the error is locally almost con-
stant. It is this “discrete regularity” property that enables the use of standard coarse-grid
correction schemes for full effectiveness. An important point here is that, while we expect
good approximation by standard discretization of fully regular differential operators, we
can also expect good overall performance of standard multigrid solvers applied to them.

On the other hand, it may be very challenging to develop effective multigrid methods
for problems with discretizations that are less accurate or operators with reduced reg-
ularity. Special treatment in the multigrid approach may be necessary to handle these
difficulties. In such cases, it may be necessary to pay attention to more than just the
nature of the matrix problem. While it may not always be practical for a given appli-
cation, it might otherwise be helpful to have some influence on the discretization and
possibly the PDE formulation itself. For example, some applications use schemes that
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provide stabilization, regularization, or penalty terms at the discretization or even PDE
level to improve effectiveness of classical solvers. While these approaches may be helpful
in that context, they can at times impede multigrid performance. Just a simple scaling
of the matrix to provide a better condition number can make a straightforward multigrid
solver stall because it changes the nature of the near kernel. Disabling such a scaling is
sometimes all it take to restore efficiency. The point here is that multigrid development
can be very difficult at times, but taking in the whole picture of the problem origin may
provide important insight along the way. It has been said that the difficulty in design of
effective multigrid methods is commensurate with the overall problem formulation. The
corollary is perhaps that the development of an application in terms of formulating the
PDE and its discretization should be done in concert with development of the multigrid
method.

The discussion here has focussed primarily on elliptic PDEs, specifically linear second-
order elliptic equations discretized by continuous piecewise linear or bilinear finite el-
ements (or other traditional discretization methods with similar approximation proper-
ties). It is well known that multigridmethods have been very effective for solving problems
in this model elliptic class. When regular grids are used, a geometric multigrid method
using standard components (linear interpolation, full weighting, and simple relaxation
schemes like Richardson iteration) is often able to solve such problems at optimal cost.
When the problem begins to stray from the classical elliptic regime (as in the presence
of strong convection, strong anisotropies, or jump-discontinuous coefficients) or when ir-
regular grids are used, standard algebraic multigrid methods that do not necessarily have
any knowledge of the matrix origin might be an option for automatic design of a multigrid
algorithm.

What is less well known is that the multigrid methodology has much broader applica-
bility than this model elliptic class. For example, multigrid has been applied successfully
to a wide ranges of problems since its practical origin in Brandt’s seminal paper [3]. In
fact, multilevel methods have been extended well beyond the elliptic case to Navier-Stokes
equations and other systems in fluid flow, as well as many problems in structural mechan-
ics (c.f., Brandt [4]). The multilevel methodology has also been extended successfully to
previously intractable problems that are beyond the realm of differential equations (e.g.,
geodetic equations [2], quantum chromodynamics [5], and Markov chains [9]). However,
these applications require special multigrid treatment that can lead to algorithms that
are much more sophisticated than the standard multigrid methods in more common use.

Our intention in this basic primer is not to delve further into the advanced topics
mentioned in this or the previous sections, but rather to provide a glimpse of what may
lie ahead in a deeper study of multigrid methodology.

10. Summary. With linear elliptic PDEs in mind, to achieve optimal multigrid
performance, the following properties might be considered:

• The relaxation process should effectively reduce oscillatory components of the
error. More precisely, the errors that relaxation cannot quickly eliminate should
provide a pattern that can be effectively exploited in the local construction of
interpolation.
• There should be some sense of locality, such as that afforded by the WAP, since
that is what makes it possible and practical to determine an adequate represen-
tation of the near-kernel components.
• Coarse spaces should be constructed in neighborhoods of strongly interconnected
points and they should carefully avoid (near) redundancy. The aim is that strong
connections would guarantee some sense of a smoothing property of relaxation
and a lack of any serious redundancy would avoid artificial ill-conditioning.
• For Krylov smoothers like Richardson’s iteration, the range of the interpolation
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operator (from the coarse grid to the fine grid) should represent near-kernel com-
ponents of the fine-grid operator accurately according to the SAP. More generally,
interpolation should approximate components that relaxation cannot adequately
attenuate.
• For Krylov smoothers, the discretization of the PDE that that creates the matrix
problems should be accurate enough to satisfy the continuum version of the SAP.
When practical, attention to the PDE and its discretization may be advisable.
• With the proper design of multigrid as an efficient iterative solver and of the
discretization as an accurate approximation to the PDE, FMG should be effective
for delivering accuracy at the level of the discretization itself.
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A. Approximation properties. Following is a list of three approximation prop-
erties that an interpolation operator P ∈ Rn×nc might posses in the context of approxi-
mating the solution of an equation in the SPD matrix L ∈ Rn×n. (For simplicity here, n
and nc denote the respective fine and coarse grid mesh sizes, and the matrices and vectors
are used without superscripts or subscripts.)

WAPL2 : there exists a coarse-grid vector v such that ∥u− Pv∥2 ≤ C
∥L∥2 ∥Lu∥2.

WAPL: there exists a coarse-grid vector v such that ∥u− Pv∥2 ≤ C
∥L∥∥u∥

2
L.
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SAPL: there exists a coarse-grid vector v such that ∥u− Pv∥2L ≤ C
∥L∥∥Lu∥2.

The following results show that the WAP for L2 (WAPL2) implies the WAP for
L (WAPL) and is equivalent to the SAP for L (SAPL). We first show for complete-
ness of proof that SAPL implies WAPL. These properties are assumed to hold for any
fine-grid vector u with C a fixed constant that may vary in meaning with each occurrence.

• SAPL =⇒ WAPL: Let Pv be the best approximation to u in energy and let
Pz be the best approximation to L−1(u−Pv) in energy. Then, because u−Pv
is energy orthogonal to the range of P , we have that

∥u− Pv∥2 = ⟨u− Pv,L−1(u− Pv)⟩L
= ⟨u− Pv,L−1(u− Pv)− Pz⟩L
≤ ∥u− Pv∥L · ∥L−1(u− Pv)− Pz∥L.

The SAPL for L−1(u− Pv) then implies that

∥u−Pv∥2 ≤ ∥u−Pv∥L ·

√
C

∥L∥
∥LL−1(u−Pv)∥ = ∥u−Pv∥L ·

√
C

∥L∥
∥u−Pv∥.

Dividing both sides by ∥u−Pv∥, squaring, and applying the SAPL for u yields
the WAPL (note the C2):

∥u− Pv∥2 ≤ C

∥L∥
∥u− Pv∥2L ≤

C2

∥L∥2
∥Lu∥2 ≤ C2

∥L∥
∥u∥2L.

• WAPL2 =⇒ WAPL: For the v guaranteed by WAPL2 , we have that

∥u− Pv∥2 ≤ C

∥L∥2
∥Lu∥2 ≤ C

∥L∥
∥u∥2L.

• WAPL2 =⇒ SAPL: For the v guaranteed by WAPL2 , we have that

∥u− Pv∥2L ≤ ∥L∥ · ∥u− Pv∥2 ≤ C

∥L∥
∥Lu∥2.

• SAPL =⇒ WAPL2 : For the v guaranteed by SAPL, we have that

C

∥L∥2
∥Lu∥2 ≥ ∥u− Pv∥2L

∥L∥
.

But the WAPL, which is implied by the SAPL, in turn implies that there exists
an u for u− Pv such that

∥u− Pv∥2L
∥L∥

≥ 1

C
∥(u− Pv)− Pu∥2 =

1

C
∥u− P (v + u)∥2.

Putting these together, with v ≡ v + u, implies the WAPL2 with C2 instead of

C: ∥u− Pv∥2 ≤ C2

∥L∥2 ∥Lu∥2.
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