MULTIGRID SOLUTION OF BIFURCATION PROBLEMS

H. D. Mittelmann

A class of nonlinear eigenvalue problems is solved by
the multigrid version of an algorithm particularly
suited for this class. The algorithm is shown to com-
pare favorably with standard methods for continuation
along the solution curve. Usually this continuation
is done on the coarsest grid. The multigrid method
may then be used to compute fine-qgrid solutions in
regions of special interest. Numerical results are
given for reaction-diffusion problems.
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ABSTRACT

A class of finite—dimensional-nonlinear eigenvalue
problems is considered which in general are derived as dis-
cretizations of nonlinear elliptic eigenvalue problems. For
following the solution paths a continuation strategy is
proposed for a generalized inverse iteration‘algorithm. A
multi-grid method is then presented using continuation for
the coarsest grid and refinement where desired in a nested
iteration fashion. Numerical results show the continuation
technique to be very robust and efficient. It compares
favorably with a standard method for that'purpose. Multi-
grid results are given for bifurcation from higher eigen-
valueé, for turning point problemé on rectangular a&d on

nonrectangular domains.



MULTI-GRID SOLUTION OF BIFURCATION PROBLEMS

1. . Introduction

Nonlinear boundary value problems with several solu-
tions and exhibiting bifurcation phenomena have only recent-
ly been treated with fhe numerical techniques which have
been quite successful in the solution of boundary value
problems; seé, for example, [1,2,3,4,5,7,10,11,12,15]. Pre-
conditioned conjugate gradient (PCCG) methods'as well as
multi-grid (MG) algorithms have been used extensively for
linear problems and both have been applied to nonlinear
problems, too, either after a linearization by, for example,
Newton's method or in a suitable nonlinear version.

‘For the treatment of parameter-dependent nonlinear
boundary value problems quite a few approaches have been
propoéed and used succeséfully; see, for example, [6,9,13].
Since there in general a sequence of linear or nohlinear
problems has to be solved it is quite natural to combine
these methods with the efficient PCCG and MG algorithms.
Here we present such a combination. " The underiying method
is not classical, but it is the generalized inverse itera-
tion of [10] for which a first combination with multi-grid
ideas has been proposed in [11]. This method in its origin-
al form is applicable to a certain class of nonlinear eigen-
value problems; For this class, however, it proves to be a

- very robust and efficient method and it may also be general-

ized.
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In the following we shall first describe the classes of
problems treated, define the generalized inverse iteration
and state a local convergence result.- We propose then a
simple but efficient way to use this algorithm for continua-
tion purposes, i.e. for following the solution curves of a
discrete nonlinear eigenvalue problem. Then a MG version
of the method is given which is a generalization of the two
-level method of [11,12]. Numerical results for the contin-
uation strategy are compared to those obtained with the
pseudo-arclength method as implemented in [1]. Finally,
some experiments with the MG algorithm are reported.

The contents of the following sections are:

2.‘ Nonlinear eigenvalue problems

3. The basic algorithm

4, ‘The continuation method

5. A multi-grid algbrithm

6. Extensions

7. Continuation results

8. Multi—grid results

2." Nonlinear Eigenvalue Problems

Instead of describing in detail the classes of continu-
ous nonlinear eigenvalue problems which may be cdnsidered,
we assume that by a suitable discretization with parameter h

a finite-dimensional problem of the form

(1.1) f(x) .= ABx, xe R, 2 R, n = n(h)
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has beénlbbtained, where B is a symmetric and‘positive
definite n x n matrix and f : R" » Rn a smooth mapping.
This gives some preference to a discretization by finite
element methods since these usually yield a symmetric and
positive definite B as discretization éf an elliptié
operator. The assumption on B may, hdwever,_be relaxed
(cf.6.).

Problem (1.1) is more general than that considered in
[10] since there it was assumed that f is the gradient of a
functional or equivalently fhat the matrix F :_f' is sym-
metric. Then solutions of (1.1) may be characterized as
critical points of that functional and this was exploited in
[10] to develop a global convergence theory for the general-
ized inverse iteration and in [12] to distinguish between
relevant and irrelevant solutions of the discrete eigenvalue
problem.

The symmetry of F together with that of B>Was‘also
advantageous numerically in [10] since it allowed to use
conjugate gradient methods particularly suited for the
re§ulting linear syStems. These methods were applied to the
augmented system (cf. (2.1), (2.2)). - That this technique in
general is preferable over the combination of block-
elimination [6] and conjugate gradient methods has also been
confirmed for nonsymmetric systems by the numerical results

in [3].



3. The basic Algorithm

The generalized inverse iteration for the solution of

(1.1) iteratively computes from a given pair (xk,xk), uxknBz 0,

X1 = PXa1/ Mg
(2.1a) Xpep1 = %~ ka(xk),
_ T 2
Moo = PO ) X g /e
where
— — -1
| . Fie = A B -Bx,
(2.1b) | H =
- xlB 4
e ~t X0,

Here H-HB denotes the norm introduced by B. Hk is the nxn
principal submatrix of the inverse of the matrix in brackets
provided this is regular. We note a relationship to Newton's

method for the augmented system

]

(2.2) f(x) - ABx 0,

2

~1/2§xHB + p2/2 0.

H

The solutions of (1.1) are parametrized by their B-norm and

(2.1) in.contrary to Newton's method for (2.2) actually
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generates only iterates with B-norm equal to p. The second

difference is that the parameter A is updated by a Rayleigh-

quotient in (2.1). The starting values for (2.1) are thus
7=

- We must expect in general the existence of multiple

assumed to be (x1,A1) with Hx1NB = p aﬁd A, = f(x1)Tx1/p2 .

solutions with respect to A and p. A.globélly convergent
method as, for example, damped Newton's method for (2.2) or
the global version of the generalized iqverse‘iteration of
[10] may converge to any of these solutions for the given
‘parameter value. So, in or&er to. stay on a solution branch we
rather try to exploit'the local cqnvergenée sroperties of an

algorithm. The following result was proved in [10,12].

Theorem 2.1 Let f in (1.1) be twice continuously differenti-
able in a neighbourhood of a solution (xg,Ap) of (1.1) and
assume that .

N(Fg-29B) C span {Bxg}.
Here N(L) denotes the nullspace of the linear operator L.
Thén for Xq ﬂx1ﬁB = ﬂxous = p sufficiently close to xg the
seguence {xk} generated by (2.1) convergés quadratically

to ‘xg.

4, The Continuation Method

The parametrization by p in the generalized inverse
iteration is, of course, not as general as one by, for
example, the pseudo-arclength along the solution curve. 1In

the foilowing we shall see, however, that many problems of the
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form (1.1) may be solved very efficiently and reliably with a
very simple p-continuation technique. This technique may be
further refined and combined, for example, with methods to
switch branches at bifurcation points or to compute singular
points. In the following we describe £he‘basic step of the
p-continuation process.

First we derive some useful formulae.

Lemma 3.1 If the following expressions -are well-defined it

holds for solutions of problem (1.1) that

dp T,dx ' ‘
(3.1) — = x B=Z /o -
) ‘ d dA -
' di{x/ixh_)
(3.2) B (@A Xy,
dp dA dp p :

Proof  We have p2 = f(x)Tx/A, S0

de [(xTF(x)Ei + f(x)
A dA

T dx

T 1,0, 12
EX)Anf(x) x]/(2p1°).

From (1.1) we have, except in turning points,
(3.3) (F(x)-2B)IX - Bx
di

from which (3.1) follows. But by differentiation and using

(3.1) we derive (3.2).
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- If a solution (xp,kp) for a given p—levei is known and
one for a different level p + 8p is to be computed then
algorithm (2.1) requires the starting guess to have that
norm. A very simple predictor-step is thus to use xp(p+6p)/p
and the corresponding A. For the quality of this gﬁess the
derivative (3.2) is important. We therefore propose to choose
lﬁpl inverse proportional to this derivative. With a

suitable monotone function g let

: d(x/HXnB) 1
(3.4 ) = | ———— | .
( ) ! pl g ( = 5 )
: wheré
d{x/ix0l,)
B : dx,2,dx,2 1/2
.5 b 21 = (2% 58 .
(3.5) i 8 ( ™ B(dp ) /o

It is necessary, however, to bound the step-length proposed by

(3.4) in cases when the change of the solution is rather small

but also the slope %% is small. By extrapolation of %% as

a function of p to a zero we obtain from the recent values

Pr-17 Pk

de

A
(3.6) (6 ) := - gg (p,) d
max. Pk 7 Pk-1

dp
)y - ZP
pk dx(pk-1)
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where t = 2 is usually chosen corresponding t§ an expected
double zero, although, of course a zero of g% need not be
fofthcoming along the branch.

Utilizing the above ideas the following strategy was used
for continuation with the generalized inverse iteraiion to

follow a branch from level py to the target level Py-

The Continuation Strategy

Let xgp be a solution to p = py and let

sg: = signum (pt—po); k: = 0.

Let RLk, DX,, DR_, k = 0,1, ... and DM, ,k = 1,2, ...

k’ k? k?
be the éxpressions given by (3.1), (3.2), (3.4) and

(3.6), respectively.

M1: p: = &i DXk¢0 then Sg'DRk else Py = PO
if k = 0 then goto M2;
if itold £ 2 then p: = p + p;3

q: = if RLgRL

pRLL g < 0 then 0 else DM

I 3

if sg > 0 and g > 0 then p: = min(p,q);
if sg < 0 and q < 0 then p: = max(p,q);
M2: 8p: = sg*min(’p,,!pt~p0,; it: = 05 k: = k+1;

M3: + 8p;

Pr-1
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An eigenvalue parameter X is always assumed to be related to
the given x by the generalized Rayleigh-quotient (cf.(2.1a)).

A total of 1 grids is used.
- Tmax

The MG algorithm

Let x(o), A(O) with ﬂx(o)ﬂo = p(o) be a given solution. Set
(i), _ (0) . . N
p : = R(p ,i), 1 =1, ... 1max and 1: = 1.
. = 4 .- 7! (1-1)
1. k: = 1; smooth (v1 steps) Xg? = 11_1(x )

result: xél), lél);
2. j: = 1; r(j): = -f(j)(xéj)) + Aéj)B(j)x(j);
k
3. j: =3 - 13 if j = 0 then goto 4; uéj): = 0.
(0) |

Smooth (v1 steps) us w.r.t.

: j+ ’

.

(3)

result: u1 3 compute residual r

(3)

w.r.t. (%)

and goto 3.



4, Solve
r___ izt — wn— e onanel
F(0)(,(0)) 3 (0)gC0) (o) (0) || (o) || L0 (1)
1
_x(0)Tg(0) 0 * 0
Jeo= 15
5. If 3 = 1 then goto 6. ‘Smooth (v2 steps)
uéj): = ugj) + 13_15(j-1) w.r.t. (¥), result G(J),
J: = j+1; goto- 5;
6. Smooth (vp steps) ;él): = xél) + Ii_16(l-1) w.r.t.

sy - ¢ (1)) 5 (1)

. (1) (1)
and normalize the result to X111 Ccompute Ak+1.
If stopping criterion satisfied then

(vy, _ ,()y, (1), _ (1), ;. _ ,
A HIES Ak+1’ X =Xl l: = 1+1;
if 1> lmax then stop else goto 1

else k: = k+1; goto 2.

We note that the above algorithm is completely defined if the
fuhction R relating the norm levels on the grids is specified
and a smoothing method and a stopping criterion have been
choseﬁ. This algorithm should have advantages over methods
that make use of the parametrization by A as, foq example, is

the case for the pseudo-arclength method. There s is
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introduced as’auxiliary parameter but X\ = A(é) is kept and
hence difficulties have to be expected for a multi-grid
version at least in regions where for a given X net on all
grids solutions exist. This will, for example, in general be
the case near singular points,

In [1} (cf. also [5]) it was proposed to look for solu-
tions on the finer grid curves on a line orthogonal to the
coarse-grid curve and to use additional diagonal shifts of the
Jacobians in order to assure that these matrices all have the
‘same number of negative eigenvalues but sacrificing quadratic
convergence. While the first strategy ié not needed here,
once a suitable function R has been chosen, the second was not
necessary for the computations reported in 8. For another
technique overcoming the first problem in the neighbourhood of
simple primary bifurcation Points see [15].

We do not analyse here the above MG algorithm theoreti-
cally but we present some numerical results wﬁibh show the

efficiency of this approach.

6. Extensions

As mentioned earlier several extensions of the general-
ized inverse iteration, the continuation strategy and the MG
version are possible. VWe discuss here only a few ideas most
of which have been tested numerically.

In order to have a general purpose continuation procedure
several features would have to be added to the basic ideas

outlined in .the preceding sections. In order, for example, to
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folloﬁ branches bifurcating from the trivial solution at
eigenvalues of the linearization it is not possible to follow
the trivial solution and branch off since only solutions with
non-vanishing norm may be computed. The eigenvalues and
-vectors of the linear eigenvalue probiems may, howéver, be
computed by the algorithm and be used as starting guesses.

If then along such a primary branch a secondary bifurca-
tion point is detected one may switch to a bifurcating branch
by methods as proposed in.[6] and impleﬁented in [1]. We have
usually preferred to use a SimpleApertupbation,

If it is desired to accurately determine singular poinfs,
the present approach has the advanfage of allowing very crude
initial'guesses because of its ;obustness if an appropriate
method is used for computation of the singular points. For
the determination of (simple) turning points we have, for
example, used polynomial inﬁerpolation in o in order to find

extrema of A(p). The condition %% = 0 may, of course, be ex-

ploited explicitely. Since in the MG version continuation is
done on the coarsest grid a direct method will usually be used
for solving the liﬁéar systems. Hence the determinant is
available for detection and computation of singular points.

A point on the curve with g; = 0 may, of course not be over-

come in general by p-continuation. In this case a step of A-

continuation should be used as long as ,%%I is below a

suitable threshold.
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We conclude with a remark on the case of unsymmetric but

regular B. In this case we define the B-norm as

ixﬂB = HBxl

and formally multiply (1.1) from the left by BT. .The modifi~-
cations necessary in (2.1) are, however; minimal. The
Rayleigh-quotient is replaced by A = f‘(x)TBx/p2 and the last
row of the matrix on the right of (2.1b) becomes

[-x;8'B  o0].

So one additional matrix—veétor product has to be computed.
An analogue of the convergence theorem holds. and the method
has been used successfully, for example, to treat finite-

differeﬁce discretizations of problems with mixed boundary

conditions.

7. Continuation Results

.The generalized inverse iteratioh for p-continuation
along solution curves of various non-linear eigenvalue pro-
blems turned out to be very robust and efficient. By robust
we mean that rather large stepsizes were possible without
leading to divergence or to jumping to another branch. The
efficiency was measured by looking at iteration counts in case
the work per iteration was similar or otherwise by comparing
computing times. A few results were reported in [12]. The
methods that were used for comparisons are the A-continuation
with predictor-step, the pseudo-arclength method of [6]

b

continuation along a suitable component of the solution as
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proposéd,'for example, in [13],and the method of [9]. In the
folldwing we restrict the representation to a few examples and
a comparison with the pseudo-arclength method as implemented
in [1].

‘Developing an automated continuation algorithm‘with any
underlying method usually makes it necéssary to choose smaller
stepsizes than the method would allow. This is in particular
true for p-continuation with the generalized inverse iteration
for which rather large steps may be takeﬁ (cf.[13]). But then
the results would not providé a detailed,impression of the
solution curve. ' .

The results in this section were obtained with the
p—continﬁation strategy of 4. for the basic algorithm of 3.

In all cases the nonlinear eigenvalue problems were posed on
the unit square Q = (0,1) x (0,1) with homogeneous Dirichlet
boundary conditions. The Laplacian was discretized using the
usual five-point difference star. For the finite element
‘method in [1] this was accomplished by choosing the standard
triangulation of a square mesh. The right-hand side was dis-
cretized pointwise'for the p-continuation while a suifable
qu#drature formula is used in [1]. The discretization para-
meter was h = 1/4 since that is a reasonable coarsest grid for
a MG algorithm at least for bifurcation from the lowest eigen-

values. Finally, the function g in (3.4) was chosen as

1
g(s) = — Vs .
4h
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The first example is the well-known Bratu prdblem
(7.1) - Au = u exp(u/(1+eu)), & > 0.

The branch of positive solutions emanating from the origin has
one, two or no (simple) turning pointé.- p—continuétion was
started with the constant solution and the branch was followed
from po= 1 to Pr = 100. Table 7.1 shows the steps taken and

the accumulated iteration counts denoted by iter.

p : u iter

1 1.363 -2
12.45 6.670 -5
12.88 5.076 9 -
22.23 4,205 . 13
26 .91 2.622 17
33.03 1.309 21
42 .31 4168 24
58.80 08711 26
100 001466 28

Table 7.1 p-continuation for Bratu's problem, e = 0,

Between p = 20 and p = 40 the continuation'algorithm
chooses relatively small steps increasing the total iteration
count. We did not try to modify the strategy since it allows
to.solve»efficien£ly problems with completely different solu-
tion curves. |

For PLTMGC the accumulated work depended stfongly on the
u-steps chosen. Table 7.2 represents the best results we have
achieved in a series of runs. The intermediate steps taken by

the algorithm are not given.



L ¥ iter
7 7 14
8 7 43
2 2 61
o1 .1 87
.001 .001 102

Table 7.2 PLTMGC - results for Bratu's problem, e = 0.

Here u_ denotes the target values used. The turning

t
point is at u = 7.3. The algorithm starts in the origin

and if L > I the algorithm tries to continue to the previous
target valué but beyond the turning poinf, Similar results
for both methods were obtained for the case € = .2 when two

turning points are present.

We turn now to the simple bifurcation problems

3
Hu - u,

1

(7.2aj - Au

(7.2b) - Av ru(v—v3).

These problems are equivalent for positive eigenvalue

u1/2

parameters via the transformation u = v. The branch

bifurcating from the first eigenvalue was computed which for
problem (7.2b) does not extend beyond a certain norm-level.

Hence this is a test case with small values for %% for the
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p-continuation. Startiﬁg solution was the first eigen-
function. The results for both problems are in fact quite
similar so we present only those for (7.2a), which was

rewritten for the generalized inverse iteration as

- bu + u3 = UU.
The left-hand side was discretized to yield the vector f in

(1.1) while B was the identity matrix.

o) u iter
1 18.89 1.
19.56 63.53 5
22 .09 75.33 8
37 .34 176 .2 i
60 421.3 14

Table 7.3 p-continuation for (7.2b), pg = 1, Py = 60

ut iter
50 31
200 . 49

Table 7.4 PLTMGC results for (7.2b)

Many other examples confirmed these results. We make

a final remark on the problem

(7.3) -Au = paP, p > 1
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which has a solution branch of the form

ﬂuﬁ

H

Figure 7.1 Solution branch for (7.3)

No starting'guess is easily available and it was suggest-
ed in [4]‘to perturb (7.3) by adding 6 > 0 fo the right-hand
side yieldingvthe dotted curve in order to be able to 'jump'
on the branch., | v

Foi p-continuation a constant initial guess allowed com-
putation of any point on the branch in, for example, 7 steps
for p = 5. Since, however, all solutions on the branch are
proportional, the derivative (3.2) is computed as zero and any
other solution is then obtained without a single iteration by
simple normalization. There is no similar édvantage in fol-
lowing this curve with the pseudb~arclength method.

We have seen that already the strategy proposed in 4,
mékes p-continuation a very competitive method for.following
branches of finite-dimensional nonlinear eigenvalue problems
of the form (1.1).

The numerical results of this section were obtained using
single~-precision FORTRAN on the IBM 3081 at Arizona State

University.



8. Multi-grid Results

In this section some experience will be reported with the
MG version of the generalized inverse iteration as given in 5.

The program was written for problems of the form
(8.1) - -Au = puf{u) in Q,

u =g ' on 3%

where 9 CR® was a rather arbitrary domain as allowed in [14]
from which auxiliary routines were taken and appropriately
modified.

In all‘computatidns Vy, = Vv, = 2 was chosen in the MG

algorithm. The function R was

(8.2) | R(s,1) = s-n'® jn8) 4 o9, .. 1
max

and the iteration was stopped when

P‘(l) _ (l)

l < eps 'A(l)l

The smoother used was checkered Gauss-Seidel relaxation,

tﬁé interpolation ii_1 was of higher order, Ig_1 was linear

\

interpolation while the restriction Ig+1 was injection. The

(i)

grids had mesh-widths h = 2'ih(°),

1:1, s e o 9 1
As alternative smoother SSOR-MINRES was used, i.e., an

iterate was updated by adding o Py where Py is the direction
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given.by'a step of the standard SSOR method (and eventually
orthogonalized w.r.t. the previous direction) starting from
the current iterate. The stepsize o > 0 was chosen to mini-
mize the residual of the corresponding linear systems. For
more indefinite cases this smoothing should be supérior. In
the computations reported here, where.nevérvdivergence Or no
convergence occurred, it only increased the computing time.
It was also not necessary to use the normal equations for the
smoothing.

Since the computing tiﬁe is of interest for the MG
version we include it in the tables (in seconds). The compu-
tations were perfbrmed in FORTRAN on the HB 66/80 at the
Computing Center of the University of Mainz. We present the
results for the MG refinement process at a few selected points
on the solution curves of each of the following examples. ¢(
denotes the unit square while K(0O,r) is the circle around the
origin with radius r. Homogeneous Dirichlet cénditions were
prescribed in all examples. The starting solution was con-
stant in examples 1 and 3 and the restriction of the eigen-

functions in the other cases.

Example 1 - Au = pe' in Q

0)

h 1/4, 1

1
£
)
)
(2]
i
—
o

max
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Example 2 - Au = W sin u in @Q
Branch from eigenvalue u = iy, = 8n2
0 -6
h( ) 1/4, lmax = 5, eps = 10
2 2 ;
Example 3 - Au = w(T+u+u™/2)/(1+u®/100) in @
(0 -6
h ) = 1/4, lmax = 5, eps = 10
Example & . - Au = u(u»u3) in K(0,1/2)
Branch from eigenvalue u = XAy = k2, where

k is twice the smaliest zero of the Bessel
function Jg.

h(0) 5

= 1/5, lmax = 4, eps = 10.

Following the bifurcating branches in examples 2 and 4 for
large values of k.réquired an increasing number of iterations.
The SSOR-MINRES smoother brought considerable improvement but
the function R in (8.2) is not appropriate heré.for large
values of A and would have to be modified suitably if it is

desired to compute such solutions.
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o (0) u3) (3) time
8 6.142 3 3.731
10 6.637 4 4,281
12 6.806 4 4,288
14 6.653 4 4,471
16 6.179 4 4.607

Table 8.1 Multi-grid results for Example 1

p(O) u(q) k(q) ful time
5 79 .48066 2 .280538 2.476
15 84.33039 2 .834066 9.363
25 94 .83650 3 1.35935 12.381
40 125.3734 3 2.05389 12.826

Table 8.2 Multi-grid results for Example 2

ol0) (4 k() u(.5,.5) time
19 6.019515 4 2.10733 13.752
20 §.031423 4 2.22549 13.612
21 8.032892 N 2.34387 13.597
22 8.025606 N 246241 13.619

Table 8.3 Multi-grid results for Example 3




p(o) u(B) k(3) Iiu!loo time
1 23.21995 2 .0903495 2.857
4 24 .,93392 2 356758 2.735
7 29.50112 3 603734 3.847
9 35.21668 L I45784 4,904

11 44 ,54570 2 .858101 3.792

Table 8.4 Multi-grid results for Example &

Another problem with the above MG version not present for the
continuation with the generalized inverse iteration is
encountered near multiple bifurcation points. The eigenvalue
Agp in éxample 2 is simple for the continuous problem but its
approximation ng, h = 1/4, is not simple. Thus there are
some problems for 0 < p < &. For h = 1/5, however, the MG

algorithm performs excellent in that range.
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