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L. Introduction

Interest in transonic aerodynamics endures because most commercial and
military aircraft operate predominantly in the transonic regime. The design
and analysis of tramsonic wings and related configurations have been carried
out largely within the framework of the tramsonic small perturbation equation
and the full potential equation. Apart from their relative simplicity the
popularity of these flow models is due to their adequate representation of
flow features of practical importance. For instance, the pressure rise across
an isentropic shock in these models is sufficiently accurate for normal Mach
numbers ahead of the shock less than 1.3. Naturally, if other design
considerations produce strong shocks and/or complex vortical flow, then
recourse to the Euler equations is appropriate. Indeed, FEuler solutions to
transonic flow problems have attracted serious attention as of late, and they
will surely gain increasing popularity as they become more competitive with
potential solutions. However, for many configurations of engineering
interest, potential flow predictions with asymptotically first-order weak
viscous-inviscid interaction give solutions of more than adequate accuracy
[1]. When strong shocks and/or vorticity are of dominant importance in the
flow field, weak wviscous-inviscid interaction 1s no longer an adequate
model. Implementation of strong interaction models is relatively crude at
this time, and until substantial improvements have been made, the potential
formulation will retain the most favorable accuracy-to~cost ratio for a wide
range of practical transonic flow problems.

The main difficulty in the numerical solution of the steady transonic
flow problem has been the mixed elliptic-hyperbolic nature allowing for the
presence of discontinuities. The initial breakthrough in overcoming this

difficulty was made only in the early 1970°s by Murman and Cole [2] who



introduced a type-dependent difference scheme for‘solving the transonic small
perturbation equation. Following this breakthrough there have been many
developments in the computation of transonlc flows. The survey lectures of
Ballhaus [3] and Jameson [4] present a detailed review of these developments
up to 1976. Since then most research on numerical methods for the steady-
state full potential equation has focused on accelerating iterative methods.
Much of the progress has been made by relating the relaxation scheme to a
time-dependent differential équation and then using the theory of numerical
integrétion. of ordinary or ‘partial differential equations to estimate the
optimal relaxation parameterss. Ballhaus, et al. [5] developed approximate
factorization schemes, AFl and A¥2, which, applied to the transonic small
perturbation equation, yielded rapid convefgence. The AFl scheme is analogous
to the Douglas=Gunn alternate direction implicit (ADI) method for the
parabolic equation. The AF2 scheme, which is similarly related to a
hyperbolic equation, has been extended by Holst to the full potential equation
in conservation form [6] and to three dimensions [7]. Another variant of AF2
is the approximate factorization scheme AF3 developed by Baker [8]
(independently of Holst) for the £full ©potential equation in the
nonconservative form. The success of all these schemes over the practilcal
range of trausonic flow conditions is still problem=dependent. Catherall [9]
discusses the basic principle of the approximate factorization schemes for the
two-dimensional steady potential equation, and describes a procedure for
constructing optimal algorithms. Wong and Hafez [10] propose a preconditioned
conjugate gradient method which is at least twice as fast as pure successive-
line overrelaxation (SLOR). Some other iterative schemes are assessed by
Doria and South [11]. Another fast method is the multigrid technique, first

applied by South and Brandt [12] to the tramsonic small perturbation equation



with SLOR as a basic iterative scheme. Recently, Jameson [13] developed the
multigrid procedure to accelerate convergence of the full potential solution
by an ADI method. Despite the existence of quite a few efficient methods of
potential solution, controlled comparisons are lacking.

The computer time required to obtain numerical solutions for two-
dimensional potential flows is now so small that there 1is practically no
incentive for developing more efficient schemes. However, for three~
dimensional flows existing methods are still so costly that a substantially
more efficient solution algorithm would have great practical importance.
Unlike the two-dimensional case, computer storage 1s a crucial consideration
in weighing the efficiency of a scheme. Pseudospectral methods have
demonstrated their capacity for producing equivalent accuracy with far fewer
grid points than standard second-order or even fourth-order methods, not only
for smooth flows but also, more recently, for the Euier equations [14]. The
first pseudospectral two-dimensional potential flow solutions were obtained by
Streett [15], who established that equivalent solutions were in fact obtained
for potential flows with far fewer grid points than required by standard
methods. However, his solution technique was clearly in need of acceleration,
particularly for supercritical £flows. In this paper we describe an
acceleration technique, based on the spectral multigrid methods developed by
Zang, et al. [16], [17], that has significantly dimproved the rate of
convergence of the pseudospectral discretization of the full potential
equation. In fact, the spectral multigrid scheme is so efficient that the
preliminary version described here is highly competitive with the finite
difference schemes. |

Since the application of spectfal methods to compressible flows is still

a fairly novel approach, most readers are likely to be unfamiliar with either



the practical detalls of spectral methods or the nuances of numerical methods
for compressible flows. Moreover, spectral multigrid methods themselves are
still in the formative stage. The promising nature of the present results
warrants a reasonably complete and self-contained description of the numerical
method.

We begin by describing a means of implementing pseudospectral differenti-
ation, which, although asymptotically inefficient, is nonetheless preferable
for problems on moderately-sized grids. This is followed by descriptions of
the essential features of spectral multigrid methods and of the relaxation
schemes. These methods are then illustrated on several linear problems. An
explanation of the potential flow problem and its pseudospectral approximation
is given next. Finally we report on the performance of the spectral multigrid

method on both subceritical and supercritical potential flows.

II. Spectral Methods Using Matrix Multiples

The Fast Fourier Transform (FFT) has usually been cited as a key element
in the efficiency and hence the implementation of spectral methods. In the
pseudospectral sort of calculations discrete Fourier methods are commonly used
in the evaluation of derivatives. However, under some circumstances it is
actually faster to use conventional matrix-vector multiplications for this
purpose than to resort to transform techniques. An obvious requirement is
that the problem be of moderate size. There are many significant engineering
applications which meet this requirement. The transonic flow application,
which is the main thrust of this paper, is one such example. Fven in circum-
stances which most favor transform techniques -~ on grids with Zk points --

the matrix-multiply approach (using nothing but Fortran) has proven



to be significantly faster than the transform method (employing assembly
language FFT's). Precise comparisons will be given below.

In a pseudospectral method the fundamental representation of the solution
is in physical space. The quantities which are stored are the values of the
function wu(x) at special collocation points Xye Derivatives, however, are
evaluated spectrally. The values of the function are passed through a
suitable discrete transform to produce the representation of the function in
transform (wavenumber) space. The actual differentiation takes place in
wavenumber space. Then an inverse transform is applied to .yield the
pseudospectral approximation to the derivatives of the function at the
collocation points. Let U denote the vector of values of the function at

the collocation points. Then the approximation to the derivative at these

points may be written

0 U, , (1)
where
= =1
0=cCc"*Dpc, (2)
with C representing the discrete transform  and D representing

differentiation in wavenumber spaces
The most well-known pseudospectral method is based upon Fourier series.

Let the interval of interest be [0,27] and use the collocation points
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The Fourler serles differentiation matrix may be constructed by the matrix
multiplies implied by Eq. (2). Alternatively, one may simply use the explicit
formula given in Eqs. (8) and (9) of [16] for the elements of 0.

Once the matrix 0 has been constructed, the cost of evaluating a
derivative by the matrix wvector product OU 1is O(Mz). The transform
technique reduces this to OM fn M), However, two transforms are required
and the constant in the O(M In M) facfor is larger than the one in the
O(MZ) case.

Chebyshev pseudospectral methods have been the most widely used ones for
non-periodic boundary conditions. The standard interval is [-1,1] and the

collocation points are
x, = cos T § = 0,1,°00,N. (7)

Then

& — N ksj = 0,1,°°°,N (8)



where

_ 2 j=0o0r N
cj = ° (9)
1 otherwise
Moreover,
248 _
?— 2 > ktl and 4 = k+1 (mod 2)
k
Dk»Q = % (10)
0 otherwise
where
2 i=0
c, = (11)
J 1 otherwise
and
1y g ME
(C )jk = cos =~ . (12)

An explicit formula is available in Egs. (49) and (50) of [16] for this

Chebyshev differentiation matrix.

I1I. Sﬁectral Multigrid Fundamentals

Overview of Multigrid Algorithms

The problems of interest here are scalar partial differential boundary

value problems. The PDE can be written in the general form

L(uw) = £, (13)
where u(x,y) is the wunknown function, f(x,y) is some source term,
and L is a partial differential operator which might be nonlinear pn the

unknown u. The corresponding discrete problem will be written



L(U) = F ; (14)
in obvious notation.

Multigrid solution schemes for Eq. (14) involve combining relaxation
sweeps for that equation with relaxation sweeps for related problems on
coarser grids. Let V denote an approximation to U. The essential property
for the relaxation scheme is that it preferentially damp the high-frequency
components of the error V = U. Then after a small number of relaxations the
error will have so 1little high-frequency content that it can be approximated
well on a coarser grid. Solutions on the coarser grid are relatively
inexpensive to obtain, especially if this strategy 1s applied recursively by
using still coarser grids as needed.

Let us consider just the interplay between two grids. The fine~-grid
problem is written

ufwfy = ¥f, (15)

The shift to the coarse grid occurs after the fine-grid approximation vE  has
been sufficiently smoothed by the relaxation process, i.e., after the high-
frequency content of the error vE - uf  has been sufficiently reduced. The

related coarse-grid problem is
LC(U¢) = ¥C, (16)

where

c £

f
= r[rl - tF ] + L@y, (17)
The restriction operator R interpolates a function from the fine grid to the

coarse grid. The coarse~grid operator and solution are denoted by L¢ and

U¢, respectively. After an adequate approximation V¢ to the coarse-grid



problem has been obtained, the fine-grid approximation is corrected via

£

Vi« v o+ P - rvD). (18)

The prolongation operator P interpolates a function from the coarse grid to

the fine grid.

The choice of the coarse-grid problem is based upon rewriting Fq. (15) as

Eofeh) + faf). (19)

fafy = [r
The term in brackets is the fine-grid residual. Since it has been presumed to

be smooth, its coarse~grid approximation is clearly

£

e[ - Lfwhy]. (20)

Equations (16) and (17) then follow by replacing the remaining fine-grid

quantities with appropriate éoarse—grid ones.
The quantity

W =TU «RV 21)

is the coarse-grid correction. Equations (16) to (18) are equivalent to

LE®vt + W) - 1°@vl) = F© (22)

vi o« vi 4 pzC, (23)

where 2¢ 1is the approximation to W¢. For linear problems Eq. (22) reduces
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to

L.CWC = FC, (24)

This overview has, of course, been based upon’the paper by Brandt [18],
albeit in notation popularized by Hackbusch [19]. The particular choices of
the interpolation and coarse-grid operators used in the present spectral
multigrid work are described in the following sub-sections. This description
is given for one-~dimensional problems. The extension to higher dimensions is
obviouse. These details are followed by a discussion of the vrelaxation

schemes.

Interpolation Operators

The spectral multigrid interpolation operators which were proposed in
[16] for periodic coordinates amount to trigonometric interpolation: given a
function on a coarse grid (with M, points), compute the discrete Fourier
coefficients and then use the resulting discrete Fourier series to construct
the interpolated function on the fine grid (with M; points). This may be
accomplished by performing two FFT's. An expiicit representation of the

prolongation operator is

M
C .
5 "1 arpe(d- - &y
1 Me M
P = :E: e s (25)
J c Mc
!?,=--2—~'+1
which sums to yield
=i gril ko |
P = SGo - ) (26)
c £ c

where



M -1 r integer

S(x) = . (27)

sin(ﬂrMc)cot(ﬂr) - cos(ﬂrMC) otherwise
The corresponding restriction operator is essentially the adjoint of this:
1 i k
R, =i (-5, (28)

Interpolation for non-periodic coordinates employs Chebyshev series in an

analogous fashion. The prolongation operator is

Ne
P, = 2_ E E-"l cos LENE cos T2k . (29)
ik N 2 Nf N
“kK'e¢ =0 ¢

where e 1s defined by Eq. (9) with N = N,. This sums to

2 i k k
Py === [ - §) + o=+ §1, (30)
cch £ c f c
where
NC
R r integer
Q(r) = TN o (31)
1/4-1/4 cos(ﬂrNc) +1/2 cos(%{(NcH))sin( 5 c)csc(ﬂzﬁ) otherwise

We will have occasion to use two distinct restriction operators. One is
sometimes used in forming the coarse-grid operator and 1s obtained by applying
Chebyshev restriction in the obvious fashion. It will be denoted by r(0)

and it is given by

R - 2 o - &)+ + B, (32)
cka c f c f

11
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where C is defined by Eq. (9) with N = N¢ and
L+ _.523. r integer
Q(r) = TN . (33)
T
HZ%-UQCOS(EE(NC+1)]sin( zc]csc(%L) otherwise

The other is used for interpolation, is denoted by R(i), and is defined by

the adjoint requirement:

1) g . K A ‘
Ry == log=-§) + o=+ I, (34)
ckNc c £ c f
where E£ is defined by Eq. (9) with N = N_.

Coarse=Grid Operator

A typical term in the class of problems considered here is

d duy ‘ |
= latux . (35)

The discrete operator which represents its fine-grid pseudospectral

approximation is

f=o0ao0, ' (36)

where O is given by Eq. (2) and A 1is the diagonal matrix

= a(u..x.)6. . .
Ajk | a(uj,xj) 5,k 37



Many multigrid investigators, e.g., [19], [20], and [21], have advocated

choosing the coarse-grid operator so that
L¢ = rufp. (38)

Both the Fourier and the Chebyshev first-derivative operators, defined by Eqgs.
(2) - (12), satisfy

0¢ = rofp, (39)

where R = r(0) g chosen in the Chebyshev case. However, Eq. (38) 1itself is
not satisfied if the coarse-grid analog of Eq. (36) is used to define LS,
except in the trivial case for which a(u,x) is a constant. On the other
hand, much of the efficiency of the pseudospectral methoed is lost if Eq. (38)
is used to define the coarse-grid operator. Some compromises were suggested
in [17]. The most satisfactory one seems to be using Eq. (36) but with the
restricted values of a(uj,xj) in place of the pointwise values. The

Chebyshev restrictions should be performed with R(O).

Boundary Conditions

In the applications that £follow, three types of boundary conditions
appear: periodic, Dirichlet, and Neumann. Periodic boundary conditions are
automatically satisfied by the use of Fourier series. Fully-periodic problems
contain some subtleties that are discussed in [17].

Dirichlet boundary conditions are handled effortlessly. The vector of
unknowns should include the values at the boundary points in their natural
locations. (This has the side effect of facilitating the programming of the

Chebyshev interpolation.) On the fine grid the desired boundary values are

13
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inserted into the appropriate locations and these values are not modified
during the relaxation. On the coarser grids the appropriate boundary values
are the omes which fall out of the restriction process.

Neumann boundary conditions are a bit touchier. We have enforced them by
incorporating the Neumann boundary condition into the discrete operator.
Suppose that there is a Neumann boundary éondition at x = =1, In the
evaluation of a term such as appears in Eq. (35), the first stage 1is the
computation of du/dx at all the collocation points. In general this value
will not match the desired boundary wvalue. The boundary condition is enforced
by resetting the value of du/dx at x = -1 tO‘the‘desired value before
proceeding with the multiplication by au,x) and then the final
differentiation. This produces the desired boundary condition in the
converged solution. Thié aﬁproadn has the advantage of ensuring fhat the
boundary céndition appeafs in the discrete operator with a consistent scaling.
A much less effective alternative is’to replace the différential equation at
x = -1 with the condition that du/dx is the preséribed boundary value. The
disadvantage of this approach is fhat this bounaary equation 1is far out of
scale with the rest of the operatof. This alternative has in facf been tried
on some of our test problems and it has resulted in a substantial

deterioration of the convergence rate.

IV. Relaxation Schemes
The crucial property‘that a relaxation scheme should possess for use in a
multigrid algorithm is that it damp effectively the high-frequency components
of the error. It need not be espécially effective in the low=frequency range,

so long as it does not amplify any components. For spectral multigrid methods



an additional requirement arises from the global nature of the approximation:
the fast evaluation of derivatives demands that the relaxation be simultaneous
rather than successive, e.g., Jacobi’s method can be implemented efficiently,

whereas Gauss-Seidel’s cannot.

15

A class of iterative schemes that meets these requirements is based upon-

approximate factorization techniques [5]. These methods are especially
attractive because they have been employed in some of the most successful
finite difference solutions to the delicate transonic potential flow problem
{71, [131. Moreover, the latter work demonstrated their effectiveness in the
multigrid context, albeit for a purely finite difference approximation. A
review of the computational tramsonics 1literature sﬁggests that the most
fruitful interpretation of approximate factorization schemes for this mixed

elliptic~hyperbolic problem is in terms of their corresponding time-dependent

partial differential equation. This is the approach that will be taken belows.

An alternative and perhaps more traditional interpretation for 1linear,
elliptic problems 1s in terms of preconditioning. The relaxation scheme
proposed in [17] for a spectral multigrid method for such problems was
interpreted as an incomplete;LU decomposition serving as a preconditioning for
Richardson’s iteration. A b}ief description of this scheme is included here
since it will serve as a comparison for the approximate factorization method

on one of the linear test problems.

Richardson Iteration with Incomplete LU Decomposition

A preconditioned Richardson iteration for solving Eq. (14) can be
expressed as

v+v+wﬂ'1[F - L(N)1, (40)
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where H 1is the preconditioning matrix and ®w 1is the relaxation parameter.
The matrix H should be chosen so that it is an approximate inverse to 1L,
but 1s easily invertible. The version fecommended in‘[17] for linear problems
is obtained by first constructing the matrix Hpyy which represents a standard
second-order finite difference approximation to L (see Eq. (13)) and then
performing an incomplete LU decomposition of Hpp. Details are provided in
[17] along with a prescription for choosing the relaxation parameter ® so

that the high-frequency error components are dampéd preferentially.

Approximate Factorization

For this discussion it is convenient to rewrite Eq. (l4) as

M(U)

it

0, (41)

where of course,

M(U)

L(U) - F. | (42)

Next, view U not as the solution to Eq. (41), but rather as the steady-state

gsolution to the evolution equation

== = M(U). (43)

This is surely sensible if L(u) 1is elliptic for then Eq. (43) represents
the spatial discretization of a parabolic problem. Semi~-implicit time~
stepping procedures are desirable for such problems because of the severe
explicit time-step limitations. (This is especially acute for pseudospectral
discretizations employing Chebyshev séfies because of the very small spacing

between the collocation points mnear the boundary.) The simplest practical



time discretization of Eq. (43) is

U(U""l) - U(n)

X3 :"..: M(U(n)) + J(U(n))(U(I'H‘l) _ U(n))’

where

s =2 W,

and a superscript refers to a time level. Let

and

ap(®) o ot p(n)

9

and then rewrite Eq. (44) asl
[ar = 3™y ]ar™ = ww™)y,

where 1 denotes the identity matrix.

This motivates the relaxation scheme
V « V + wAV,
where AV is the solution to

[0 = J(V)IAV = M(V).

(44)

(45)

(46)

(47)

(48)

(49)

(50)

In many cases the Jacobian J(V) can be split into the sum of two operators

T (V) and Jy(V), each involving derivatives in only the one coordinate

17



18

direction i1ndicated by the subscript. Approximate factorization methods
encompass various approximations to the left-hand side of Eq. (48). The most

straightforward‘of these 1is
[af = J_(V)][ol - I, (NILY = aM(v), (51)

in combination with Eq. (49). This is just the Douglas=Gunn version of ADI
[22]. It 1s commonly referred to as AFl for the transonic problem [5]. TFor
second-order spatial discretizations the term [0l = JX(V)] leads to a set of
tridiagonal systems, one for each value of vy. The second left-hand side
factor produces another set of tridiagonal systems. For pseudospectral
discretizations, however, these systems are full; hence, Eq. (51) is still
relatively expensive to invert. A compromise analogous to the one invoked in

the incomplete LU decomposition preconditioning is to replace J and J

X y

with their second-order finite difference analogs, denoted by H, and Hy’

respectively:
[a - HX(V)] [oI = H_(V)]4Y = (V). (52)

The approximate factorization scheme consists of Eqs. (49) and (52). For
purely finite difference approximations some analytical results are available
for selecting Optimai values for the parameters o and ® [9]. No similar
results are yet available for the present application. By énalogy with the
finite difference case we have chosen ® to be of order unity and have

selected a sequence of a‘s in a range [az,ah] by the rule

o, XL

k_ MRl
o (57)
h

s | (53)



where K denotes the number of distinct a’s. The choices of ag and ah
were based 1in part on estimates of the eigenvalue range of the discrete
operators and in (much greater) part by trial and error. Fortunately, the AF1
scheme is not very sensitive to these parameters.

For single-grid solutions to the subcritical potential flow problem the
pseudospectral AFl scheme based on Eq. (43) has proven satisfactory [15].

Extensive work on finite difference methods for supercritical potential flow

has indicated the necessity to base thelr approximate factorization schemes on

a0t = M(U), (54)

where s 1s a physical variable directed along the streamline. One scheme
which models this behavior is referred to as AF2 [5]. A pseudospectral AF2
variant 1s described in [15]. Since schemes of the AF2 type model hyperbolic
equations they are relatively ineffective at damping high-frequency error
components. Indeed, in the pseudospectral single-grid implementations [15]
for supercritical flow, an iterative strategy involving both AF2 and AFl was
found to be more effective than AF2 alone. (By itself, of course, AF] was

divergent.) This will be referred to below as the AF2/AFl scheme.

V. HNumerical Results for Linear Problems
We chose a series of test problems to bridge the gap between the spectral
multigrid methods described in [17] and those required for the potential flow
problem. The first step was to change the relaxation scheme from
preconditioned Richardson iteration to approximate factorization. The

boundary conditions were left as Dirichlet in both coordinate directions. The

19
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next phase dinvolved shifting to periodic boundary conditions in one
direction. In the final stage the geometry was altered from a rectangle‘to an
annulus with an dinner radial boundary condition of Neumann rather than
Dirichlet type. This last problem is about as close as one can come to the
potential flow problem within the constraint of linearity.

The multigrid codes used a maximum of 4 levels. These are labelled by
the index k, where &k = 2, 3, 4, or 5. The grid on level &k contains
either Zk (Fourier) or Zk + 1 (Chebyshev) collocation points in a coordinate
direction (including boundary points). Two different schedules were used;'
they were referred to as schedules B and D in [17]. TFor schedule B the
problem was first solved on level 2; then that solution was interpolated to
level 3 as the initial guess for a multigrid iteration involving levels 2 and
3; then the converged level 3 solution was interpolated to level 4 as its
initial guess, and so on until level 5. For schedule D the multigrid process
simply began on level 5. 1In both cases the initial guess consisted of random
numbers chosen from (0,1), ensuring that all efror components were present
initially. Both schedules were run in a fixed mode with 6 relaxations (2
passes through a 3 parameter sequence) before restriction to a coarser grid.
A coarse-grid solution was deemed acceptable for prolongation to a fine-grid
wHenever its RMS residual dropped below 0.17 of the last residual on the finer
gride All of these linear runs employed the correction scheme, i.e., Eq. (24)
rather than Eq. (16} was .solved on the coarser 1levels. The wvariable
coefficients and the vyright~hand sides for the coarse-grid problems was
filtered in the manner described iﬁ [171.

The specific measure used was the equivalent smoothing rate. In some
preliminary calculations the average time T, required for a single fine-grid

0

relaxation was determined. For an actual multigrid calculation let ry and



ro be the RMS residuals after the first and last fine-grid relaxations,

respectively and let T be the total CPU time. Then the equivalent smoothing

rate was taken as

21%
[;—] . | (55)

Rectangular Chebyshev = Chebyshev Problem

The problem class is the same one examined in [17]:

9 r 9 d d
Hasl+5lagd =1, (56)

on (=1,1) x (~1,1) with Dirichlet boundary conditions with

cos maﬂ(x+y)
a(x,y) =1l +ce ’ (7))

and f(x,y) and the boundary data chosen so that the solution is
u(x,y) = sin(muﬂx + /) sin(muﬂy + m/4). (58)

The properties of three test cases are listed in Table I. The parameters used
in the approximate factorization scheme are given in Table II.

The performance of the preconditioned Richardson (PR) and the approximate
factorization (AF) methods is shown in Table III. The PR method is about
twice as fast as AF on these problems. But recall that the PR scheme has been

highly tuned (especially for problem 1), whereas the AF scheme was subjected
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to only a small amount of trial and error tuning. No doubt the AF scheme
would benefit greatly from more experimentation, not to mention analysis. We
have been content with establishing its workability in this multigrid context.
When derivative evaluations are performed via FFT’s, the time required on
a CDC Cyber=175 for a single level 5 relaxation (including both the residual
evaluation and factorization stages) is 0.248 sec. for PR and 0.238 sec. for
AF. Only about 5% of the total time in these calculations was spent inter-
polating between levels. On average there were 4 to 5 relaxations for every
interpolation. A comparison between the transform and matrix-multiply methods
of differentiation is provided in Table IV. Only on level 5 (a 33 x 33 grid)
does one gain by using FFT°s. Furthermore, since most of the work takes place
on levels 2 to 4, the total rumning time is less (by 10 - 20%) for the matrix-—
multiply versions. Bear in mind that assembly language FFT’s were performed
on grids ideal for the FFT (powers of 2). The matrix multiplies were coded in
Fortran. In the potential flow application it is advantageous to work on more
general grids. Thus the matrix-multiply alternative 1s highly competitive.

Its advantage ought to extend to even larger grids on vector processors.

Table I. Characteristics of the Rectangular
Chebyshev~Chebyshev Test Problems

Problem No. € m, m,
1 0.00 1 1
2 0.20 2 ‘ 2

3 1.00 5 5




Table TI. Parameters of the AF Scheme for the
Rectangular Chebyshev-Chebyshev Problems

Level oy o w
2 1 6 l.4
3 8 75 1.2
4 80 1000 1.1
5 600 8000 1.0

Table III. Equivalent Smoothing Rates on the
Rectangular Chebyshev-Chebyshev Problems

Problem No. PR AF
1 +26 43
2 .58 .78
3 <78 .92

Table IV. Residual Evaluation Time for the AF Scheme on the
Rectangular Chebyshev-Chebyshev Test Problems

Level Transform Method Matrix-Multiply
Differentiation Differentiation

3 .0204 .0083

4 .0622 .0390

5 0214 0248
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Rectangular Chebyshev=Fourler Problem

This problem is also described by Eq. (56), but on (~1,1) x (0,21) and
with Dirichlet boundary conditions in X and periodicity in Vo The

coefficient

cos ma(nx+y)
a(x,y) =1 + € e (59)

and the rest of the problem fits the solution
u(x,y) = sin(maﬂx + ﬁ/4)vsin(maﬂ cos v + m/4). (60)

The properties of three test cases are listed in Table V and the AF parameters
are supplied in Table VI,

Table VII gives the results. There is evidently nothing to be gained
here by working up to the finest level by first solving the coarser level
problems. The present combination of the coarse-grid opefator and the AF
parameters would not permit a solution to be obtained for a highly oscillatory
problem such as the previous sub=-section’s problem 3. Note that the
equivalent smoothing rates on the present problems 2 and 3 are comparable to

those for the previous problem 2.

Table V. Characteristics of the Rectangular
Chebyshev-Fourier Test Problems

Problem No. € m, m

a
1 0.00 1 1
2 0.10 1 1
3 0.20 2 2
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Table VI. Parameters of the AF Scheme for the

Rectangular Chebyshev~Fourier Problems

Level o, @ w
2 0.5 6 1.0
3 2.0 75 1.0
4 10.0 1000 1.0
5 100.0 8000 1.0

Table VITI. Fguivalent Smoothing Rates om the
Rectangular Chebyshev~-Fourier Problems

Problem No. AF/B AF/D
1 vy 075
2 .78 °79
3 «82 .76

Annular Chebyshev-Fourier Problem

The differential equation for this last linear example is

3 du 3 1 du
37 [r a 3?] + 35 [;‘a 3—] = f (61)
on (1,5) x (0,2r) with
cos(ma(r+e))

a(r,0) =1 + € e (62)
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u(r,0) = cos(muﬂr) sin(muﬂ cosb + m/4), (63)

The radial boundary conditions are Dirichlet at r = 5 but Neumann at r = 1.
Periodicity in azimuth is enforced. Tables VITI and IX present the test case
and AF parameters, respectively.

The results are available in Table X. These are the least impressive
smoothing rates of the linear test problems. Neumann boundary conditions are
usually more troublesome than Dirichlet ones. The global approximation

underlying the spectral methods makes them especially difficult to enforce.

Table VIII. Characteristics of the Annular
Chebyshev—-Fourier Test Problems

Problem No. o m, | m,
1 0.00 ‘ 1 1
2 0.10 1 1
3 0.20 2 2

Table IX.‘ Parameters of the AF Scheme for the

Annular Chebyshev-Fourier Problems

Level a o w
2 5 40 2.0
3 10 600 1.4
4 100 6000 1.0
5 1000 10000 . 1.0




Table X. Equivalent Swmoothing Rates omn the
Annular Chebyshev-Fourier Problems

Problem No. AF/B AF/D
1 82 .87
2 .81 .87
3 «87 - 86

Vi. Potential Flow Past an Airfoil
The problem considered is that of compressible potential flow past a two=-
dimensional airfoil. We model this with the full potential equation, applying
boundary conditions at the actual airfoil surface. In this work a numerically
generated conformal mapping [23] is used to transform the airfoil onto the
unit circle. The form of the transformation between the complex physical

plane (the z-plane) and the complex computational plane (the o-plane) 1is

€ § (A +iB )o(l-n)
dz (1+ F) a=1 n n
i = (1-0) e R (64)
where the coefficients A, ~and B, are generated numerically so that the

known relations between the surface tangent angles and arc lengths of the
alrfoil shape are satisfied. The trailing edge of the airfoil is located at

0= 1 1in the computational plane. The Schwarz-Christoffel factor 1in the
transformation allows the smooth mapping of a finite-angle trailing edge. TFor
further details on this particular mapping see Jameson [23]. The inner

portion of a 16 X 48 grid is shown in Figure 1.
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In the computational plane, with o = Reie, the potential equation
becomes
2 (R 22) 4 2 (0 30y _
5® (% ) * el 3e) - O (65)

where & 1is the velocity potential and p is the density, given by the

isentropic relation

1
-1.2, 2 L1Y-
p=[1-L2 + g5 - D]

: (66)

the ratio of specific heats is denoted by 7Y, the Mach number at infinity is

denoted by M_, and the velocity components in the physical (r,8) plane are

q, = R (67)
_1ope
b =T 50" (68)
with
dz
e (69)
The boundary conditions at the surface and in the farfield are
2.0
T at R =1 (70)
® >R cos 0 + E tan_l[VI o Mi tan O] as R » o, (71)

The first term in the farfield boundary cohdition. describes the uniform
freestream flow. The remaining term is the first-order lifting term: it is

derived in [24]. The quantity E  is known as the circulation. It is



determined by the Kutta condition, which states that the physical velocity at
the trailing edge must be finite. Since H = 0 at the trailing edge, the

Kutta condition reduces to

%2 = O at g = ].o (72)

The singularity of the potential in the farfield poses difficulties
(especially for spectral methods) that are best handled by computing in terms
of the reduced potential ‘G, which is defined by

G =% - (R +<%) cos © = E tanml[V1 - Mi tan 0] (73)

and is assumed to be periodic in ©. It follows that G satisfies

3 3Gy . 3 (p 3G
=R 52) + 5505 38) = O (74)
along with
%g- =0 at R =1 (75)
G+ 0 as R > oo (76)

and the Kutta condition.

The spectral method employs a Fourier series representation in 0.
Constant grid spacing in O corresponds to a convenient dense spacing in the
physical plane at the leading and trailing edges. The domain in R (with a
large, but finite outer cutoff) is mapped onto the standard Chebyshev domain
[-1,11 by an analytical stretching transformation that clusters the

collocation points near the airfoil surface. The stretching is so severe that
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the ratio of the largest-to-smallest radial intervals is over 1000 for the
grid whose inner portion is illustrated in Figure 1. The transformation 1s
incorporated into the operator which represents differentiation in the R
direction. |

Despite dits mnonlinearity the potential flow problem remains fairly
straightforward so long as the flow is everywheré subsonic, The real
difficulty of the problem arises when the flow forms a supersonic bubble on
the airfoil. The potential equation is then of mixed elliptic-hyperbolic type
and admits weak solutions with discontinuities. Both compression and
expansion shocks will appear unless an artificial viscosity with a directional
bias is introduced into the equation in the supersonic region. The most
expedient technique for dealing with this is to use the artificial density

approach of Hafez, et al. [25]. The original artificial density is

~ <

p=p=-undop (77)
with

u o= max{Ogl;— 15}, (78)

where M is the 1local Mach number and gp is an upwind first-order
(undivided) difference. 1In the present work a higher—order artificial density
formula related to a form developed by Jameson [13] has been employed.

The first pseudospectral solutions to the compressible potential flow
problem were obtained byAStreett [15], [26] using a single-grid version of the
approximate factorization iterative scheme described in the fourth section.
For subcritical flows this method was already highly competitive with state-
of-the~art finite difference methods. For supercritical flows, however, the

single-grid pseudospectral scheme was quite inefficient, even with the use of



the AF2 extension of the approximate factorization scheme. This problem,

then, poses a useful application of the spectral multigrid approach and, as

the results indicate, a dramatic demonstration of its effectiveness.

ViI. Results for Potential Flow Past an Airfeoil

The numerical examples of this section have been chosen primarily to
illustrate the effectiveness of the multigrid approximate factorization
(MG/AF) solution scheme in comparison with the earlier single-grid approximate
factorization (SG/AF) method [15] for solving the spectral equations for
potential flow. A secondary issue 1s the comparative quality of this spectral
discretization and of widely-used finite difference approximations. A by=-
product of these examples 1s some practical guidelines for the multigrid
algorithms.

Three test problems suffice for a comprehensive treatment of the spectral
multigrid efficiency and spectral discretization accuracy issues: a
suberitical 1ifting airfoil, a supercritical nonlifting airfoil, and a
supercritical 1lifting airfoil. These have been listed in order of increasing
difficulty. Detailed comparison of the spectral SG/AF and MG/AF schemes will
be provided for the first two examples. Extensive comparisons are also made
for all three problems between the spectral MG/AF scheme and two popular
finite difference codes: TAIR [7], a single-grid/AF2 method and FLO36 [13], a
multigrid/AF method.

Some of the relevant issues have already been discussed in [15]. The
most sensitive matter is surely the weighing of the efficiency of two schemes
(spectral and finite difference) with different accuracy and convergence
properties. The reader is directed to [15] for a more detailed discussion

than is provided here.
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Three different grids have been used (with the coarser levels 1in
parentheses): 16 x 32 (12 x 16 and 8 x 8), 16 x 48 (14 x 32, 12 x 16 and
8 x 8) and 18 x 64 (16 x 48, 14 x 32, 12 x 16 and 8 x 8). Note that in
passing to a coarser level the grid is typically reduced by less than a factor
of 2 in each coordinate direction. This choice leads to a significant
improvement over the standard gridding for the spectral potential flow
problem, especially in the supercritical regime where the solution has large
high-frequency content.

This problem has the added complication of a highly-stretched grid in the
radial direction. ‘This 1is accounted for ‘by changing the spectral

differentiation matrices from c=Inc (see Eq. (2)) to
0 =‘BC“1DC, (79)

where B is a diagonal matrix which contains the Jacobian of the
transformation. A substantial improvement in the spectral multigrid algorithm
results from defining the coarse-grid differentiation matrices directly by Eq.
(39) rather than by the coarse-grid version of Eq. (79). 1In the absence of
stretching these two definitions are equivalent. Fquation (39) is easily and
efficiently implemented with matrix-multiply techniques.

Virtually all the spectral multigrid results included here were obtained
with the same fixed schedule: start on the finest grid, work down to the
coarsest grid and then back up to the finest grid; on the way down there is 1
sweep though the (three) parameter sequence and on the way up there are 2

sweeps.



Subcritical Lifting Airfoil

The flow past an NACA 0012 airfoil at 4° angle of attack and a freestream
Mach number of 0.5 will serve as the first test case. The airfoil produces a
fairly large 1lift coefficient at these conditions and the surface pressure
distribution shows a sharp suction peak near the leading edge. Since the
local Mach number in this peak 1is nearly‘ 1, compressibility effects are
substantiale.

In order to demonstrate that the spectral solution on a relativély coarse
grid captures all the essential details of the flow we first compare it with
an extremely accurate finite difference result. In Figure 2 is shown the
surface pressure coefficient from a spectral solution using 16 points in the
radial (R) direction, and 32 points in the azimuthal (0©) direction; the
symbols denote the solution at the collocation points. For comparison, the
result from the finite difference code FLO36 i1s shown as a solid line. The
grid used in the benchmark finite difference calculation is so fine (64 x 384
points) that the truncation error is well below plotting accuracy. The
spectral calculation seems to lack detall near the leading edge suction
peake. However, since the spectral solution is actually a continuous
representation of the solution, it may be expanded in terms of its basis
functions onto a much finer mesh. Such an expansion, shown in Figure 3,
reveals the hidden detail of the solution. The FLO36 and expanded spectral
results are identical to plotting accuracy. The spectral computation on this
mesh yields a 1ift coefficient with truncation error less than 1074, Spectral
solutions on a 16 x 32 grid are thus of more than adequate resolution and
accuracy for subcritical flows.

The convergence histories for both the SG/AF and the MG/AF spectral

schemes on this test case are displayed in Figures 4 and 5. The convergence
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histories have been supplied for both the maximum residual (Figure 4) and the
error in circulation (Figure 5). They are plotted against machine time on g
CDC Cyber-175 computer. Although the multigrid code (henceforth referred to
as "MGAFSP") shows a substantial improvement over the single-grid approximate
factorization code ("AFSP") in maximum residual convergence, the gain is even
more dramatic from the 1lift convergence standpoint. This 1is understandable
since the 1lift is predominantly a low=-frequency property of the solution. The
single-grid spectral approximate factorization scheme was recognized to be
weak in damping for long-wavelength error components [15].

The consensus iIn the computational transonics community appears to be
that TAIR 4is the fastest widely-avallable finite difference codes, A
comparison of maximum residual versus machine time for TAIR and MGAFSP on the
subcritical test case is shown in Figure 6. The two codes require nearly
equivalent machine time with TAIR showing a better asymptotic convergence
rate. However, the TAIR result was produced on a rather coarse (default)
finite difference mesh of 30 x 149 points. Compared with the surface pressure
results from MGAFSP and FL0O36, the TAIR result is significantly in error near
the leading edge (Figure 7). This 1is indeed truncation error, because TAIR
results on a 60 X 297 mesh are more in agreement with those of MGAFSP and
FLO36. A further indication of the somewhat large truncation error of the
TAIR result is that the predicted drag and 1lift coefficients are correct to
only two decimal places (subéritical potential flow yields didentically =zero
drag).

In Figure 8 are shown convergence histories from TAIR, FLO36, and MGAFSP
on meshes which yield approximately equivalent accuracy; the surface pressure
regsults are the same to plotting accuracy, the 1lift coefficient is converged

in the third decimal place, and the predicted drag coefficient is less than



.001. (Actually, the spectral result is an order of magnitude more accurate
than these limits, but the TAIR result barely meets them.) As can be seen
from Figure 4, the single-grid AFSP result would fall in the vicinity of the
FLO36 and TAIR results in the present figure.

Use of more than three grids in the spectral multigrid code did not yield
an Iimprovement in effective convergence, since the interpolation overhead
became a greater proportion of the total work. Tt would have been desirable
to use a lowest grid coarser than 8 x 8 in the multigrid cycle.
Unfortunately, due to the presence of the metric singularity at the .trailing

edge, coarser mesh results were so oscillatory as to provide no useful long-

wavelength information.

Supercritical Nonlifting Airfoil

The test is again the NACA 0012 but at M_ = 0.8 and with zero angle of
attack, 1.e., a mnonlifting condition. The surface pressure coefficient
distribution as computed by the spectral method on an 18 x 64 grid is
displayed 1in Figure 9. The shock at mid-chord is relatively strong; the
normal Mach number ahead of the shock 1is approximately 1.25. The shock is
spread over several mesh spaces by the finite difference artificial viscosity
used in the spectral calculation. Although this shock is already far sharper
than those produced by finite difference codes on a comparable grid, it ought
to be possible to capture the shock in a still smaller region with a spectral
method employing an artificial viscosity more sulted to the spectral
discretization.

The convergence histories for the SG/AF scheme (combining AF2 and AF1)
and the MG/AF scheme (using AFl alone) on a fine grid are shown in TFigure

10. The multigrid scheme obviously shows a much higher asymptotic convergence
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rate. Note that the single~grid scheme initially oscillates with the maximum
residual of order unity for a rather lengthy period. This is indicative of
the lack of high=frequency damping in the AF2 scheme. The flowfield is being
established in this period by the AF2 scheme; the plot of the history of the
number of supersonic points in Figure 11 shows that the AF2 scheme establishes
the shock position and the size of supersonic region nearly as fast as the
multigrid scheme, albeit with some tramsient overshoot. This rapid
establishment of the flowfield is at the expense of high-frequency error,
which is subsequently damped when the AF2/AFl alternate cycling is begun. The
multigrid algorithm, however, monotonically establishes the flowfield and
damps high=frequency errors in a far more efficient manner.

Experience with all forms of transonic potential flow calculations has
shown that convergence rates are quite sensitive to the order and amount of
artificial viscosity: more artificial viscosity generally yields faster
convergence, but at the expense of more widely smeared shocks. Multigrid
schemes have been especially sensitive to these effects, and the present one
is no exception. However, the large improvement in efficiency offered by the
multigrid over the previous single-grid spectral scheme has allowed the use of
much finer grids, offsetting the present, uncomfortably large artificial

viscosity.

Supercritical Lifting Airfoil

The 1lifting supercritical test case was the NACA 0012 at M_ = 0.75 and
o = 20, which yields a section 1ift coefficient of nearly 0.6. A shock
appears only on the upper surface for these conditions and is rather strong
for a potential calculation; the normal Mach number ahead of the shock is

about 1.36. Lifting supercritical test cases are especially difficult for



spectral methods since the solution will always have significant content in
the entire frequency spectrum; the shock populates the highest frequencies of
the grid and the 1lift is predominantly on the scale of the entire domain. An
iterative scheme therefore must be able to damp error components across the
spectrum. The AF2/AF1 scheme of [15] was somewhat unreliable for such
problems; so a comparison will not be shown between AF2/AFl and the multigrid
scheme.

A history of the surface pressure coefficient is supplied in Figure 12.
This demonstrates the rapid convergence of the entire frequency spectrum of
the solution. Pressure distributions are shown after 0, 1, 4, and 9 cycles of
the fixed-cycle algorithm; one cycle requires approximately 5 seconds of
Cyber-175 time. The shock overshoot seen in the 4-cycle frame is a phenomenon
associated with the final positioning of the shock by the multigrid scheme.
The finite difference multigrid scheme exhibits similar behavior [13].

All of the supercritical spectral multigrid calculations shown thus far
used a sequence of five rather than three grids, mostly due to the finer
finest grid used for these cases. Scheduling within the fixed~cycle multigrid
algorithm was much the same as for the subcritical cases: one or two passes
through the time-step sequence were made on each grid. Convergence for
supercritical cases 1is not always monotonic because adjustments in 1ift or
shock position can introduce high-frequency errors which may require an extra
cycle to damp. An adaptive cycle algorithm might be of benefit here provided
that the "limit cycle™ problem were avoided.

Surface pressure distributions, both at the collocation points and
spectrally expanded onto finer spacing, are shown in Figures 13 and 14 for
grids of 16 x 48 and 18 x 64 points, respectively. As can be seen, the

coarser-grid result predicts virtually the same shock position as the finer-

37



38

grid computation; the 1ift coefficients agree to 1%. These results may be
compared with those from the finite difference codes, TAIR and FL0O36, shown in
Figures 15 and 16, respectively. The shock predicted by TAIR is far more
rounded and smeared than that of FLO36, reflecting the coarser mesh and larger
artificial viscosity used in the former. The TAIR result shown is also only
correct to one decimal place in 1lift as compared with a finer-grid result.
Convergence histories for these four cases: spectral multigrid (16 x 48),

TAIR (30 x 149), and FLO36 (32 x 192) are shown in Figure 17. The spectral
results are obviously handicapped in this comparison by the necessity of such
fine (for spectral methods) meshes brought about by the use of the finite
difference artificial viscosity form. Perhaps the purely spectral shock-
capturing methods currently under development will permit sharp shocks to be

captured with still coarser meshes.

ViII. Conclusions

Spectral multigrid methods are still in their infancy. Nevertheless,
they have already exhibited the capacity to accelerate drastically iterative
schemes for nonlinear, as well as linear, problems. Rough estimates of the
asymptotic convergence rates indicate that the multiprid procedure has led to
an improvement over the single-grid spectral method of nearly a factor of 10
for subcritical cases; the improvement is considerably greater for
supercritical situations.

The worth of the spectral discretization itself for compressible flows is
now clear: equivalent solutions are indeed obtained with far fewer grid
points than are required for finite difference solutions. Since subcritical

flows are smooth, the present results, showing both that the spectral method



convergence rate is far better than second-order and also that its absolute
error level is lower than finite difference ones even on unreasonably coarse
grids, are no surprise. Undeniably, any shock discontinuity in supercritical
flow should produce some degradation in the formal accuracy of the spectral
solution. Nonetheless, grid refinement studies demounstrate that the spectral
solutions stabilize on far coarser grids than do finite difference
golutions. Coupled with multigrid solution techniques, spectral methods for
steady compressible flows have reached the stage at which they are truly
competitive with finite difference methods on problems of aerodynamic
interest.

Several aspects of this technique have to be improved before spectral
methods for compressible flows reach their £ull maturity. The present
relaxation schemes are just straightforward modifications of the ones used for
finite difference methods. Surely relaxation schemes more tuned to the
spectral discretization can and will be devised. There is also the clear need
to develop more suitable forms of artificilal viscosity for capturing shocks by

spectral methods.
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Figure 4. Maximum residual vs. machine time
multigrid and single-grid schemes
NACA 0012, M = 0.5, a = 4°

-2. 7 \\

S
AFSP
-3, :
MGAFSP
3 GRIDS
-4, - '

0 20 40. 60.  80.
T (sec - CY175)

Figure 5. Error in 1lift vs. machine time

multigrid and single-grid schemes
NACA 0012, M = 0.5, o = 4°
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c. After 4 cycles

Figure 12.
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Figure 13.
solution: 16 X 48 points
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Surface pressure coefficient distribution spectral

solution: 18 X 64 points
NACA 0012, M = 0.75, o = 2°

Figure 14.
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Figure 17. Maximum residual vs. machine time
NACA 0012, M = 0,75, o = 2°
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