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ABSTRACT

The multigrid algorithm was applied to solve the coupled set
of elliptic quasilinear partial-differential equations associated
with three-dimensional coordinate generation. The results
indicate that the multigrid scheme 1is more than twice as fast
as conventional relaxation schemes on moderate sized grids.
Convergence rates of order 0.90 were achieved on 36,000-point
grids. The paper covers the form of transformation, develops
the set of generation equations, and gives details on the
multigrid approach used. Included are a development of the full~
approximation storage scheme, details of the smoothing rate
analysis, and a section devoted to rational programing techmniques

applicable to multigrid.



1.0 INTRODUCTION

Although the multigrid has been widely wused to obtain
efficient solutions of two-dimensional problems (e.g., ref. 1),
its use on three~-dimensional problems has been fairly limited.
Indeed, most of the three-dimensional applications have been
focused on solving the scalar potential equation for transonic
flows about aircraft components. MeCarthy and Reyvhner (ref. 2)
applied the multigrid algorithm to solve the potential flow about
engine inlets. Brown (ref. 3) improved these results by adding a
mesh embedding feature. Multigrid was used to accelerate existing
wing—fuselage flow solvers by Shmilovich and Caughey (ref. 4).
All of these results were generated using the standard
tridiagonal~line ©SOR (LSOR) method as the smoothing algorithm.
Recently, Caughey extended the approach of reference 4 by
increasing the béndwidth of the LSOR smoother to allow for
pentadiagonal inversions along each line (ref. 5). He was able to
obtain an effective spectral radius of 0.93 which is very good.
Finally, Raj added multigrid to the FLO22 code to obtain both wing
analysis and design solutions (ref. 6).

The current work concerns the application of the wmultigrid
method to solve the coupled set of three quasilinear elliptic
partial~differentia1 equations used to generate three-—~dimensional
curvilinear coordinate systems. The multigrid procedure replaced
a conventional LSOR solver in an existing code used to generate

coordinates about wing/wing-tip configurations (ref. 7). A triple



alternating~line BS0R smoother is used to drive the multigrid
solution.

The remainder of this paper 1is divided info four sectionse.
In the next section we Dbriefly describe the form of the
transformation and introduce the governing equationse. This 1is
followed by a section devoted to the solution of grid equations
which focuses on a description of the multigrid algorithm,
smoothing rate analyses, and multigrid programing techniques.
Computed results and conclusions are presented in the last two

seciionse.

2.0 COORDINATE TRANSFORMATIONS FROM ELLIPTIC EQUATIONS

2.1 TForm of the Transformation

There are many ways to transform wing/wing~tip geometries.
The form chosen here is illustrated in figure 1. In this form the
wing is "sliced” along the leading— and trailing-edge lines and
then "unfolded" so that the wing and wing-tip surfaces are mapped
onto a portion of the EB = (53) . plane in the computational

min

domaine. A more detailed description of this transformation 1is
given in figure 2. Parts (a) and (d) of this figure indicate that
the transformation has the form of a "sideways" C-grid in the
physical domaine. Note also that the transformation has an axis
singularity similar to conventional cylindrical coordinates since
the lines aq ~ €3 and eq ~ 83 in the physical domain

(fig. 2(a)) map onto the cross~hatched planes fore and aft of the



wing tip, respectively, in the 53 = (33) computational plane
min
(fig. 2(b)). Finally, note that the planes on either side of

the singular planes are periodic with each other. That 1is,

planes AB,lal and A3’1.3 are the same physical surface as are

planes A3’1°7 and A3,1'9 (fig. 2{(c)). The computational

ES

domain, D , is required to be regularly-spaced. This requirement

allows us to assume a uniform spatial step size (usually unity on

the fine grid) for the finite—difference approximations made in
the computational domain.

2.2 Governing Equations and Boundary Conditions

In reference 8, Mastin and Thompson set forth the

mathematical foundation for the extension of the two-dimensional
elliptic solver transformation techniques (ref. 9) to three
dimensionse. Their results showed that if the curvilinear

coordinates (él,ﬁz,EB) are required to satisfy

vie. = b., X £ D, i=1,2,3 (1a)

with boundary conditions

g, - P, (% 5% ys%4) X & aD, i=1,2,3 (1b)



then the Cartesian coordinates, (x;,%,,%3), must satisfy the

coupled quasi-linear set

ox,

3
. 1 *
) Y .. e+ ) o, ¢ === =0, E & D i=1,2,3 (2a)
jo1 k=1 Ok 8B40y 2y Kk Tk BB, ’ T
with boundary conditions
- * L4

Xi = qi (6,1,&29&3), Z € 0D , i=1,2,3 (zb)
where:

3
ocjk = ), ijﬁmk’ J:k = 15233 (2(‘,)

m=1
Bjk is the cofactor of the (j,k)-element of the Jacobian matrix

6(x1,X25x3)

and J is the determinant of M. We also have made the substi~

tution

b, = /3%, k= 1,2,3 (3)



in developing equations (2a). The reasoning behind this substi-
tution and the details involved in computing the ¢k coordinate
contr01r functions are covered in reference 7 and will not be
repeated here. Equations (1b) and (2b) tend to imply that all
boundary conditions are of the Dirichlet type. Actually, mixed

Dirichlet and Neumann conditions can be used. However, both types

ES

of conditions cannot be given everywhere on 3D or 8D as this
would overspecify the differential equations. In the current
work, only Dirichlet conditions are used.
3.0 SOLUTION OF THE TRANSFORMATION EQUATIONS

Our problem is to solve the coupled, quasilinear set of

three partial—-differential equations given by equations (2a)
subject to the boundary conditions specified by equations (2b).
This i1is not an easy task. The ajk coefficients present in
these equations correspond to squares of the rates of change of
arc length in the various computational coordinate directions.
If the physical plane coordinates are highly stretched, the
magnitudes of the ajk terms can range over a wide spectrum;
and equations (2a) take on a singular perturbation character.
Furthermore, the presence of second cross derivatives (elliptic
solvers rarely produce orthogonal coordinates) and first partial
derivatives (provided ¢k # 0) tends to destabilize most
algorithms, as the central-difference approximations to these

terms are not diagonally dominant. Thus, to solve these equations

efficiently, a powerful algorithm is required. Since the set



given by equation (2a) 1s elliptic, the multigrid algorithm is the

obvious choice.

3.1 Basic Multigrid and the Full-Approximation Storage (FAS)

Scheme

The basic idea of the multigrid algorithm is to solve a fine-
grid problem by computing corrections to the fine-grid solution on

coarser grids. To see this, consider the problem

PP = M (4)
where L is a linear operator and h is the grid spacing. If
u?  is an approximation to Uh, equation (4) can be written as
ph(ub + vPy = £P (52)
or

hyb 4+ thyh = ¢B (5b)
where Vh = Uh - uh is the error. Now, if Vh is smooth, we can

interpolate it to a coarser grid and solve the coarse grid analog

of equation (5b); namely,



Z2h 2h_h 2h
20 g2y o pfBeeh o phyMy
h h
or
2h , . ;
where Ih is an interpolation operator from the grid with

spacing h to the coarser grid with spacing 2h. Equation (6)
can be solved (the solution .is cheaper on the coarser grid)

V2h

and can be used to correct the fine-grid solution using

Wy = W™ o+ 1y (7)

Obviously, more than one coarse grid can be used. The key feature

in the argument given above (other than the linearity of L) is
h .

that V must be smooth—-that is, Vh must have no high~frequency

contente. Otherwise, the interpolation produces spurious results

and the whole process falls apart since the smooth, low-frequency
errors are not accurately represented on the coarse grid. One way

to insure that Vh

is smooth 1is to apply an algorithm to equation
(5a) which damps (smooths) high-frequency error components. This

is the wusual practice and this algorithm is normally called the

"smoother."



To develop a multigrid algorithm suitable for nonlinear

operators, we return to equation (5a) and subtract °’u?  from
both sides. This yields

el & vty - P = P oo D (8)
The coarse—grid equation which approximates equation (8) is

[2h (Iihuh & y2hy - g2h g2hhy I}Z)h(fh - Puhy

or

12h 2h _ 2B (9)
where

£2h - Iih(fh - ey + 2P (Iihuh) (10)



The corresponding fine~grid correction step is

. |
p (U )old] (11)

Note that the term in brackets is indeed a correction. Again, the
extension to multiple coarse grids is obvious. Eauations (9)-(1D
define the FAS multigrid écheme which 1s applicable to both linear
and nonlinear operatorse. One of the nice features of the FAS
approach is that the problem solved on all grids has the same
form. This feature has significant programing implications and

will be discussed later.

3.2 Multigrid Smoothing Factor

We mnow return to the problem of smoothing the error in
the solution on a given grid. As mentioned earlier, one way to
smooth 1is to apply an algorithm which damps high~frequency wave

numbers. To quantify this notion, define the smoothing factor

I

(ref. 10) as

= max {g(8,,0,,0,)}, % < | 6,,0,,8,] <= (12)
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where g 1s the von Neumann damping ratio for the smoothing algo-
rithm and ei is the phase angle associated with the giw

coordinate (1 = 1,2,3). Note that p wmeasures the performance
of the smoother onlj at the high wave numbers. Acceptable values
of the smoothing factor 1lie 1in the Trange 0 < uw <« 0.6, Such
values have been obtained for two-dimensional applications (e.g.,

ref. 1), but are difficult to obtain in complex three-dimensional

applications.

3.3 Smoothing Algorithms for the Coordinate Generation

Equations

In the current work, alternating line SOR (LSOR) methods were
used as smootherse. Line SOR methods work well on elliptic equa-
tions. Their principal drawback is that their damping rates (and,
hence, the smoothing factors) deteriorate rapidly 1f a grid
stretch occurs in the implicit direction. This deterioration can
be alleviated in many cases by alternating LSOR sweeps in several
directionss For example, 1if g1 is the damping rate for the

§1~LSOR (i.e., the method is dimplicit din the §1mdirection)
sweep and g9 is the rate for the £2~LSOR sweep, then the total
damping rate for the élzézﬁLSOR alternating method is

g = B189

Since 81589 < 1.0, the product, £189 is less than either g1

or g, Even if one of the factors 1s near unity (due, say, to a

11



grid stretch in that direction), the total damping rate will be
acceptable as long as the other factor is small. Grids with
severe stretching in only omne direction are common in many
applications. The alternating dimplicit sweeps also promote
boundary data communication, so both sweeps éhould be kept even
though one of them may have a poor damping rate.

For the coordinate generation application, a triple alter-~

nating line SOR smoother 1s wused. That 1is, the smoothing

algorithm is 51252:§3~LSOR. Thus, the total damping rate is

g = 818783 ‘ (13)

Consider the application of this method to the linear, scalar

model problem

) ajkuijﬁk = ] ey = 03 j.k o= 1,2,3 (14)

The damping rate expression is quite complex, so we will analyze

its behavior numerically. Figure 3 presents contours of the
damping rate, g, for a low value of 63 and for typical values of
the derivative coefficients obtained in practice. Figure 3(a)

indicates that the triple-line algorithm does not damp very well
(gmax = 0.95); 1n particular, it does a poor job on the lower
frequencies. Note, however, in figure 3(b) the lower frequencies

have been eliminated, so the contours shown represent the

multigrid smoothing factor. (See eg. 12.) In this instance,

12



g .y = 0.50 or, by definition, u = 0.50. Thus, although the
alternating—line method is not a particularly good approach for
solving equation (l4), it 1is an excellent smoother for the

multigrid algorithm.

To finish the smoothing analysis, values for the free

parameters inherent in the §I:§2:£3"LSOR algorithm~~namely,
the various LSOR acceleration parameters—=-need to be
established. Figure 4 presents plots of L versus Wy for
various values of w, and for Wy = 1. (63 = 0 is the worse
case.) The derivative coefficient wvalues are the same as used
to develop figure 3. The data given in figure 4 indicate that

the optimum p 1s obtained for the set

{wl,mz,mB} = {1.8, 1.0, 1.0}.

The optimum value of Wy = 1 was determined from other results

similar to those given in figure 4. The set of w,’s obtained
i

above apply to the finest grid. The optimum value of W,

decreases toward unity on the coarser grids.

3.4 FAS Multigrid Programing Techniques

There is a general belief that multigrid is difficult to
code. This 1s mnot true. The keys to successful multigrid
programing are: (D organized data bases and (2) the develop-

ment of grid-independent code. Each of these key elewments can be

13



accomplished by utilizing the modularization and dynamic
addressing capabilities available in FORTRAN.

Modularization should\ﬁe used in all programs. Basically,
it implies that code which performs different functions should be
placed in different routines. The suggested modularization for
multigrid programs is shown in figure 5. The routines enclosed
by the dashed line must be.made independent of grid size as they
must compute on all grids.

Grid-size independent code can be realized by wusing sub-
routine argument lists rather than common to implement data base
flow between routinese. To wunderstand why argument lists are
useful, one must understand how they "transfer" data. Recalling
that all subroutines are compiled independently, consider the

following code:

SUBROUTINE INJ(NDF,NDC, IM,JM,UF,UC)
DIMENSION UF(NDF,1),UC(NDC,1)

®

DO 10 J=1, JM
DO 10 J=1, IM

RETURN
END

The compiler assumes that the «calling routine will provide

SUBROUTINE INJ wit? the core address of each argument in the list

14



(E££_the values associated with each argument). Since UF and UC
are two—dimenslional arrays, the compiler assumes that INJ will be
provided with the addresses of UF(1,1) and UC(1,1), respectively.
Moreover, the DIMENSION statement tells the compiler to use the
two-dimensional array address calculation algorithm to compute

addresses for UF and UC. To do this, the compiler must know the

"correct™ first dimension (first two dimensions for three-
dimensional arrays); hence, these dimensions are "sent—-in" as
variables~—-NDF and NDC. This subroutine dis thus completely

independent of the size and dimensions of the arrays UF and UC.
This is exactly the situation we wished to create., The example
given above was not chosen at random. The call 1ist is didentical
with the authog's two-dimensional fine~to-~coarse grid injection
routine. (See fig. 5.)

To take advantage of the grid-size independent code and link
it to the data base organization to be discussed later, it is
necessary to know what happens in the calling routine. Suppose

we have the following

DIMENSION U(34)
DATA N1/5/,82/3/,11/S/,31/5/

3

CALL INJ(NL,N2,I1,J1,U0(1),0(26))

15



The calling routine sends the INJ routine the core addresses of
each of the arguments in the callf Thus, the call has set up
the following storage-location equivalence between the calling
routine and  INJ:  (N1,NDF), (N2,NDC), (I1,IM), (J1,IM),
(U(1),UF(1,1)), and (U(26),0C(1,1)).

Note that all the quantities are actually stored in the
calling routine. The subroutine argument list merely allows us
to change both the name of a variable and the manner in which it
is addressed.

The above éxample leads naturally to the discussion of data
base management in multigrid codes. Coﬁsider the following code
for a three-grid problem in which the grids are 9 by 9, 5 by 5,

and 3 by 3:

SUBROUTINE CONTROL
COMMON/DA/U(115) ,N(3), IADR(3)
DATA N/9,5,3/,IADR/1,82,107/

®
&

NADR = IADR(NG)
CALL RELAX(N(NG),U(NADR))

&

SUBROUTINE RELAX(N,U)
DIMENSION U(N,1)

@

o

16



In this examwple U 1s used to store the unknowns for all grids,
N is used to store the first dimension of each grid, IADR stores
the start addresses for the unknowns on each grid, and NG is
the grid number. (NG=1 is the finest grid.) Note that RELAX
never knows which of the three grids it is performing relaxation
sweeps Omn. Finally, note that the programing techniques
described above also make it fairly easy to retrofit multigrid to

an existing code.

3.5 Multigrid Cyeling Algorithms

Implicit in the multigrid method are the specification of
grid switching or cycling algorithms. Brandt (ref. 10) prefers
adaptive grid switching algorithms. These can be complex to code
and are prone to traps (e.g., limit cycles in which the solution
procedure "bounces" back and forth between two or more of the
coarse grids). The development of complex grid —cycling
algorithms also tends to keep the code generator’s mind off what
he should be doing—-namely, developing a good smoother. In the
current work a fixed cycle is used. That dis, a specified number
of smoother sweeps 1is carried out on each grid during every

multigrid cycle.

4.0 DISCUSSION OF RESULTS

A number of different cases were computed to establish the
performance of the multigrid solution procedure. Before dis-—

cussing these, we present a sample coordinate system generated
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by one of the solutions. Figure ©6 shows a segment of a 333
grid illustrating portions of the wing wupper surface boundary
data (§3 = 1) and three computed coordinate planes (El = 2,17
and 22 = 22). The coordinates are smooth and well distributed,
reflecting the influence of the ¢2 and ¢3 coordinate control
functions.

To illustrate that the multigrid algorithm does dramatically
reduce the computational effort required to solve equations (2),
figure 7 presents a comparison of the diteration histories of
three methods: (1) Multigrid with a §1:§2:§3~LSOR smoother,
(2) the 51:52:§3—LSOR algorithm without multigrid, and
(3) the £, LSOR method without multigrid which was wused in
reference 7. Here, R is the residual (maximum of the three
residuals resulting from equations (2a)), Ry is the initial
residual, p .. is the effective spectral radius (defined below)
and A 1is the average number of work units required to reduce

the residual one order of magnitude. The effective spectral

radivg 1is defined as

1
w
(Rp/R )

1

peff

Where Ry 1s the final residual, and w 1s the number of work
units required to converge the solution. In this paper, a work
unit is defined as one LSOR sweep on the finest grid. Figure 7

indicates that the multigrid algorithm is almost twice as fast as
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the 51:§2:i3mLSOR method alone and nearly three times faster
than the £3~LSOR approach used in reference 7. Note that since
the multigrid residual history 1line is curved, the asymptotic
spectral radius 1is somewhat higher than peff' This somewhat
undesirable behavior results from the smoothing algorithm’s
inability to smooth effectively on the finest grid.

Figure 8 documents the effect of initiating the multigrid
algorithm on the coarsest rather than the finest grid. Note
that, although the effective spectral radius is lowered somewhat
by starting on the coarsest grid, the asymptotic convergence rate
of both approaches 1is the same, as should be expected. Starting
on the coarsest grid does not affect the swmoothing factor which
determines the overall convergence rTate. It was mnentioned in
section 3.0 that the presence of centrally~differenced first
partial derivatives has an adverse effect on the smoothing
performance of most algorithms. Fortunately, this is not the
case with the current application as evidenced by the convergence
rate data givenvin figure 9 which documents the effects of the

coordinate control functions, ¢ i=1,2,3. (Note from eq. (2a)

E
that the presence of nomn~-zero ¢i's introduces first derivatives
into the equation.)

The computer code which generated the results given in this
paper is capable of implementing seven different smoothing
algorithms~—each of the uni~directional LSOR solvers and all

possible combinations of the three. To implement this capability

and to save storage, each of the LSOR algorithms computes ifs own
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regidual. Thus, for example, the §1:§2:§3~LSOR smoother uses
three work units per iteration on the fine grid. Since only one
residual calculation is really needed to implement any of the
mutiple~line algorithms, the computational cost of the triple~
line smoother could be at least halved with no significant loss
in smoothing efficiency if only one residual per iteration were
computed. Under these circumstances, Peff would decrease to

approximately 0.84 and A to about 15.
5.0 CONCLUSIONS

The multigrid algorithm utilizing a triple alternmating-line

S0R smoother has been successfully applied to accelerate the

convergence of the system of three~dimensional, elliptic,
coordinate-system generation equations. Effective spectral
radii of order 0.90 were obtained on 333 grids. The method

is robust and, if programed properly, easy to apply to any set
of equationse. However, the results given in this paper do
indicate the mneed for further development of more effective

smoothing algorithms.
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(e) Computational demain planes

(d) Grid structure in the physical dcmain

Figure 2.~ Concluded.
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CONTROL Multigrid algorithm control (grid switching, etc.)
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2H 2H 2H,_ H
H = e T
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: = +
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DIF Computesg: F = Fl - F2

Figure 5.~ Modularization of the multigrid solution procedure.
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Figure 7.~
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Figure 9.~ Effect of coordinate control functions on convergence rate.
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