Two ALGORITHMS FOR MiIXED PROBLEMS

R. Verflirth

Abstract: We describe two algorithms for the numerical solution of sym-
metric indefinite problems which arise e.g. from mixed finite element
approximations of the Stokes equation. For the first algorithm we trans-
form the original problem into an equation Lp = g for the 'pressure’
involving a symmetric, positive definite, continuous linear operator L.
We apply a conjugate gradient algorithm to this equation. Each evalua-
tion of L'requires the solution of two discrete Poisson equations. This
is done approximately using a multigrid algorithm. In the second algo-
rithm the multigrid idea is directly applied to the indefinite problem.
The main difficulty besides the indefiniteness is the lack of regularity
of the solution of the corresponding continuous problem. This is over-
come by introducing a mesh dependent norm. Both algorithms have conver-
gence rates bounded away from 1 independently of the meshsize. Numerical
results are presented for the first algorithm.
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§ 1 Introduction

Tn this note we describe two algorithms for the numerical solution
of indefinite problems of the form:
Find (uy.py) & ZpxMy such that
a’(ll«h’y;h) + b(zhiph) = f (Vh) VA»-YQh‘EE Xh

(1.1)
b(l_{h:qh) = 0 W qh € Mh'

Here, Xh’ Mh are finite dimensional Hilbert spaces, a : thxh —p TR

and b : X, xMy —3» R continuous bilinear functionals and £ : X, — R

a continuous linear functional. Moreover, a has to be Xh-elliptic and
b has to satisfy an inf-sup condition (cf. (2.10) below). Specifically,
we are interested in problems of this type which arise from the dis-

cretization of the Stokes problem

-Au + Vp = £ in Q u =0 on" 30,

(1.2)
divu - =20 in @

in a simply connected, bounded domain QCZHid , d=2,3.

For the first algorithm we transform (1.1) into an equation Lpy = 9y
for the ‘pressure’' which involves a symmetric, positive definite, con-
tinuous linear operator L : Mh-mﬂ Mh‘ We apply a conjugate gradient
algorithm to this problem. Each evalﬁation of L requires the solution
of two discrete Poisson equations. This is done approximately by apply=*
ing 2 - 4 iterations of a multigrid algorithm. The resulting iterative
process has a convergence rate x bounded away from 1 independently of
the meshsize. Numerical experiments yield values for «x between .8 and

.93.

© In the second algorithm we apply the multigrid idea directly to {1.1).
The main difficulty besides the indefiniteness is the different order

of the differential operators underlying a and b. This results in a



lack of regularity of’"the pressure. To overcome this difficulty we in-
troduce a mesh dependent norm. The convergence rate measured in this
norm is bounded away from 1 independently of the meshsize. In contrast
to elliptic problems the use of a Lanczos algorithm as smoothing ope-

rator yields a substantial improvement on Jacobi relaxation.



§ 2 Preliminaries

Let Hm(ﬂ), m > O, Hl(Q) and LZ(Q) g = HO(Q) be the usual Sobolev and

Lebesgue spaces equipped with the norm

bz s= (0 oz @ pPugit? axy V2.

Q fﬁl§m

We use the same notation for the corresponding product norm on’Hm(Q)d,
Denote by (f,gXQ the scalar product of LZ(Q)n, n=1,d,d2. For ease of
notation put

x =H (@8, M= {perf(@) ¢ (p, 1), = 0} (2.1)
and introduce the bilinear forms

alu,v) = (Vu,vv), , Dblu,p) := (div u,p) (2.2)

on XxX and XxM j;resp.. Note, that

lul, 2= a(a,u)'/? (2.3)
is a norm on X equivalent to H,H1 and that
lb(g,p)l < /d [El1 Hpﬂo . ¥ UEX , peEM {(2.4)

Moreover, the inf-sup condition

B o= inf sup ﬁ(u,i; > 0 (2.5)
o

pEMN{ 0} uex\{0} "~ 1

holds (cf. Theorem 3.7 in [9]).

Given £€L2(Q)d the weak form of (1.2) is to f£ind (u,p)€ XxM such that
a(u,v) + b(v,p) = (£,v), ¥ v€ X
(2.6)
b(u,q) = 0 ¥ ge M .
It is well known [:9] :that (2.6) has a unigque solution and that
IIEII2 + LpL1 < ¢4 Hgﬂo (2.7)

provided 9q is sufficiently smooth or QC:[R‘2 is a convex polygow[5,12].

Let XhCZX and Mh<:M ; h>0, be two families of finite dimensional
spaces with XZhE:Xh and MZh(:Mh » h >0, which satisfy the usual appro-

Ximation assumptions and inverse estimate:



inf Iy -yl < of B 7%yl v verf (@9, osusicse2, (2.8a)
v, E€X
In=*n

. _ B0 B

inf Ip - pl s c,h llpllB ¥ pEH"(Q) , OsagBgl, (2.8b)
PpSMy

lv. 1. < ey B™F lv | ¥ v, €X (2.9)
Yn'q € C3 'Yh'o In=%p - .

C1,c2,,.° are generic constants which do not depend on h. The space Xh

and Mh have to fit together such that

b (.Ehr ph)

inf sup i

ot ¥y >0 (2.10);
pﬁth\{O} up X\ {0}

Bpty TPty

holds with a constant vy independent of h. We equip XhXMh with the mesh

dependent norm

2 2. 24,1/2
Uy )by, o= (a2 + n?apa231/2 (2.11)

Examples of spaces Xy My satisfying the above assumptions are given
in [ 15] for polygonal domains QCZEQZQ Mh is the space of piecewise 1li-~
near, continuous functions on a regular triangulation Th of Q. Xh is
either the space of piecewise linear, continuous functions on Th/2 or
the space of piecewise quadratic, continuous functions on Th° Combining
the ideas of [4] and [ 15] these results can be extended to other finite

element spaces and regions Q<:IR39

The approximation of X and M by Xy and My then leads. to Problem (1.1).

Because of (2.3), (2.4), (2.10) this problem always has a unique solu-

tion [ 91.



§ 3 A positive definite problem for the pressure

To simplify the notation we define the operators

#
B: X, —v M, , B M X,

-1 2,0, 4
A : Xh-mﬁ Xh P J o L°(Q) ——p Xh

as follows

(Bu,p), = (,g_,Eﬁ“p)O = b(u,p) VUu€EX, , pEM, (3.1)
a(Am1g,2) = (W,v), ¥ u,vEX (3.2)
(FE,9) = (£,9) vvex, , £erf@9.(3.3)

Note, that they never need to be computed explicitly. An easy calcula-=:

tion yields

IBul j ¢ vd lul, ¥ uEX, , (3.4)
2 o :
y “pﬂo < IB pﬂ?1 < /d IlpﬁO ¥ pEM | (3,5)
R
LA 9'1 = llg_ﬂ_1 ¥ uEX, (3.6)
where
(u,v)
ll_gll_1 :=  Sup ol .
XEXQ{O} =
Put
Li=Ba '8 , g:i=BAJEf . (3.7)

Lemma 3.1 : L : My — My is a symmetric linear operator satisfying

2 u¢||f; Voem (3.8)

(Ld)l(b)o > Y
HL¢HQ < d H¢HO ¥ eEM . (3.9)
The pair (Eh,ph)ﬁ X xMy is a solution of (1.1) if and only if ILp, =g

- ol ok
and up, = A (Jf - B pp)

Proof : The linearity of L is obvious. Equs. (3.4) - (3.6) together
with
-1 ¥ -1.X
(Lo, 9), = ala "B 6,87 B p) Voo,9 €My,

imply the symmetry and (3.8),(3.9). The second part of the Lemma follows



- o

from the definition of the operators and the unique solvability of

(1.1) . [

The operator L is not known explicitly. Each evaluation of Lp requires

the computation of A~

w for a suitable w€ X, which is equivalent to the
solution of two seperate discrete Poisson equations. This is done appro-
ximately by applying n steps of a multigrid (MG-) algorithm with zero
as starting value to the problem

a(u,v) = (w,v), VVEX, .
Denote the resulting approximation to Am1ﬁ by K W. This defines a linear

operator Kn 2 Xy xh with

a7y - Kb € <M 1A vwex ., n3l,  (3.10

where ¢ is the convergence rate of the MG-algorithm.

« is bounded away from 1 independently of h (cf. e.g. [7,11]). Nume-
rical experiments often yield values «x « .1 (¢cf.[3,8,10]1). The theo=-
retical bound k € .205 is derived in [ 6] for a MG-algorithm with
checkered point GauB-Seidel relaxation as smoothing operator on a con-

vex polygon.

We assume that Kn is symmetric with respect to (o,o)o. This holds for

most MG-algorithm used in practice. Put

_ ¥
Ln := B Ko B . (3.11)

Lemma 3.2 : Assume that e YZ dm1 . Then L is a symmetric linear ope-

rator satisfying for each ¢62Mh:

I ¢ = Lol < 2 a ol : (3.12)

2

(o) g > (Y2 = @™ Hel? (3.13)

In gl < A1 + ) gl . (3.14)



m ]

Proof : The linearity and symmetry of Ln are obvious. Equs. (3.4) -
(3.6) and (3.10) imply (3.12). Equs. (3.13), (3.14) immediately follow
from (3.12) by using the triangle inequality. []

In the sequel we assume that o< y2 dm1 . Since, in principle, ¥
can be computed explicitly, we could use the above cited bounds for « .
to determine the required number n of MG-steps. However, these esti-
mates are far too pessimistic. Our numerical results show that in ge-

neral 2 = 4 MG~iterations are sufficient.



§ 4 A combined conjugate gradient - multigrid algorithm

The results of §3 show a possible way to solve Problem (1.1) approxi-

. & _
mately: We compute an approximation g to g := B A 1 J £ using the

operator K, and apply an iteration process to the equation L p = g#
which only requires the evaluation of L,- Since Ln is a symmetric,posi-
tive definite operator and approximates an operator with the same pro-

perties, an appropriate iteration process is the conjugate gradient al-

gorithm.

Algorithm 4.1 =

. ¥
0. Prephocessing phase : Compute g :=B K J £ .

1. Stant : Given an initial guess poéEMh for the pressure Pp solving

(1.1) . Compute qo ¢ = ano and put r® o= qo o gik P d® := -r°. set

i = 0.
7. ltenation Step : If Hrlﬂo £ ¢ go to Step 3. Otherwise compute

qi+1 = Lndl and put

U . |
IS I (x™,d7)
s = mmm“_'%_“"""‘""‘ ¥
@+, q" 1)O
pl+1 - pi + ai+1 dl , r1+1 = o4 a1+1 ql+1 ,
i+ i +1
i+1 (rl ’rl )o
B - (Ti rl) 7
T, o
dl+'l o= mrJ,—H + Bl+1 d1+’ﬂ

Replace i by i+1 and return to the beginning of Step 2.
3., Pastprocessing phase : Compute gl = K (T £ - B%pl) and use

(ul,pl) GEthMh as final approximation to the solution of (1.1). D

From Lemma 3.2 and Exercise 10 of §8.8 in [ 13] we’ obtain



i 2 1=V§ i ;.0
I "Q < "8' (7r‘”7"§) I r “Q (4 '])
where
2 _ EPRe 2
§ = L BK . o X (4.2)

aue® d

Note that § is independent of h. Equs. (4.1), (4.2) imply that the

mean convergence rate of Algorithm 4.1 is of the form "1 - O(y).
The following error estimate is proved in [ 16].

Proposition 4.2 : Let (El,pl) be the last iterate of Algorithm 4.1 and

(uy,,py) be the solution of (1.1). Then we have

i i
Ll:l,h - u l"l + ||ph - P ||Q

1

YZ”dKn

<

{ 5e + 8™ NEN_ + 15¢T Iph b . (4.3) [J

The proof of Proposition 4.2 only exploits Lemma 3.1, 3.2 and the
stopping criterion Hriﬂc ¢ ¢ . Hence it also holds for other iteration
processes. The number ™ in (4.3) is the relative accuracy with which
ég, the last residue ri and the final approximation Ei for the veloci~-
ty are camputed. Hence, Steps 1 and 2 of Algorithm 4.1 need only be per-
formed with a moderate accuracy. Once the residue is smaller than e,
we may switch to a higher accuracy in the solution of Poisson's equation.
This improves the efficiency of Algorithm 4.1 substantially. Finally,

we note that we can use any Poisson solver satisfying (3.10).
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§ 5 A multilevel algorithm

In this § we assume that the regularity assumption (2.7) holds. As
usual for multilevel algorithms we have a sequence of meshsizes

ho>h"l>°">hR with h = 2 hk, » T ¢k gR. Actually we want to

k=1
solve Problem (1.1) on level R. If no ambiguity can arise, we replace
subscripts hk by k. Instead of (1.7) we have to consider the slightly
more general problem
a(u,,v) + b(v,pp) + blu,q)
= Gy (V,q) ¥ (z,q)EEXkXMk . (5.1)

Gk is a linear functional on kaMk and on the finest grid:

Gplv,q) = (£,¥), ¥ o(v.q) €XxMy . (5.2)

Algorithm 5.1 ¢ (One Lteration step at Level k , TshgR , with m

smoothing steps)
1. Smoothing : Let (Ezypz)ﬁ kaMk be a given approximation to the solu-
tion of Problem (5.1). For ¢ = 1,2,...,m compute the solutions of

! 2 [

. mz o \ - 2“1
= w - { G (v, q) alu, V)

%=1 2=1

- b(v,p, ) -~ bly, ,a)} ¥o(v,q) € X xMy
and
g -1 2 4 -1
Gty ¥ * By (Pempy 1B g
= alwr,v) + b(v,rr) + bwr,q) ¥V (v,q) € X, xM
Wi e X Yoly Wy rd Y.q i

, # 4 :
2. Connection : Let (Ekmqukmq)ezka1XMkm1 be the solution of Problem

(5.1) with

ka'y (qu) 5= Gk(ziq) = a(gkpyn;)

) b(zfpt) - b(}}j?yy;) ¥ o(v,q) €X,_.xXM

k=1""k~-1



w 17 =

_ o IR,
If k - 1! pu. (Ek“1!p]{,m‘i) - (E_km‘ié'pk’m»])

. , ~ ~ +# %
If k > 1, compute an approximation (ngT’Pkmﬁ) to (Ek+1ppkm1) by
applying w, u 3%, iterations of the (k=1)-level scheme to. (5.1) with
starting value zero.

Put

m+1 _m+1 _ m o, o~ m ~
(Rk fpk ) ° ™ (E;k + Ek_,ﬂlipk + pk”1) ° U

If we introduce a basis for kaMk, Problem (5.1) can be written in
matrix-vector notation as Akxk = dk with a symmetric, indefinite ma-
trix Ak“ In the smoothing part of Algorithm 5.1 m Jacobi relaxation
steps are applied to the: squared system Aixk = Akdk° The relaxation

parametexr Wi has to be greater than the spectral radius of Ak“

Let Gk - be the convergence rate of one iteration of Algorithm 5.1
[

at level k with m smoothing steps measured in the l.{h - norm. Denocte
' k

# & \ L 4
by (Ek,pk)éixkka the solution of Problem (5.1) and by (Ek'sk) g=

* g * % . s
(Ek = UprPy T pk) the error of the &-th iterate. Put N, := dimX, xM, .
There is a complete set of eigenfunctions (gi,wi) e 1% j<:Nk , defined by
alpg,v) + b(v, ) + bleg,a)
, i 2 j .
whoodyy +nd gl = sy Tsigdem . (5.4b)
Because of (2.10) the eigenvalues can be arranged such that
o<:Lx1L$ ..°§IAN b= Ay e (5.5)
Tk
An easy calculation [2,17] yields
-2
Ak < Cy hk . (5.6)
-2

The following analysis holds, if we have'Ak £ W anduwk =.0(h

k R
To simplify the notation, we assume that w, i~Ak,



....’lzm

We define a scale of norms WJNS s SEIR , on kaMk as follows. Let

cj , 13 <Nk ; be the coefficients of (g_k,pk)EEkaMk with respect to
the basis (-9111"”11) , T¢3<N_ , then

Ny s o 172
Iﬂ(gk,pk)ms s= { ji1 l%jl cj } . (5.7)
Because of (5.4) we have
wc(gk,pk)ﬂlg = blpty, - (5.8)

k

It is easy to prove (cf. [2,17]) the smoothing propenty

m(e Iif.

e iy
<A max Ix(i- —x )T ) (€2, eD)_
-Texg
< c5 (5.9)
The crucial point is the approxdimation propenty
(e * 3 Y1 £ Ni (em emﬁ I (5.10)
kk‘l’kpk1k 6 Sk’ /N2 v .

For the proof of (5.10) we refer to [17]. It's general structure is si-
milar to that of Bank's convergence analysis [ 1] . However, his regula-
rity assumptions are not met by the Stokes problem. Our choice of the
norm l.Lhk reflects this loss of regularity. Moreover, we have to

estimate the velocity and pressure components seperately.and to use

additional duality arguments.

Equs. (5.9), (5.10) imply

€9

51’m<7§W o (5.11)

Finally, we conclude

m+t e
l'(Ek €y ﬂlk
m 7\;& m %- | '}é’ (a4
. - ¥ | |
€ Moy qremp My + oy gmuy ’i"pk 1 Prep)



- 13 =

C C .
=7 u 7 0 0
S Uymmat Y2 Sk O F v b ey

Hence
Cq " Cq
ﬁkym T Tomed * 2 CSkw’i,m (1 72m+1) ’ (5.12)

By induction this proves:

Proposition 5.2 : Let m » 8 c% 251/u . Then the convergence rate of Al-
gorithm 5.1 is bounded by
2Cq

S m € TEIT S 7 ¥ keEN . (5.13) []

Instead of Jacobi relaxation we could perform m steps of a conjugate
residual (CR-) algorithm (cf..[14]) in the smoothing part of Algorithm

5.1. Assume that m3 2 is even. Instead of (5.9) we then have (c¢f. [17]):
W e e I,

< A min max lx px)l | (e2,e9)1
k pEI_ ~Tsxs1 “kTkTk

1 0O o

Here, ﬁm is the space of polynomials of degree <m with constant
coefficient 1. Since (5.10) is independent of the smoothing proce-

dure, we get for m #4 Cq 51/u and k€ N

C
9
§ £ ) ; §

1,m (5.15)

This is in contrast to elliptic problems where the use of conjugate
gradient type smoothing procedures yields no substantial improvement

on Jacobli relaxation.
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§ 6 Numerical results for Algorithm 4.1

2
We consider three different regions Q CIR™
(i) the unit square Q_ := (0, 1)x(0,1) ,

(ii) the IL~shaped region @ = Qc\(o.5,1)x(o.5,1) ’

L H

(iii) the slit unit square Q, s= Qc\(o.5y1)x{o.5}

8
and the following right hand sides £:

example 1 : £ (x,y) = e := (1,-17F ,
example 2 : g(z)(x,y) :3-100 x(1-x) y(1-y) e

example 3 : £(3)(xyy) = 100 exp(~1oo(x2+y2)) e .

We use Courant's triangulation with isosceles, rectangular triangles

2
. . o o 8] o
with short sides of length h and put Xh 3 Sh X Mh H SthWM .

Here, Sh is the space of continuous, piecewise linear functions on the

triangulation with meshsize h.

The Poisson equations are solved with the MG-routine HELMH of W. Hack-
busch [ 10] . We choose n between 2 and 4 and ¢ = 1Ou3. The MG iterations
terminate, if the L2 - norm of the difference of the last two iterates

*

ig smaller than 10m7, According to §4 we compute g, the last residue
ri and the final approximation gi for the velocity more accurately by
replacing n by 4n. In contrast to the theoretical analysis we store

the last iterate of the MG-algorithm and use it as starting value for

the next call of the MG-routine. This reduces the total number of MG

iterations.

We usually choose po = O as starting value for Algorithm 4.71. If we
have already computed an approximation to Pyy, OD the grid Qopr We take
its linear interpolant as starting value on the grid Qho We use the

meshsizes h = ka , k= 2,3,4,5. ALl computations were done in single



precission arithmetic on the Control Data 175 in Bochum.

Let pi be the last iterate of Algorithm 4.71. Then
e i o] 1/1
e = {lr HQ / Ir ﬂo }

is a measure for the mean convergence rate of Algorithm 4.1. In Table 1
we have listed x for the différent examples. A hyphen indicates that

IlrollO < & . For further numerical results we refer to [[16].

example 1 . example 2 example 3

1/h £ Q 2 Q Q Y 2 Q Q

C L S C L S C L S

4 761 .622| .642 | .750] 715} .756 - - -
8 .507| .635 .583} .800| .801| .636| .841| .763 | .815

16 - .781 .716 | .838| .827| .802| .921] .886 | .892

32 .709] .816f .840 | .842| .890| .800| .920| .833 | .859

Table 1 : Mean convergence rate ¢ of Algorithm 4.1
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