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Abstract

Numerical and programming aspects are discussed of multigrid algorithms for
the solution of discretized linear elliptic equations. The aim 1s to obtaln
software that 1s perceived and can be used just like any standard subroutine
for solving systems of linear equations. The user has to specify only the
matrix and the right-hand-side, and remains unaware of the underlying multi-
grid method. We find that a large class of equations can be solved efficlently
in this way. The equation may be non-self-adjoint, and its coefficients are
arbitrary. Special attention Is given to the treatment of the convectlion~
diffusion equation at high P&clet number. Detalls are given of an &vallable
portable FORTRAN code, which vectorizes satisfactorily on vector machines. CP
time statlstics are given for a CYBER-205.

1. Introduction

In this paper the multigrid approach is studied with the aim of developing
algorithms for the solution of discretized linear elliptic equations with
general coefficlents. These algorithms should be efficient for a large class
of problems, so that the user seldom needs to make decisions as to what to use
when. Also, the algorithm should be perceived by the user just like any
standard subroutine for solving linear systems of equations. The user has only
to give the matrix and the right—hand-side in a prescribed data-structure, and
remains unaware of the underlying multigrid algorithm. The algorithm should be
pregsented in a user—friendly portable computer code.

We will discuss how the maln ingredients of the multigrid methodology can
be chosen such that the above objectlives are reached. Details are given of a
FORTRAN code called MGD1V; see also [18, 19]5 MGD1V isg an/example of what has
been called "black box" multigrid method in [5]; there another example of such

a method 1s presented, which is particularly sulted for problems with discon-



tinuous coefficlents. A similar method has been developed in [9, 10, ll]s

- MGD1V has been tested on sequential and vector machines. It auto-vectorizes
to a satlsfactory degree. CP time statlstlics will be given. For the
avallability of MGDLV, see the note at the end of this paper.

0f course, the multigrid approach can be and is used for much wider

purposes, for example to solve nonlinear differential equations in novel ways,
to develop new adaptive discretizations, and to intertwine discretization and
golution. For a revliew of the present and future potential of the multigrid

approach, sce [2, 3, 4].

2. The problem to be solved

The differential equation to be solved 1s in Cartesian subscript notation

glven by:

-=--(f:a_ju‘§i;tsj)’i + (biu),i + cu = § | (2.1)

in @ = (0,1) x (0,1). If Q is not square, it can be mapped on (0,1) x (0,1)
nuerically, using for example the boundary fitted coordinate approach. This
mapping can be carried out efficiently with the multigrid software.to be
discussed. The boundary conditions may be of Dirichlet, Neumann or mixed type.
Perdodic boundary conditions have not yet been Implemented, but will bé in the
near future. The coefflclents sre arbitray, but satisfy the ellipticity

condition:

a 6.8y O Ve em, =12 (2.2)

The problem 1s discretized with the 7-point or 9-point difference molecules
depicted in Fig. 2.1,
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Fige 2.1 7- and 9-point molecules

An equidistant computational grid Qg 1s defined by:
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T¢ the user wants a non-unlform mesh he has to use a mapping. The mesh-gizes



must be negative powers of 2. A sultable 7-point difference approximation of
(251) iss
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where the superscript £ denotes grid functions on Qg, Vi and Ai are backward
and forward difference operators in the x1~direction, and 6 Is a sui?able

difference operator. For example, when choosing upwind differences, 8 (b u )

can be given by:

) 1 -2 % 3
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(2.5)
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A non-conservative formulation and/or a 9-point discretization can be used as
well, without consequences for the rate of convergence of multigrid methods.
Another possibility is to choose a central difference approximation for 6 .
Then our multigrld methods diverge for a5y small enough. An artificial
viscoslty scheme results if one adds an artificial viscosity coefficient vhﬁ 19
to j” while keeping 6 central The accuracy of the resulting scheme 1g
comparable to that of the upwind scheme, but the convergence behaviour of
multigrid methods can be d;fferent for the two schemes, as we shall see. If no

mixed derivative is present, we have the familiar J-point difference scheme.

3. Testproblems

It 1s hard to obtain a watertight guarantee that a given method works for a
large class of problems. Thérefore multigrid practitioners have adopted test
problems that are representative of the difficulties that may be encountered
in practice. A rather general set of test problems is:

(1) The convection~diffusion equation:

cos au , Ftsinagu . =¢ecuqu + £ (3.1)

)1 : 22 ,i1

€ u + u = £, (3.2)

(1i1) Equations with a mixed derivative:

u’” + 1.7 u.sl2 + u922 = f, | (3.3)

= 1@7 + nl
Y S22 Y g (3.4)
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Our ideal is to obtain a multigrid method that works for all equations of
the type (2.1). An essential limitation of numerical experiments on test
problems 1s, that a general assertion, such as: this method works for all
equations of type (2.1), cannot be proved by means of examples. This cannot be
helped. At first sight, (3.1) - (3.4) seem to be rather specilal, because the
coefficlents are constant. However, this fact 1s not exploited. Moreover,
these constant coefflcient problems are often more difficult than equations
with varying coefficlents, because it may easlly happen, that the performance
of a method 18 bad for certain values of o or &. In problems where o and ¢
vary widely In Q this fact goes more easily unnoticed than in a test problem
where o and € have a constant unfavorable value throughout Q.

An important limitation of constant coefficient test problems is, that the
results obtained are not representative for problems with discontinuous
coefficients. Sultable test problems for this situation have been solved with
nultigrid methods in [1, 5, 9, 10, 11]0

We will subject various multigrid methods to the three test problem, for a
wide range of values o € [O,Zﬂ) and € € (0,). In some cases the ordering of
the grid point and unknowns Influences the vresults. We always take the x;~ and
x,~axle horizontal and vertlical in the usual way, and order grid points and

unknowns on an N>xM grid as follows:

NM“’M+1 s e o o o » NM

° o

M+l ME2 s o o 2M
1 2 o o o M

The test problems can be used in two ways. The first 1s to analyse a method
theoretically, using Fourier methods. An Introduction to this type of analysis
is given in [14]s together with a large collectlion of results. The second
possibility is to run the multigrid method and see what happens. Advantages of
Fourler analysls are, that one may obtaln the spectral radius and even norms
of the iteration matrix, and that one can sometimes understand the effect of
modifications of the methods theoretically. Limitations are, that the analysis
is restricted to two-grid methods, and that in many cases the presence of
boundaries is neglected. For the V and sawtooth (see below) cycles two-grid
analysis 1s not quite vepresentative of multigrid performance. For methods
using non-identical discretizatlons on the various grids, as is often the case

with Galerkin coarse grid épproximation, two-grld analysis does not detect
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5. Coarse grid approximation

- Let the problem to be solved including sultable boundary conditions be

dgnoted in matrix notation as follows:

L % 2 .
A,u = f (501)

On the coarse grids ng k = 2-1(~1)1 we need so-called coarse grid operators
Ak, k = §-1(-1)1, that approximate Ag and each other. Here the requirement
that the user has to provide only Az and fg plays a crucial role. This
requirement implies, that the program must generate automatically accurate
operators Ak? k = A=1(=1)L. This 1s a prime motivation to use Galerkin coarse
grid approximation:
k-1 rkAkpk

A = , ko= 2(-1)2. (5.2)

Generally, the resulting Ak are at least as accurate and dependable as user-
generated finlite difference coarse grid operators. For some comparative
experiments, see [189 lg]s Some easily accessible publications in which
Galerkin coarse grid approximation is used arve [1.9 5, 6, 10, 11, 16, 17]0 For
a justification of the appellatlon “"Galerkin coarse grid approximation™, and
for a few remarks on efficient programming of rkAkpk, see [18] and [19]

respectively.

6. Smoothing processes

We exclude smoothing processes for which it is already known that they do
not work well for (3.1)-(3.4), for arbitrary € and a. Looking at the extensive
catalogue of smoothing analysis in [lﬁ]y the following smoothing processes
have been selected for inclusion in the numerical experiments to be described
in the present paper: ILU (1,2) (to be denoted as ILU) and ILLU. Furthérmore,
because of the favourable results obtained in [14] for self-adjoint problems,
we have also included ZEBRA relaxation with horizontal lines, to be denoted by
HZ, and alternating ZEBRA relaxation (taking both horizontal and vertical
lines), to be denoted by AZn'We take flrst odd lines, then even lines; the
boundary lines are odd. With first even, then odd lines, lower rates of
convergence were 6btained. With AZ we take first horizontal, then vertical
lines. For a precise definition of ILU, TLLU, HZ and AZ, see [18, 19, 10, 14].
TLU and ILLU are examples of iterative methods based on incomplete LU-
decompositions. These were first introduced in [12] as preconditionings for

conjupate gradient methods. For applications to multigrid



A portable FORTRAN code for the MGD1 algorithm called MGD1V has been
implemented. Prolongation and restriction are of P7 type (section 4), and
gmoothing is done with ILU (sectlon 6). The matrix C is defined by C = LU-A,
with L and U the incomplete LU-decomposition factors. For ILU, C has only two
non-zero diagonals, and is used for cheap resldue calculation. More details
can be found in [18, 19]. In MGD1V, C is not stored but computed from L and U
at the expense of one (vectorizable) multiplication per element.

MGD1V has been designed for auto-vectorilzation on vector computers, such as
the CYBER-205 and the CRAY-1, without having to sacrifice anything on
sequentlal machines. A verslon especlally suited for the CYBER-205 is called
MGD1D. Compared with straightforward FORTRAN programming, particularly the
construction of Lk, Uk and subroutine SOLVE are implemented differently,
although in a straightforward way. The main idea is to split off vectorizable
loops as much as possible by referring to individuwal grid-lines. In SOLVE a
simple recursion is left, which in the case of MGDID is speeded up by using
calls to the STACKLIB library. These particularly efficient FORTRAN
gsubroutines are provided with the CYBER 205 for elementary algebraic
operations that are not vectorizable because of recursion. Some CP time

statistics for MGDLD obtained on a CYBER~205 are listed below.

10 iteratlons sequential|vectorized| ratlo
MGD1D:total time 2,231 0.468 4.8
RESTRICTION 0.057 0.031 1.8
CTUMY 10.315 0.010 | 31.3
SOLVE 0.598 0.263 2.3
PROLONGATION 0.107 0.023 4,7
CTUPF : 0.391 0.014 28.0

Preliminary computation of:

AR k=g-1(-1)2 0.380 0.054 7.0

L6, Uk, k=2(1)2 0.193 0.043 4ok

Table 7.1 CP time statistics for MGDID on a CYBER 205. Seconds. Total

time spent in various subroutines for the executlon of 10 iterations, and

preliminary computations. Finest grid 129x129, cocarsest 5x5.

The same problem takes about 25 seconds on an Amdahl V6.
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As we will see shortly, the residue is typlcally reduced by a factor 0.1
during one iteration, so that one typlecally obtains a residue re&uction of 10°
in 0.27 seconds on the CYBER-205, for a general elliptic differentlial equation
with continuous coefficlents on a 129x129 equidistant grid. An exceptilon has
to be made for certaln convection-diffusion cases, as we will see, but the
preceding statement remalns valid for 65x65 grids (or smaller) at roughly 1/4
of the time mentioned (or less). Other versions of MGD1, using TLLU and/or the
P9' or P9" prolongations and restrictions, for better performance dn the
convection diffusion case, for discontinuous coefficlents and making treatment

of arbitrary regions easy, will be brought out in the near future.

9, Results for the convection-diffusion test problem

The following table glves some observed average reduction factors for MGD1V

for the convection-diffusion testproblem (eq. (3.1)). Here f=1.

£=10"8, Nf=65, Ne=3 0165, Nf=129, Ne=3
o Ni o ‘ £ Ni
0 | 4| 3397 1078 ]~ | aiv
15 | 3| b6 | T N
30 1 3| elyg0 1073 | 10 | 0.41
451 3| olyg® 1072 | 10| 0.08
60 | 3| By 107t | 10| 0.08
751 3] oAygt 1 10 | 0.07
90 | 1} 294710 10 10 | 0.07
105 | 10 | 0.05
120 | 10 | 0.07 =165, NE=65, Ne=3
135 | 10 | 0.13
150 | 10 | ©0.29 e | m 0
165 | 10 | 0.43 1070 | 10 | 0,43
107 | 10 | 0.47
1074 | 10 | 0.09
1 {10 | 0.07

Table 9.1 Results for eq. (3.1) with MGD1V. Finest grid: NEXNE;

coarsest grid: NexNc; Ni: number of iteratious; p: average reduction

o cor Fuclidean norm of residue over first Wi iterations.
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The initial guess 1s zero. The value zero 1s prescribed at the boundaries;
this Dirichlet boundary condition is eliminated. We have restricted o
(degrees) to the first two quadrants, because the behaviour in the third and
fourth quadrants is symmetric with the behaviour in the first two.

It is found that MGDIV performs well for arbitrary € and o as long as %<6
(Nf < 65)e For o (00,900) ILU is almost exact for emall e¢. This is suggested
by table 9.1, and confirmed by the smoothing analysis results in [10], which
show that not only short but also long wavelength error components are
strongly damped. One smoothing on the finest grid almost produces the
golution, and what happens on the coarser grids does not matter very much. In
the second quadrant the long wavelength error components are not strongly
damped, and good coarse grid correctlons are necessary to obtain good
convergence. However, with each application of (5.2) the difference operator
A" becomes more symmetric and the main diagonal becomee weaker; see some
examples of coarse grid difference molecules generated with (5.2) in [19]. As
a result the smoothing properties of ILU deteriorate, and “wiggles" may occur
on the cecarser grids. The situatlon gets progressively worse as the number of
grids increases, untll divergence occurs with 7 levels for a in a fairly
narrow band around 1650, where ILU happens to be the least accurate. For other
values of a, ILU 1s sufficlently accurate to correct the bad approkimations
generated on the coarse grids. This is dependent on the use of upwind
differences on the finest grid. With artificial viscosity discretization, ILU
comes less close to being exact; and divergence can also occur on a 65x65
grid.

As already noted, for Nf < 65 MGD1V is dependable and efficient, and
because a 65x65 grid i1s sufficilently fine in many applications, we consider
MGD1V a useful working tool, taking Into account that it also works for the
test problems still to be considered. However, it is desirable to make it work
on very large grids too. After all, for very large grids multigrid may be the
only viable way to keep the computation time within reasonable bounds.

One way to get MGDl working on very large grids for convection=diffusion
problems with small € is to replace ILU by a smoothing process which reduces
both short and long wavelength components for all directions o sufficiently to
compensate for the bad coarse grid corrections. The smoothing analysis results
in [10]'give hope that ILLU has the desired properties.

The following table gives a typical result.
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Table 9.2 Average reduction factor for ILLU smoothing.

Here £=0, and zero Dirichlet boundary conditions are pregeribed, so that the
solution 1s identlcally zero. The initial guess conslsts of random numbers. In
order to illustrate the robustness of the algorithm, now we do not elinminate
the Dirichlet boundary conditions, but keep them in the finest grid matrix
with a welghting factor 107, We choose p large, namely p=10, so that we obtain
the same good rate of convergence as when the boundary conditlons are
eliminated, but not too large, to avold overflow. Under these conditions the
value of p has little Influence. We have also applied a homogeneous Neumann
condition at outflow boundaries (results not rveported here), again, we found
little difference. The foregolng remarks apply to all further experiments to
be described.

In table 9.2, the value of o 1s for the worst case that we encountered; for
other values of o that we tried‘convergence ie faster. The reduction factor p
is averaged over the second and third iteratlion; from now on we exclude the
first iteration because 1t often accidentally gives an untypically small
reduction factor. Apparently, ILLU is almost exact for small e for every a,
using upwind differences.

Here we could end our discussion of the convection-diffusion test problem.
However, it is not esthetically pleasing to use a multigrid method under
circumstances where the coarse grid corrections merely have an adverse effect,
We have therefore developed better coarse grid approximations. An analysis of
multigrid methods for conmvectlon~diffusion problems has been made in [20].
There a sultable stability concept is introduced, to be denoted here for
brevity as S-stability. It is found that with S-stability reasonable rates of
convergence are obtained, also with smoothing processes less formidable than
TLLU. Me.nods using P7 and Galerkln coarse grid approximation are found to be-
ot S-srable. They can be made S—stable by adding artificial viscosity to the
coarse grid operators. By choosing a sultable amount of aritificial viscosity
satisfactory rates of convergence are obtained. However, adding sultable
amovnts of artificial viscosity in a user—independent way is somewhat

gor " osrad. We therefore stick to (5.2) without adding artificial viscosity,
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but introduce some "upwind” effect by changing the prolongation and the
restriction. It turns out that the P9' and P9" prolongations and restrictions
(see section 4) do the job. The following table gives the final (£ + =, k = 1)
molecule produced by (5.2), using P7, P9' and P9", for a few finest grid

molecules.

P7 P9*', PY9"

0 -1 0 0 -1 0 -1 -1 =1
-1 4 =1 -1 4 -1 -1 8 -1

o -1 0 o -1 0 -1 =] =1

0 0 0 0 =-a+2b atb 0 0 0
-a a+b 0 {~2at+b 0 2a=b |{=2a 2at2b O

0O b 0} =-a~b a2b O 0 -2b

0 -b O 0 -a-2b a-b 0 =2b O
-a atb 0 |-2a-b 0 2atb |-2a 2a+2b 0
0 0 O | -atb a+2b O 0 0] 0
Finest grid Final molecule )
molecule

Table 9.3 Some difference molecules resulting from coarse grid Galerkin

approximation.

In order to 1llustrate the quality of the coarse grid approximations
generated by (5.2) with P9' or P9", we have solved (3.1) with a bad smoothing

process, namely line-Gauss-Seldel with the wrong ordering of the lines (LGSBI,
see [10]).

The results are given in the following tables.

e\o 0 15 45 90 | 135 | 165

31 14 f o215 .16 W17 17 | .16
.031 »11 .18 W24 | 426 223 | .19
20031 .06 «36 | div | div | div | .42
,00031 002 43 | div | div | div | .43

Table 9.4 Average reduction factors, P7 prolongation and restriction.
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AN) 0 15 45 90 0 15 45 90
031 012 13 o 15 <16 .09 010 o 11 012
803]. 811 9].7 @2‘7 @31 ‘3()9 013 022 026
0031 .06 239 .66 077 <05 034 +59 .68
00031 002 43 .81 .94 001 .37 .66 .89
P9’ pg”
Table 9.5 Average reduction factors.

Because of symmetry, only the first two quadrants have to be considered in
table 9.4, and only the first quadrant in table 9.5.

Tables 9.4 and 9.5 give the reduction factor of the maximum norm of the
error over iterations 2-10. In order to avoid rounding error effects rescaling
is applied. The V-cycle is used (sc[k]ﬁsa[k]ﬂsb[k]ﬁl in the first algorithm of
section 7). The finest grid is of dimension 33x33, the coarsest 3x3. Tables
9.4 and 9.5 clearly show that the bad smoothing process used 1s not saved by
P7, but saved a great deal by P9' and P9", which provide more effective coarse
grid corrections. Because P9" 1s found to be slightly better than P9' (this

was found in other cases too), we will report results for P9" only from now on

for the convectlon—diffusion problem.

We now combine P9” with better smoothers: ILU, AZ and ILLU (see section 6).
The following results are obtalned, for the test problem treated in tables 9.4

and 9.5,
ILU
AN 0 15 45 90 135 165
031 .06 .06 .06 .06 .06 .06
031 05 .04 o 04 .06 .05 .05
0031 .08 « 04 .02 .01 015 -15
.00031 .02 007} -002{ .0003} .18 024




=] e

AZ : ILLU

e\e 0 15 | 45| 90 | .0 15 1 45 | 90

«31 07 | 07 [ 07 | .07 | .04 04 | 04 | 04
.031 .06 | .07 | .06 | .05 | .04 <04 | .03 | .02
.0031 .09 { .07 | .10 | .09 | .01 .02 | .009] .002
.00031 .03 | .06 | .09 | .03 +0002| .002| .001} .0001

Table 9.6 Average reduction factors

For table 9.6 the situation 1s as described for tables 9.4 and 9.5, except
that the V-cycle has been replaced by the sawtooth cycle (sc[k]=1, sa[k]=0,
sb[k]=1 in the first algorithm of sectiorn 7). The finest grid has dimension
33x33, the coarsest 17x17; we found these 2-level results to be representative
for the corresponding 5-level results (with a 3x3 coarsest grid). On the 17x17
grid the equation is solved almost exactly with a sufficient number of
relaxations. The following table gives some 5~level results (finest grid
33x33, coarsest 3x3), comparing the sawtooth and the V-cycle. The smoothing
process is ILLU. ' )

sawtooth cycle ' V-cycle

e\o 0 15 45 90 0 15 45 90

«31 .05 04 - 04 .04 .009 | 009 | .009 .007
.031 .04 <03 .03 | .02 | .OL 009 .005 006
.0031 .01 .02 .009| .002| .0001| .003 .003 .0000
.00031 .0002} .002{ .001{ .000| .0000| .0000| .0000| .0000

Table 9.7 Average reduction factors.

In the V-cycle twice as much‘smoothing takes place as in the sawtooth
cycle, so that it is about twice as expensive. Therefore table 9.7 suggests
that sawtooth 1s more efficient than V in the present case,

For a comparison of the efficiency of the various methods the decisive
factor is the cost of the smoothing process, This depends on the number of
atoms in the difference molecule. We consider only the finest grid, because

there the bulk of the work takes place. Usually, we there have a S5-point



=] G

molecule. Glving operation counts is a little tricky, because one can exchange
work for storage to a certain extent, and also often save a few operations by
clever programming. In [14]9 table 9.6b and [10]9 appendix £ almost the same
operations counts are found for AZ and ILU, assuming that LGSF1F2 in [10] has
the same cost as AZ; in [10] 1t is found that ILLU is about 1.5 times as
expenéivee

From the experimental results described above We draw the following
conclusions for convectlon-diffusion problems.

For igrids not larger than 65x65 the FORTRAN code MGD1V is dependable  and
efficlent; on a 129x129 grid divergence occurs for certaln convection
directions, due te bad coarse grid approximations. The ILLU smoothing process
comes s0 close to being exact for small ¢, using upwind differences, that
notwithstanding the bad coarse grid corrections convergence 1s very fast on
grids of all sizes. ‘

The coarse grid approximatione are improved by the P9' or P9" prolongations
and restriction, resulting in fast convergence on grids of all sizes.

For this class of problems the ILLU smoothing process 1s more effilcient
than LU and AZ. The sawtcoth cycle is more efficient than the V-cycle in the
cases considered,

10. Results for the anisotrople diffusfion and mized derivative test problems.

For test problems (3.2), (3.3) and (3.4) the. exsct numerical solution is
chosen as ot = Xl(lmxl)XZ(lmXZ)aloﬁw The boundary conditions are of Dirichlet
type. They are not eliminated but treated as In the preceding section with
p=40. The initial guess is identically zerc. The Fuclidean norm of the residue
1s measured, and the average reductlon factor over iteratlons 2-10 called p is
reported. Two smoothing processes are tested, namely ILU and HZ.

The cost of ILU is about 1.5 that of HZ (cf. [14] table 92.6b). The
following results are obtained for test problem (3.2).

£ p P € P R

108 | 0,000 | 0.241 | 107! | 0.086 | 0,723 | Table 10.1

10% | 0,061 | 0.141 | 10™% | 0.07L | 0.766 | Average reduction factors
103 | 0.345 | 0.116 | 1073 | 0,040 | 0.747 for test problem (3.2).
102 | 0.495 | 0.096 | 107 | 0.000 | 0.746
10 | 0.241 | 0.152 | 107% | 0.000 | 0.745
1| 0,072 | 0.379

LU BZ ILD Hz
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The finest grid has dimension 65x65, the coarsest 3x3, The ILU results have
been obtained with the MGD1V FORTRAN code; for HZ the same multigrid strategy
is used.

For € small we have strong coupling in the xy,~direction, and we should use
vertical lines for ZEBRA, obtaining the same results as for 1/e. If ¢ variles
widely'in the region, taking on both large and small values, one should use
AZ, if one prefers the ZEBRA smoothing process.

Based on the smoothing analysis results of [10], appendix B, ILU should not
work for large e, because the smoothing factor tends to 1 as & + =, The local
Fourler two-grid analysls results of [14]3 table 9.6a, lead to the same
conclusion. However, table 10.1 shows that TLU works well for this case. The
regolution of this apparent paradox 1s to be sought in the role of the
boundary conditions. These are neglected in local Fourier amalysis, which is
carried out on am infinite reglon. However, for ¢ << 1 and ¢ >> 1 the
influence of the boundary conditions extends far into the regionm. Apparentl&,
the Fourier modes which are not treated well by TLU are excluded by the
boundary conditions. The possible influence of boundary conditions should bé
kept in mind wherx interpreting Fourier analysis results. It is desirable th%t
predictions about the performance of a multigrid method are corroborated by
rgsults obtained. by actual use of the method. Such results are necessarily of
a statistical nature; the average reduction factors obtained depend on the
right-hand~side, the initial guess and the number of 1lterations. | |

As a further illustration of the effectliveness of ILU and ZEBRA for this

test problem, we present the followlng one-grid results.

€ . P P 2 P p

108 | 0,000 | 0.127 | 1071 | 0,912 | 0.993
10% | 0,007 | 0.007 | 1072 | 0.526 | 0.993
103 | 0.424 | 0.205 | 1073 | 0.006 | 0.992
10% | 0.858 | 0.793 | 10™% | 0.000 | 0.992
10 0.966 | 0.969 | 10™° | 0.000 | 0,992
1 0.976 | 0.992

Iy 0z ILy HZ

Table 10.2 Average reduction factors on a single 65x65 grid for test
problem (3.2},



18-

For € << 1 and € >> 1 ILU 1s almost exact; for € ® 1 we need coarse grid
corrections to accelerate convergence.
Next, we turn to test problems (3.3) and (3.4). The following results are

obtalned.

Test P P Test P p

problem | 0.007 | 0.663 | problem 0.174 | 0,400

(3.3) ILU HZ (3.4) TLU HZ

Table 10.3 Average reduction factors for test problems (3.3) and (3.4).

again, the finest grid has dimension 65x65, the coarsest 3x3; the same
multigrid strategy has been used as for table 10.1.
As a further illustration of the effectiveness of ILU and HZ we present the

following one~grid results for these test problems.

Test p o Test ‘ p P

problem | 0.729 | 0.980 | problem 0,954 | 0.979

(3.3) LU HZ (3:4) I HZ

Table 10.4 Average reduction factors on a single 65x65 grid for test
problems (3.3) and (3.4).

From these experiments we draw the following conclusions.

For test problem (3.2), the ZEBRA smoothing process 1s efficient with the
1ines chosen vertically if e << 1 and horizontally if e >> 1. The TLU
smoothing process is efficlent regardless of the value of €. If for ILU omng:
chooses the x,—axls in the direction of strong coupling with the grid point
ordering glven in section 3, or 1f one orders the grid points and unknowns
along vertical lines for e >> 1 or along horizontal lines (as shown in section
3) for € << 1, ILU is counsiderably more efficlent than ZEBRA. We have no
results for problem (3.2) in which e 1s variable and takes on both large and:
small values, but expect that both ILU and AZ will work well.

For test problems (303)'and (3.4) TLU 1s more efficient than HZ.
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As yet, we have no results for ILLU for test problems (3.2)~(3.4).

+ Comparing tables 10.1 and 10.2, and tables 10.3 and 10.4 we see that the
coarse grid cerrectlons are effective for these test problems. Therefore we
expect the results that have been presented to be representative of the
convergence behaviour on still finer grids, and that the sort of trouble
encountered in this respect in section 9 does not occur for the test problem
treated here.

More results for these test problems with the MGD1 method have been
published in [18, 19].

11. Final remarks

The development of multigrid fast solvers has been shown to be feasible. It
1s desirable that when using such a solver the user has only to specify the
problem on the computational grid that he wants to use, and that he does not
need to involve himself with the underlying algorithm. The MGD1 method
described satisfles these requirements. A multigrid fast solver based on a
similar design philosophy has been described in [5]9 where a "black box”
FORTRAN code called BOXMG is presented, that works for discontinuous
coefficients and arbitrary reglons. Alsc in BOXMG the user is asked to control
the multigrid algorithm te a certain extent, and given a cholce of smodthing
processes of point and line Gausg-Seidel type.

The numerical experiments that have been described make it plausible, that
the method convergences fast for the general elliptic equation discretized on
a square, with continuous coefflcients, including non-self-adjoint problems, a
mixed derivative and the limiting cases of strong convection and strongly
anlsotropic diffuslon. The method has been implemented in the portable FORTRAN
code MGD1V. This code auto-vectorizes satisfactorily. A speclial CYBER-205
verslion called MGDID is identical to MGDLV except for a few statements, which
have been replaced by calls to the CYBER STACKLIB library.

Note A tape containing the MGDLV or MGDID code can be obtained by writing to
Mro A. van Deursen, Department of Mathematics and Informatics, Delft

University of Technology, Julianalaan 132, 2628 Delft, The Netherlands.
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