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ABSTRACT.

Iterative methods are considered for the solution of a coupled pair of
second order elliptic partial differential equations which arise 1n the field
of solid state electronics. A finite difference scheme 18 used which retains
the conservative form of the differential equations. Numerical solutions are
obtained in two ways - by wultigrid and dynamic alternating direction implicit
methods. Numerical results are presented which show the multigrid method to

be an efficient way of solving this problem.
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Introduction

In solid state electronics the designers of PIN diodes are interested in
the effect on the performance of the diode due to changes In various design
parameters. An advantage of producing a good mathematical model 1s that the
testing, when performed experimentally, could be a Ilengthy and expensive
process. A description of the model and the derivation of the equations can
be found in Aitchison and Berz [2]. The model gives rise to a coupled system
of elliptic partial differential equations.

In this paper we consider numerical techniques for the solution of this
pair of equations. We comsider a two-dimenslional diode which is defined in
Cartesian co-ordinates and where it is assumed that the diode is very long in
the third dimension. After deriving the finite difference equations we
describe applications of a multigrid method and the dynamic A.D.I. (D.A.D.I.)

method to obtain numerical solutions.

2. The Differential Equations

The problem is formulated in terms of the carrier demsity c(x,y) and a
stream function u(x,y). The behavior of diodes which are effectively two-
dimensional and of rectangular cross-sectlon can be described by the following

equatlons:
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in the region R = {(x,y):0<x<A,0<y<B},



The boundary conditions are
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where e and b are positive constants.
There are two quanitites in which the designers of diodes are

particularly interested. The first is the equipotential check, K(y), given

by
A
=2b 1 du b-1y: C(O,X)
K(y) = f — —dx + (-——)log( ) + 10g(c(0,y)°c(A,y) s (11)
(1+b)2 0 ¢ dy b+l c(A,vy) . )

Altchison [1] showed that this quantity 18 constant. ~The second quantity of

interest 1s the total charge, {, defined by

Q = ff cdxdy. (12)
R

We can easily verify that Q can be expressed in the form

A
Q=1-= 8/ cx,B)dx. (13)
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3. Finite Difference Approximation

The finite difference equations are constructed using the integration
method of Varga [8]. This method was also used by Aitchison [1] who solved
the problem using Newton’s method and a sparse matrix routine. The technique
is used because the conservative form of Eq. (2) 1e retained in the finite
difference scheme.

We consider a rectangle R in which A = 2 and B = 4. The region R
i8 covered with a square grid of step size h 1n both the x and vy
directions where WNh = 2. Let 4,4 and uy g be the values of c(x,y)
and u(x,y) at the grid point (xi9yj) wvhere x4 = ih and vy = jh. Let the
region Ty g be defined as lying within R and being bounded by the lines
Xﬂxi"-l/zh,x=xi+1/2h,y”*yjm1/2h and ymyj-i-l/zho In our
application of the technique the regions Ty,9 are either square or
rectangular. Varlous regions Ty o4 are shown on Fig. 1. Let 81,9 be the
boundary of the regiomn Ty 4e

We first consider Eq. (1). Integrating Eq. (1) over the region 4,9

gives

[ (% + 22 o)axdy = 0. (14)
1,3 |

We apply Green’s theorem to the first two terms in this integral to obtain

[ 3fds - [[ cdndy =0 (15)
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where n is the unit outward drawn normal.

The finlte difference approximation at internal points is therefore given
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where 0 < 4 < N, 0 < J < 2N. This equation can be simplified to give
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which is the same as that obtained by using the standard five-point finite

difference approximation to Eg.. (1).
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Figure 1.



To construct the finite difference approximation along x = 0 we need to

consider the following integral
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where 0 < j < 2N. Using Eq. (18) we obtain the following finite difference

approximation to Eq. (1) along x = 0:
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where 0 < j§ < 2N. In a similar fashion we can obtain finite difference
approximations to Eq. (1) along other parts of the boundary of R.
We now consider the discretization of Eq. (2). Integrating Eq. (2) over

the region 1y p yields
9
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Applying Green’s theorem to this equation we obtain
1
] =2 ds = 0. (20)

The finite difference approximation to Eq. (2) at internal points is therefore
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where 0 <4 <, 0 < § < 2N,
To construct the finite difference approximation along x = 0 we
consider the following integral
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In this calculation we have made use of boundary condition (4). So the finite

difference approximation to Eq. (20) along =z = 0 is glven by
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- (1+b)1log( 0,
where 0 < § < 2N.

Similarly we obtain finite difference approximations to Eq. (2) along
x = 2 using the boundary condition given by Eq. (6).

Along y =0 and y = 4 we have

1,0

and

1,20



respectively where 0 € i € No
Let Kj be the discrete form of K((j+ 1/2 )h) for § = 0,1,000,2N = 1,

K((j+1/2 )h) is discretized using the trapezoidal rule. The resulting

discretization is given by

N. =] e 4
-2b i o J+1 ,j 0,941 0,1
K, = X (4 ) + (ZL)10g (
T (py? ey g4y ey g) bt CN, 441 +cN,j)
+ lcg{(copjﬂ. +C’09j)(cN,j+1 +CN,;])}’ (23)

where the summation notation is defined by

N..
gl 5 e e 1
) a, hag +a + . acq + /zaN.

1=0
Aitchison [1] shows that Kj is a constant Independent of j and so the
above difference scheme exactly conserves this coastant. To calculate the
total charge Q we discretize Eq. (13), agaln using the trapezoidal rule.
Let a be the discrete form of Q, then (3 is given by
N..

6 =1-sh | e

. (24)
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4, A Multiprid Algorithm

We consider a multigrid method of solution to this coupled system of
equations using a natural extension of the accommodative Full Approximation
Storage (F.A.S.) cycling algorithm of Brandt [3]. The multigrid method 1s a

numerical strategy to solve partial differential equations by switching



between finer and coarser Ilevels of discretization. The characteristic
feature of the method is the combinaticn of a smoothing step and a coarse grid
correction. During the smoothing step the residuals ave not necessarily
decreased but smoothed. In the following correctlon step the discrete
solution is improved by means of an auxiliary equation on a coarser grid.
This results In an fterative method that 18 usuwally very fast and effective.
A detalled description of the multigrid method can be found in Prandt [3] and
Hackbusch [7].
Let Gy,e.-,Gy be a sequence of grids approximating the region

R = {(xgy):0€x¢290§y64} with corresponding mesh sizes hyseeeshye  Let hy =
2hyyq for k= 1,000,M=1c The problem is discretized on each grid Gy uvsing
the technique described in the previous section. Let the discrete operators

Lk and L1 define the resulting discretizations of equations (1) and (2)

4
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k k

respectively on Gy, where L? depends on ¢ For %k < M we solve an

auxiliary equation on G, (cf. Algorithm 1) The steps of the algorithm are

given below.

Algorithm 1

(a) Set k = ¥, the initial working leven and choose €, ToO be a

sultable tolerance. Choose Initial approximations c®  and uk to e and
I Je v kk
u respectively. Set fl and K? equal to zero since Lye” = 0 and
k k k -k . . .
L?u = 0, On coarser grids fj and £, will denote the modified right-hand

sides (see Eqs. (25) and (26)).
e = 30
(b) Set € 10°%,
(¢) Perform one relaxatlon sweep over all the equations. Compute the

Rzmnorm of the residuals, g5 where



kk k, 2, kk k 2
1© £y HILu =1, %]

@k = /[L

(d) 1If e < ek f.e. relaxation hae sufficiently converged on the
current level, go to Step (£). If not, and 1if convergence is still fast, 1.e.
ey < ﬂgks vhere W is fixed and chosen later, set zk = e and go to Step
(c)s The parvameter 0 Iz known as the switching parameter. If convergence
is slow i.e. e > n%k and we are not on the coarsest grid go to Step (e).
If convergence is slow and we are on the coarsest grid go to Step (c) to
perform another relaxation sweep.

(e) Decrease k by l. Transfer the current approximations on level

k+ 1 to the new level %k as follows:

where I§+1 denotes some transfer of values from the fine grid. The right-

hand sides for the new level are defined by

ko kk kRl kbl kbl
£, = Lye + 41, (£ -1y e )y (25)
k  kk ko ket kel kel
£, = Lyu + B (B Ly w ). (26)

The factor 4 appearing 1o the above equations is a scaling factor which is
introduced because we mwultiplied through by hz before defining the
difference operatorg. Set € = de, ,, to be the tolerance for the problem on

the new level where & is some parameter. Go to Step (b).
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(£) 1f %k = M, the algorithm I8 terminated since the problem has been
solved to the required tolerance. 1If k <« ¥ we correct the approximation on .
the next finer grid @k+16 Put

ket k1 e k Uk “k+1)
2

¢ = e + X (@ Ly €

kL kbl k%i( Bk kbl
) = Tpr® )

1

where the ¢ and  w'‘s  on the right-hand sides are the previous
approximations on the level %k + 1 and I§+1 is aome Interpolation of

values. TIncrease k by 1 and go to Step ().

Multigvrid Components

We use ‘mon-standard” multigrid techniques introduced by Foerster, Stuben
and Trottenberg [6] and developed by Foerster and Witsch [5].
(1) relaxation
Pointwise Gauss—Seldel relaxation is used with the points ordered in the
checkerboard (even-odd) manmer. The relaxation of the equations Is performed
in the followlng orders
k

(1) relax the equation Lgu = f% at the white (even) points i.e. those

points (Kiﬁyj) for which 41 + j is eveng

(2) relax the equation Lguk = fz at the black (odd) points i.e. those
points (xigyj) for which 1 + § 18 odd;

) k k k

{(3) vrelax the equation LEC = fj at the white points:

(4) relax the equation L?ck = f% at the black points.

This 1s just one of a number of ways of performing checkerboard Gauss-Seidel

relaxation on these equations. We experimented using several alternatives and



found that the above order of relaxation was slightly more efficient than the

others. At the end of the relaxation sweep the residuals of the equation

Liick = f? are zero at the black points since at this stage all the black

point equations are simultaneously satisfied.

(11) fine-to~coarse transfer

Since checkerboard Gauss-~Seidel velaxation produces highly oscillating
residuale it is not advisable to simply transfer the residuals by injection to

a coarser grid. Instead we transfer the residuals by half-weighting. to the

coarse grid. For this transfer the operator I;wl is defined by
k-1 Tk ke k k k |4
Lo Vig = H2vyg oy *1/8(V21+1,2j toi1,29 21,251 +V21,2j+1)°

1f the points of the coarse grid are also white points on the finer grid then

k

the transfer of the residuals of the equation L?c = f? reduces to half-

injection i.e.

k-lok _k ky _q, (ok kK
Lo (fl LE,C) /Z(fl Ljc )e

(111) coarse—to-fine transfer

Bilinear interpolation 1s used to tramsfer the correction to the fine

grid to provide a new approximation there.

5. A Dynamic A.D.T. Algorithm

We now show how the dynamic AD.T. (D.A.D.I.) method of Doss and Miller
[4] can be used to obtaln a numerical solution to this problem. The A.D.I.

approach first converts Egs. (1) and (2) to the parabolic equations

11
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2 2
¢ d¢ 3¢
AN, JER (27)
It 3%2 Eyj ’
du 4580l duy, 3,1 Ou
3 {ax(c Bx)% Ey(c By}}a 4 (28)

We assume that a8 ¢t * ® the solutlon of these time-dependent equations tends
to the steady state solution, if one exists. The parameter A appearing in
Eq. (28) 18 used to control the intevaction between the eguations. When these
equations are discretized in time 1t means that, effectively, we use different
time steps for the two equations. The right-hsnd sldes of Eqas. (27) and (28)
are discretized using the technique described earlier. Detailed discussions
of the A.D.I. method and 1ts Implementation can be found in Varga [8] and
Young [9].

Each step of the D.A.D.I. method campriseg two dovble sweeps of the
A.D.T. iteration with time step At together with a bookkeeping double sweep
of the A.D.I. iteration with time step 2At. At the end of the step we use a
computerized strategy to determine how to change At for the next step. Here
we define a double sweep of the A.D.I. iteration to be a double sweep of
A.D.I. performed on Eq. (28) followed by a double sweep of A.D.TI. performed on

Eq. (27). The procedure we use 1s described briefly in Algorithm 2.

Algorithm 2
(a) Choose an initial time step At = At@@ The acceleration parameters
2
are then hziAt for Bg. (27) and h"/(AAt) for FEg. (28). Set %k = 0

where %k 18 the total number of time steps we have advanced, Tet € be the

L0 (1)

required tolerance. Choose inltial approximations and u .

(b) Start a step of the D.A.D.I. process with current approximations

(k) (k)

c and u o



(c) Perform two double sweeps of the A.D.I. iteration with time step

(k) , (ch4)

Ats Let and be the new approximations obtained. Compute

e, the £2=norm of the residuals of the steady state equations.

(d) 1If e < €, then the residuals are sufficiently small and the
%
algorithm 18 terminated. If e 2 e, set At = 20t and determine the
corresponding acceleration parameters.

*
(e) Perform a double sweep of the A.D.I. iteration with time step At

(k) (k) ~(kt+4) ;(k+4)

starting with approximations ¢ and wu to obtain ¢ and

respectively. This is the bookkeeping part of the D.A.D.I. process.

(£) Compute the test parameter TP given by

TP = v [SUM/ASUM],

where

() _~(ckh) 2 Cckd) _~(lch) 2

SUM = l¢ 9 9

and

(kt4) _ (k)2

5+ b ), (602

ASUM = lc g °
(g) It TP > 0.6, then we reject the present D.A.D.I. step, replace

At by 1/16A¢ and go to Step (b). If TP € 0.6, then we accept the present

D.A.D.I. step and change At by the factor of 492,J§91& SL@ for the next

step 1f TP falls In the intervals (-=,0.05],(0.05,0.1],(0.1,0.3],(0.3,0.4],

(0.4,0.6] respectively. Go to Step (b). This is the computerized strategy

for changing At.

13
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6. Numerical Resluts

When 8 = 0, Eqs. (1) and (2) together with the boundary conditions (3)

to (10) possess an analytic solution which is given by

_ {b cos h(Z-x)+cos h(x)}
e(x,y) 4{1+b)sdin h{2) »

ulx,y) = - E'js&ys

when A = 2 and B = A These functions ave used as our initial
approximation to the solution of the problem for 8 # 0. Numerical results
are presented for 8 = 5. The constant b was glven the fixed value 2.7,

In the multigrid method we define a work unit to be the computational
work 1dn one relaxation sweep over the finest grid. The step size on the
coarsest grid Is h = 1. The walues of the parameters n and & in
Algorithm 1 were chosen to be 0.5 and 0.3 respectively. It was found that the
cholce of n and & was not critical in the sense that wvalues of these
parameters in the neighborhood of the chosen values produced similar
efficlency of the algorithm in terms of the number of work units.

The algorithms Qere terminated when the sznorm of the residuals was
less than 10“60 The results in Table T indicate the variation with h of the
values of ¢ and wu at the center of the diode, the values of ¢ at the
corners, and the values of the constants @ and X. In Table IT we give
details of the multigrid method of solution. Detalls of the D.A.:D.I. method
of solution arve given im Table TIT for A =1 and A = 0.05. The results
were obtained on the Oxford University ICL 2980 computer.

Various values of A were tried inm the D.A.D.T. method and it was found,

by experiment, that the value X = 0.05 produced the fastest convergence. It
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can be seen from the computational details in Table IIT that this value of A

is considerably better than A = 1 for the smallest mesh size h = 0.125.
However, even with this value of A, the multigrid method performs much better
than the D.A.D.I. method on this problem. The results presented here agree

with those obtained by Aitchison [1].
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TABLE I

Details of the solution for different values of he.

h = 0.5 h = 0.25 h = 0,125
c(1,2) 0.0890 00,0906 0.0910
u(l,?) =0.5542 =0:5350 -0.5520
c(0,0) 0.2018 0.2071 0.2086
c(2,0) 0.1203 0.1228 0.1253
c(0,4) 0.0591 0.0682 0.0749
c(2,4) 0.0196 0.0203 0.0209
Q 0.7831 0.7871 0.7884
K ~1.6413 =1.6074 ~1.5984
TARLE IT
Details of Multigrid Method
h Number of work units Time (secs.)
0.5 42
0.25 68

0,125 : 85 .




TABLE III

Deteils of D.A.D.T. Method

h Number of D.A.D.I. steps Time (secs.)
A=l A= 0.05 Awm ] A= 0,05
0.5 84 64 2.3 1.9
0.25 140 98 14.0 9.7

0.125 216 122 155.7 88.6
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