EMBEDDED MESH MULTIGRID
TREATMENT OF

TWO-DIMENSIONAL TRANSONIC FLOWS
D. R McCarthy*

Purdue University
West Lalayetle, Indiana
and
Indiana University - Purdue University
Fort Wayne, Indiana

and
R. C. Swanson
NASA - Langley Research Center

Hampton, Virginia

Pregsented at the
International Multigrid Conference
Copper Mountain, CO
April 1983

¢ Work of this author supported by & grant from NASA-Lengley Research Center, Hampton,
VA.



t
D3
'

Abstract

Embedded Mesh Multigrid Treatment
of Two-Dimensional Transonic Flows

D. R. MeCarthy, Purdue University
R. C. Bwanson, NASA - Langley Research Center

We report the development of a highly flexible computer code which uses a
hierarchy of embedded meshes, communication via multigrid, to solve the
axisymmetric or two-dimensional viscous transonic flow problem. The purpose
of the code is to demonstrate the practicality of techniques sufficiently general
to be applicable to complex three-dimensional geometries, and to serve as a test
vehicle for mesh communication and relaxation procedures. The code is also of
interest in its own right for the fast solution of planer and axisymretric prob-
lems in a very large domain. It consists of a multigrid solver for the full-
potential equation (which incorporates the embedded meshes), with a provision
for later coupling velocity injections to a separate boundary layer program.

The principal feature of the code is its treatment of the geometry by means
of several levels of locally defined body-fitted meshes embedded in a system of
coarser global grids which do not conform to the body. The user may define
meshes as large and coarse as desired, in order to solve the problem in a large
domain, and also as fine as desired, in order to resolve body geometry and flow
field details. The grids need not be coextensive, so that mezh lines placed close
to detail features need not extend throughout the field. The intent throughout
has been to do nothing whose extension to three- dimensions is not straight-
forward; in particular, global mappings are avoided. We have also emphasized
flexible data structures and modular code, with a view toward the development
of a highly vectorized three-dimensional version.
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1. INTRODUCTION

Among the phenomena which currently impede progress in cornputational
fluid dynamics, the following are frequently cited: ‘

(1) the slow rate of convergence of iterative schemes,

(2) the varying length scales, throughout the flow field, of the features of
interest, and :

(3) the difficulties of describing and resolving complex three-dimengional
georretries.

Over the past decade or more a good deal of effort has been lavished, quite suc-
cessfully, on (1), and many effective methods have been developed. Of these,
the multi-grid method has now become widely recognized as a fast iterative
solver for elliptic problems, and to some extent for mixed elliptic-hyperbolic
problems as well. It has, however, received rather less attention as an approach
to (2) and (3). Nevertheless, as faster algorithms and faster computation times
become the rule, the demand for solutions to three-dimensional flow problems
involving complex geometries must inevitably become the primary focus,

The purpose of the current undertaking was to develop a vehicle for the
testing of grid manipulation procedures sufficiently general to treat arbitrary
three-dimensional geometries. To this end, we have produced a computer pro-
gram to solve the two-dimensional (including axisymmetric) transonic potential
flow equation in conservation form. The code includes a provision for coupling to
a separate boundary layer program via mass injection.

Our hypothesis is that the multigrid method can furnisi the underlying phi-
losophy for communication within a hierarchy of embedded (ie., non-
coextensive) grids. While certain assumptions have been made to simplify cod-
ing, we place as few restrictions as possible on the definition and placement of
grids. As the objective is experiment, the code emphasizes flexibility and meodu- -
larity rather than speed. In particular, it has been denigned -go that such
features as smoothing algorithims and interpolation types are easily changed. It
is also equipped to provide a variely of diagnostic information guch as static
residuals and truncation error estimates.

The code may be viewed as the precursor of a fully three-dimensional ver-
sion to be developed for the CYBER 206. Thus we have put primary emphasis on
procedures whose generalization to three dimensions is straight forward, and on
vectorizable algorithms.

1. EMBEDDED MESH

In the numerical caleulation of fluid flows over bodies of complex shape, the
selection of a computational mesh poses difficult problems. The megh must pro-
vide high density in areas of interest near the body and nenr the probable loca-
tions of other features, such as shocks, and resolve the bcdy itself accurately.
Conversely, it must cover a computational domain large »nough to justify an
assumption of far field conditions at the outer boundary, and yel remain
economically feasible for calculations.
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A common approach has been to introduce a curvilinear grid which con-
forms to the body surface, so that the entire domain is mapped to a simple
shape, such as a rectangle or a circle, This approach simplifies the treatment of
boundary conditions. However, the design of such a transformation ig itself a
difficult problem, even in two dimensions, and must be repeated for each new
geometric configuration. For complicated three-dimensional objects, no
transformation may be satisfactory,

An alternative is to employ a more regular, (e.g., Cartesian) grid without
attempting to fit the body. However, one must then be prepared to treat a
plethora of ugly cases as the mesh lines intersect the body in a haphazard
fashion. In three dimensions the number of types of such intersections could be
very large. [B]

Whether or not the mesh is fitted to the body, it is often desirable to allow
unequal mesh spacings so as to permit greater mesh densities in locations
where greater resolution is desired. Unfortunately, if all grid lines begin and
end on boundaries, such density naturally projects itself inlo regions where it is
not only unnecessary, but may be undesirable by virtue of the formation of
mesh cells of large aspect ratio, which can interfere with stnoothing and relaxa-
tion rates. The current work is based on the observation that the difficulties
mentioned above result from the attempt to define globally a single grid under
several contradictory restrictions. Instead we define a hierarchy of grids. The
coarsest of these is global, covering the whole domain with minimal regard for
the presence of the body, and the finest are local and body-fitted, i.e., of small
spatial extent and resolving the body and the flow near it by conforming to local
ccordinates established on the body surface. Since the number and spatial
extent of such grids at any level of the hierarchy is in principal unlimited, the
system should have the flexibility to resolve arbitrary geometries.

While the notion of local mesh refinements is now new, the problem has
always been that fine grids covering different spatial regions are in essence
decoupled. In ordinary schemes, fine grids receive information from coarse
ones, but not conversely. Thus fine grids at the same level cannot communicate,
even if they overlap. Clearly, such a scheme cannot model physics properly,
The introduction of the multigrid method provides fine-to-coarse information
transfer, insuring that the problem is consistently formulated on all levels and
grids.

As a test case we treal the axisymmetric configuration known as Reubush
Configuration #3, depicted in Figure 1, for which extensive experimental data
are available. Left to right, the configuration consists of a conical nose, followed
by a cylindrical body, and terminating in a circular-are "boattail” afterbody.
Behind the body on the extreme right the jet plume is simulated by a solid
cylinder. The region of particular interest is on the afterbody which greatly
influences the drag. At the juncture between the afterbody and the solid plune
simulator, there is a discontinuity in the tangent to the sody surface, where
inviscid theory predicts an infinite pressure spike. In practice, viscous effects
tend to smooth this discontinuity, as well as that at the nose; therefore such
discontinuities have been eliminated by inserting circular fairings of small
radius. All units in the diagram are normalized so that the maximum body
diameter is 1.0,

The test code provides for the definition of two types of grids: Cartesian
grids, which are necessarily rather coarse, and are not body-fitted, and body-
fitted grids, which may be as fine as desired, and are created by a simple verti-
cal shearing of coordinates. Figure 2 depicts a typical hicrarchy of Cartesian
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grids on 3 levels; the code would designate these as levels 1, 2, and 3. The mesh
are square; if hy, is the mesh size at level &, then Ay, = 2h,. FEach fy, is large
compared to the body diameter in order to limit the possible types of intersec-
tion of coordinate lines with the body: we require that the minimum mesh size of
an unfitted grid be at least twice the body radius. As the axis is a horizontal
coordinate line, only vertical coordinate lines can intersect the body surface.
Figure 3 depicts a hierarchy of fitted grids, the coarsest of which has the same
mesh size as the finest unfitted grid. The code would designate these as levels 4,
5, and 6, so that h, = hy, and otherwise hy,, = Rhy. : :

While this situation is not completely general it simplifies both input and
grid manipulation and permits testing of most questions of interest, In a gen-
eral environment, it would devolve upon the user to specify the shapes and
extent of the desired grids, say via mappings or data, as well ag their levels and
mesh sizes. Here one need only specify the number of levals of each type, the
mesh size of the finest Cartesian level, the level of each grid and its left, right,
and outer boundaries. Several restrictions are imposed:

(1) The mesh intersections within any grid must constitute a rectangular
array;

(8) Each grid of level k, k>1, must be contained in a grid of level k —1,
: called its "parent”;

(3) 1f any part of a cell of any level k grid is refined on level k +1, then the
wheole cell must be refined;

(4) No two grids on the same level may overlap.

If conditions (2) and (3) are not met by the requested grid boundaries, the code
will attempt to satisty them by expanding grids as necessary. All grid number-
ing and storage allocation functions are automatic,

It may be noted that, owing to the simplicity of the geometry, it is foagible
here to allow the entire hierarchy of grids to be body fitted. In fact, as the mesh
gize grows large, the difference between fitted and unfitted grids diminishes, so
that the coarsest grids may as well be fitted to the body. This is no doubt advan-
tageous where it is possible. However, as our purpose was "0 create a test vehi-
cle for situations where interpolations between grids of diffcrent Lypes might be
necessary, we have provided for both possibilities. In any event, fully fitted grids
at all levels are included as a special case,

HI. PROBLEM FORMULATION

- We solve the transonic potential equation in conservaticn form

(pur)y + (pur)y =0 ; (1)
where , , ’ ‘
o= Q@“_ = -a—g_ ‘ ) L .
Y YT by T | (2)

are the velocities in the (Cartesian) = and ¥ directions, p is the‘velocity poten-
lial, p is the densily, and 7 is cither equal Lo one, in the case of plane flow, or
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equal to ¥, the distance from the axis, in the axisymmetric case. The free-
stream velocity is denoted by (u.v.); we assume that v. = 0 and scale ¢ S0
that v, = 1,

Via the assumption of isentropic flow the density p may be calculated as a
function of w and v. If u,, is the free stream speed of sound, and M. = 1/a_,
then

=1 - Lo 2 (ur 02 - ), | (8)

where 9 is the ratio of specific heats.

On sheared grids equation (1) is transformed as follows. We assume the
body surface to be given by a curve of the form y = f (z); sheared coordinates £
and 7 are defined by

E=ux

n=y - f(x) (4)
whereby (1) becomes

murh+@w~MUW%:0, (5)

where m. = f '(¢), in terms of the (Cartesian) velocities @ and ». These are
obtained in turn from

we=D00 000 Bodn _ B¢ . B¢

0z 0f B dn Oz o¢ an : ‘
90 . dp 0f  Dpom _ dp (®)
by 8¢ 0y Onoy On

so that (B) is equivalent to

L

Again, r = 1 in the planar case, and r = ¥ in the axisymmetric case,

8¢ _ ., B0

o on =0

7

T +

—m 20 2y 8¢ |
e m6€+(1+'mk) B'n]'r

3

Boundary Conditions

On the axis and on the body we impose the free-slip condition 8o/ 0n =0,
where n is the normal to the axis or body surface. On the upper boundary of the
largest grid we impose the free-stream condition v = w., so that P = U +
we arbitrarily sel ¢=0. On the left (inflow) and right (oulflow) boundaries we
take v =0, so thal ¢ = constent; the constant is known from the value of ¢ on the
upper boundary. Since the boundary is placed very far from the body, we
expect that the exact form of the boundary conditions will have little influence
on the solution. This formulation has the advantage of posing Dirichlet condi-
tions on three sides of the domain.
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Each grid except for the coarsest inherits Dirichlet boundary conditions on
the left, right, and upper boundaries from its parent, while retaining the condi-
tion 8¢/ dn = 0 on the axis and body surface. Inherited boundary conditions are
subject to change during multigrid cycling. ; ‘

There is further a provision to incorporate an injection velocity from a
separate boundary layer program, so that 8¢/ 9n becomes a specified function
of position. This provision has so far not been exercised.

Pinite Difference Formulas

The actual differencing formulas closely follow the scheme used by Green
[4]. Let i and j represent discrete variables corresponding to ¢ and ), respec-
tively, and consider at the point (¢,7) the formulation of a mass balance on the
cell about 1,5 depicted in figure 4. The potential ¢ is initially specified at the
mesh points (+a, j+8), where a,f = —1, 0, 1. One may calculate d¢/ 8¢ al the
mid-points of the cell sides via second order central differences of the type

(897 88)ir 3= (Qerrg ~ Pug)/ b (8)

One obtains d¢/ 87 at the same points by averaging the values of 8¢/ 0 calcu-
‘lated from second order central differences at the points (i-1,4), (¢,j), and
(i+1,7), i.e., via formulas of the type ‘

(897 0M)ivay = (Pirajsr — Piraj-1)/ 2R, a =01 T (%)
followed by

B9/ 8n)ir g = ((Bp/ 0n)ir1y + (Bp/0M)i3)/ R . (10)

The derivatives of ¢ are available at (i,j £ 1) by the same procedure with the
roles of ¢ and n reversed. From these, one obtains 98¢/ 8¢ and 8¢/0n at
(i + %, 4 + %) by averaging, i.e.,

(897 8E)ie pjen = (097 88) i yps + (09/ 8E)is 541/ R
(a(/’/ on)i+ Bi+h = ((ﬁ(p/ a'r))i,ﬂ» yt (5(p/ 677)H1,j+ %)/2 . (11)

Note that all quantities on the right side of (11) are available from within the 3x3
computational molecule centered at (i,5).

With the derivatives of ¢ available at the cell corners, tire velocities u and v
‘may be obtained from (8) and the density p from (3). In crder to estimate the .
mass flux out of the cell, one requires the densities p at each cell side; these are
obtained by averaging the densities at the corners, as in

Pivyj = (Oitpi-p T Pir wit W/ R ; (12)
The efflux through the right side is estimated as

Pivhi Yaehi TivHi | | B (18)
and that through top of the cell as
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With similar quantities subtracted as the influx through the left side and bottom,
the scheme amounts to a conservative second-order differencing of (5).

Some modification is necessary for points on the body or axis. The situa-
tion for a point (4,0) on the body in a sheared grid is shown in Figure 5. The
vertical velocities 8¢/ 37 at points (ix %,0) are obtained from the boundary con-
dition :

Vie 3o T Masyy Ugs o (15)

rather than from (11). The densities Pix 3,0 are found directly from « and v, and
the fluxes through the sides are estimated in the form p;, %0 Uix %0 Tixp0 The
densily p; o is given by '

Pio = (Pi-po + Pi+p0)/ 2 ; (18)

and the flux through the body surface is p; Ving Ti00 Where vgs is an injection
velocity supplied from a separate boundary layer program. For all results
reported here, vy = 0. For a point on the body in a Cartesian grid, depicted in
Figure 6, the situation is more complex, and second order accuracy cannot be
achieved without increasing the size of the molecule. However, such grids are
ordinarily quite coarse, and formal truncation error estimates are not relevant
since A is large, What is required is a reasonable estimate of mass flux in the
large. The scheme is the same as in the sheared case, except that

(097 0m)i, 3% = (pi1 — pi0)/ (h—1) (17)

which is not second order. Likewise, the averages (11) must be weighted to
account for the unequal distances involved, and flux estimates multiplied by
appropriate lengths. '

While providing second order accuracy with a 3z 3 molecule, this scheme
has the advantage of calculating the density only at cell corners; note that there
are half as many cell corners as cell gsides,

It should be noted that the slope m = fF '(§) can be found either analyti-
cally, since f is presumed known, or by differencing relevant values of f. We
employ the latter, reasoning as follows. Consider, for instance, the value of m at
=0, al the nose of the body. If this value is obtained analytically, it will be
estimated from the short circular fairing provided in that region and may thus
vary rather arbitrarily between values of 0.0 and 0.25. Nevertheless, for coarse
grids, its function is to describe the shape of a large cell which has no relation-
ship to the locally defined analytic derivative £ '(0).

Alternatively, consider the cell depicted in Figure 4. If the boundaries fol-
low the coordinate lines nxdn = constant, {xd§ = constunt, then the (continu-
ous) estimate of the flux through the top boundary is (for the planar case)

[ P @1 () as (18)

where p, v, and u are evaluated at (§,m+dn), as in the estimates (14). However,
(18) is merely
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where
o Lt - [{E+dE) — f (£ — dE) |
M= ot S T(8)ds Pdg L | (20)

Thus - utilization of (20) to calculate m is mdlcated for cells with curvilinear
boundaries.

Shifted Density

At supersoni¢ points the calculations are stabilized by upwind evaluation of
the density, as suggested in [5]. If the local Mach number is M, we define a
switching factor ' :

S pEmax(l- o 0) IR

and replace p; ; with

Bij = MPi-1y + (1=w)psj - ‘ (RR)

This corresponds to a shift in the —¢ direction, which, for the‘ flows considered
here, corresponds roughly with the upwind direction. f

A difficulty arises here because of the embedded mesh. In such problems
the inflow boundary is normally subsonic; however, where grids of small spatial
extent are introduced the probability is that certain 1nf10w boundaries will con-
tain supersonic points. Bince such grids are generally finar than their parent
grids, upwind densities are not directly available, Presumably they could be
interpolated from coarser grids, but this has not yet been aitempted here. Thus
we must temporarily insist that no grid may have its inflow (left) boundary
inside a supersonic zone, This restriction is rather limiting, since in supercriti-
cal cases the flow at the beginning of the boattail is supersonic. This forces fine
grids to extend far forward on the body and limits the resolution obtainable with
the present code.

Iv. SOLUTION PROCEDURE

The Multlgrld Cycle

We have implemented the multigrid procedure descrloed by Brandt [1,2];
we describe the situation here in general terms, referring the reader to [2] for
details. ,

The principal difference between the multigrid method for embedded mesh
and that for coextensive grids lies in the dual role of the coarse grids. On that
portion of any grid which underlies a finer one, the former plays the role of a
correction grid for the latter. On the remainder, it plays the role of the finest
grid. Bince on this portion it must serve to define the finite difference solution
Lo Lhe original problem, so on Lhal portion which serves as a correction grid it
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must also describe the full solution, rather than a correction, to the original
problem. Thus the full approximation storage (FAS) algorithm must be used.
The use of FAS is also indicated for non-linear problems [1].

For embedded mesh problems, the full multigrid (FMG) algorithm provides
convenient initialization on all levels. This algorithm begins by solving the prob-
lem on the coarsest level, level 1; having solved on level k, it interpolates an ini-
tial approximation to all grids at level k+1, and then executes solution at level
k+1 via FAS, We initialize level 1 to uniform flow.

Coarse grids communicate information to fine ones by establishing (Diri-
chlet) boundary conditions for fine grid problems. Communication from fine
grids to coarse ones takes place during grid coarsening, when the right hand
sides of the coarse grid problems are adjusted by FAS to accomimodate the rela-
tive truncation error between the two and thus enable the coarse grids to simu-
late the fine grid problems. Subsequent processing on the coarse grids permits
adjustment of fine grid boundary values,

We provide several ways to control the multigrid cycling. The simplest of
these provides for a fixed number of multigrid cycles at’ each level, with a fixed
number of relaxation sweeps on each grid; these numbers may vary from level
to level and grid to grid, and according to whether the relaxation follows grid
coarsening or grid refinement. If the relaxation scheme smooths the error
properly, and if the theoretical smoothing rate is known, then it should be possi-
ble to specify in advance the desired number of sweeps and cycles. Unfor-
tunately, for non-linear problems and less than ideal smoothing procedures, it
may not be possible to make such a prediction, since such rates depend on the
evolving solution and vary from point to point throughout the field.

We also implement the "accommodative” procedure described by Brandt.
This procedure attempts to monitor actual convergence rates and direct the
calculations accordingly., When the convergence rate on any grid deteriorates
past a user-defined value, calculations are transferred to thie next coarser level.
When convergence, as determined by a user-defined tolerance for the residual,
ig achieved on all grids at any level, calculations are transferred to the next
finer level, This scheme, of course, requires the user to supply reasonable esti-
mates of convergence rates. If the rate requested is too low (i.e., too fast), then
grid coarsening will occur before high frequency error has been eliminated. This
error will either not be seen by the coarse grid, or will be identified (i.e.,
"gliased”) with low frequency error components.- The coarse grid problem will
then appear to be converged, possibly after some unnecessary work, and caleu-
lations will return to finer level with no improvement; the cycle then repeats. If,
on the other hand, the requested rate is too high (i.e., slow), then unnecessary
work is done.

In the context of embedded mesh, this scheme presents some theoretical
difficulties as well with respect to the definition of convergence. In the case of
coextensive grids, the problem to be solved is the fine grid problem; when the
residual there is small, the solution is considered converged. (The multigrid
procedure can, by estimating truncation error, supply some indication of what is
"small”, but the objective remains the same.) Thus the exact cycling procedure,
assuming convergence is achieved, aflects only the work done and not the solu-
tion itself. One may easily see, however, that in the case of embedded mesh,
convergence cannot be defined in terms of residuals alone, whether on the fine
grid or even the entire hierarchy. One must also be certain that the correct
problem has been posed on each grid, that is, that each grid has communicated
sufficient information to its parent that its inherited boundary values are
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correct. Thus one should also insist that, at convergence, each coarse grid
problem should be the correct one, that is, that a recalculation of its right hand
side would not result in significant change. The natural criterion is that such
change should be small compared to the relative truncation error, which itself
may be estimated during grid coarsening. An extrapolation of this estimate also
provides a natural convergence criterion for the unrefined portion of each grid
[1]. The test code contains a rudimentary capability to menitor convergence in
this way. However, it should be noted that the validity of the truncation error
estimate depends on the assumption that the error on the fine grid is smooth
when the estimate is made. Thus it is precisely in the circumstance in which
convergence is difficult to achieve that such estimates may be much too large;
indeed, that has been our experience so far.

Iterative Procedures.

The solution by iterative methods of non-linear equations in general, and (1)
in particular, may be regarded as consisting of two logical parts. First, some
linearization is formed by presuming certain quantities to be known. Then some
iteration is performed on the resulting linear system: This we term the inner
iteration. Bubsequently, the quantities previously presumed known, which occur
as coefficients of the linear system, are updated to form a new linear system,
This iteration, necessitated by the non-linearity, we call the puter iteration. For
the equation (1), a natural linearization is obtained by calculating and freezing
the density p. The resulting system of equations in the components of ¢ is linear
because v and v are linear in ¢ and (1) is linear in % and v for fixed p. Other
linearizations are of course possible. o

In practice, the inner and outer iterations are often intermingled. Firstly,
it is seldom regarded as useful to fully solve the linearized equations when the
coefficients are only approximate, - Usually the coefficients are updated as
quickly as possible, or at least after each single full iterative step for the linear-
ized problem. For line SOF, for example, updating of coeeificients for each line
normally preceeds the updating of unknowns for that line. Such procedures
obscure the separate convergence and smoothing properties of the inner and
outer iterations,

‘The distinction between inner and outer iterations also bears heavily on the
vectorizability of the algorithm. If the coefficients for a full grid are updated
- simultaneously, for example, then full vectorization of the outer iteration is pos-~
sible. For line SOR, as described above, it is not. In addition, the inner iteration
for the unknown ¢ generally takes the form

N-Ap = K | ~ _ ; (23)

where N is a matrix, Ap the change in the solution ¢, and R the vector of residu-
als, It ¥ and N can also be precalculated for the entire grid, the calculation of
Ap can be simplified (and possibly vectorized, depending on the nature of N).
Therefore, prior to each relaxation sweep, the test code provides precalculation
over the entire grid of all densities, followed by residuals and molecular
~ coefficients. These are then available to any relaxation scheme which can utilize
thermn. ~

We have currently implemented four standard relaxation schemes, to which
we refer as follows:
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(1) TFully Implicit (#7). Here the frozen coefficient equations are solved
directly by a LINPACK banded matrix solver,

(2) Gauss-Seidel Vertical Line Relaxation (GSVLE). For each vertical line,
the densities and coefficients are updated and the resulting tridiagonal
system is solved by LINPACK. The precalculated coefficients and resi-
duals are not used.

(3) "Jacobi” Vertical Line Relaxation (JVLE). This is the same as GSVLR
except that the precalculated coefficients and residuals are used.

(4) Point Jacobi (PJ). Bach point is updated using the precalculated resi-
dual.

The FI method is supplied in order to completely eliminate the inner itera-
tion. It is not particularly vectorizable. This type of solution is available at mod-
est cost provided the sizes of grids, and their bandwidths, remain small. This
would obviously be more difficult to achieve in three dimensions. We include
GSVLE because it is standard in many codes of this kind; the updating of
coeflicients is vectorizable with vector lengths equal to the relatively small
number of vertical mesh lines; the tridiagonal sclution is not vectorizable. The
JVLE method ig a variant of GSVLF for which coeflicient updating is vectorizable
with vector lengths equal to the number of points in the entire grid. The PJ
method is eminently vectorizable and exceedingly cheap, and lies at the oppo-
site end of the relaxation method spectrum from F7.

Operationally, the user may specify the relaxation type to be used for each
grid; they need not be all the same. The modularity of code and the availability
of precalculated coefficients and residuals make additional relaxation types
easy to implement.

V. NumericalExperiments

The code was of course designed with extensive numerical testing in mind.
We report here only some preliminary experiments done for the purpose of vali-
dating the programming and obtaining some initial expericnce with embedded
mesh, We compare the results with experiment and the performance with that
of CONRAX, a conservative version of FAXBOD [9] developed by Green. It calcu-
lates inviscid potential flow on a single stretched grid by  SLOR.

The experiments for our program, which we call MG4, were performed at
Purdue University on a system composed of CDC 6500 and G600 computers. For
the purposes of reporting timing information, we report ¢FPU seconds for the
6600, using Purdue’s rough rule of thumb that 1 second for the 6800 equals 2
seconds for the 6500 Lo convert where necessary. As a rough measure of conver-
gence we refer to 74, and Ty, the average and maximuam residuals on the
finest grid on the afterbody. These represent the defect in (1), and are in
divided form, so that they represent a rale of mass production per unit area per
unit time.

We consider two cases: one in which the free-stream Mach number
Mo = 0.80, and.one with M. = 0.96. The former is a subcritical case presenting
no unusual difficulties; the latter is supercritical with shocks on the cylindrical
body and the afterbody and is difficult to resolve,
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Timing

Table 1 shows CPU seconds and residuals achieved for M. = 0.80 for a
variety of solution procedures. Except for the last case, cach #G4 run uses b
levels of grids, all body fitted. The sizes of these are listed in table 2. The 6th
level is present only in the last table 1 entry.

Procedure CPU sec. Tang . Figure
FI, 1 eyele 47.6 3.0z 107 1.2z 1078 7
F1, 5 cycles 1438 2.9z 10¢ 4.1z 107 v
GSVLR, 1 eycle 308 45z 107% 4.4z 107 7
GSVLR, 5 cycles 866 5.9z 0% 442100 7
JCVLR, 1 cycle 19.8 8.0z 108 292 107 ?
JCYLR, & cycles 55.2 R4z 107* BBz 107* .k 7
PJ, 1 cycle 18.6 B4z 1078 4.0z 107° 7
PJ, 5 cycles 51.7 92z 10" 3.0z 107° 7

FI, 6 levels,1 cycle’ 819 51z 107 23z107° 9

, Table 1
Times and Residuals for #. = 0.80

The test code restricts each grid to 231 points with a maximum of 11 mesh
widths vertically, with the total number of points not to exzeed 1024, The total
number of points for the MG4 results in table 1 is 649, except for the last entry
where it is 874. The multigrid cycle is fixed at 5 relaxation sweeps on each grid
before coarsening, 2 sweeps after refinement. The number of cycles (in FMG)
before reaching the finest level is always 1; the number after reaching the finest
level is given in the table. The program was compiled using the F'TN4 compiler
at optimization level 2; the compilation requires about 40 seconds on the 6500.
Times in the table are execution times only.

Comparigson with Expériment : ‘ ;

Figure 7 presents the coefficient of pressure (CP) or the afterbody com-
puted with MG4 as compared with experimental data. Claracteristically, one
expects a drop in the CP during the expansion phase at the beginning of the
afterbody, followed by a precipitous rise as the flow compresses approaching the
juncture with the exhaust plume (indicated by a tick mark on the axis in the
fipure. Because of the discontinuity in the derivative at ths juncture, the invig-
cid flow experiences an infinite pressure spline at the junctire, which is mollified
in the experimental data by the presence of the viscous boundary layer which in
effect smooths the discontinuity. Thus the computed pressure rise naturally




-14-

Mesh  Step Boundaries
Level (¢éxn) Size - Left Right Outer
1 11x5H 4.0 . -16.0 24.0  16.0
2 13x5 2.0 -8.0 16.0 8.0
3 21lxb 1.0 -4.0 16.0 4.0
4 13xb 0.5 -2.0 4.0 2.0
13x5 0.5 8.0 12.0 2.0
5 21x5H 0.25 -1.0 4.0 1.0
21xg  0.25 6.0 11.0 2.0
B* 26x9 0.1256 8.0 11.0 1.0

* Present in last case of table 1 only.

Table 2
Mesh Sizes

exceeds, and to some extent must precede, that of the experimental data.

We present only one such graph because of the rather remarkable result
that the computed CFP for all 8 cases differs by only o few percent, so thal the
graphs are indistinguishable, We elaborate on this situation in the next section.

Figure B shows a similar comparison with pressures computed by CONRAX
on a 77439 grid. It may be observed that the CONRAX data follows the experi-
mental data farther along the afterbody before feeling the effect of the pressure
spike. However, the density of points on the boattail for CONFRAX is about twice
that at level 5 of MG4. We thus augmented the #G4 mesh by adding an addi-
tional level, with results as shown on Figure 9. (Note the expanded horizontal -
scale.) The effect is in fact to draw the computed data to the right, and to
increase the pressure spike because of better resolution of the discontinuity.
An attempt to refine the mesh yet one more level placed a point-extremely near
the juncture with the result of an enormous pressure rise past which the finite
difference scheme could not track the solution.

Clearly additional investigation of the effects of mesh refinement are
required.

A few selected results for M. = 0.96 are shown in table 3, This case is far
more critical with respect to the dependence of the solution on the degree of
convergence and placement of grids. We show no attempt to obtain MG 4 results
with 6 levels because, in order to avoid supersonic inflow, the fine grid would
need to extend too far to the left and exceed dimension limits in the test code.
An attempt was made with supersonic inflow; this procedure ultimately diverged.
Because of previous experience, we limit GSVLE to 1 cycle. CONKAX result&, for
this case are shown in Figure 14,
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Procedure CPU sec. Taug P max Figure

GSVLR, 1 eyele 3806 1.6z 1079 1.1z10® 10

FI, 1 eycle 478 1.7z 10°% 78z 1078 11
FI, 5cycles . 2124 46z 107* 57z 1078 12.
F1, 10 cycles® 542.0 30z 107° R4x 10"4’ v ‘,13

*  Number of smoothing iterations after refinement was increased from 2 to 5.

. Table 3
Times and Residuals for ¥, .= 0.98

V1. Concluding Remarks

First, it is clear that the procedure can be made to work, and that the cost
is low compared to other standard methods. However; it is also obvicus that it is
quite sensitive to certain factors; it is the identification and explanation of these
dependencies which is of fundamental importance. \

The most striking feature here, as with all such schemes, is the deteriora-
tion of its effectiveness with increasing Mach numbers. Even the fully implicit
procedure, which commonly exhibits a smoothing rate of 0.4 to 0.6 in the case
M. = 0.B0, deteriorates to a rate of 0.85 to 0.95 when ¥, = 0.96.: The important
observation here is that, since F7 eliminates completely the inner iteration by
solving the linearized equations exactly, it is the outer iteration, i.e., variation in
the coefficients, which impedes the smoothing process. Thus, success will
necessarily depend on either a clever scheme for updating the coefficients or on
a different linearization, such as a Newton-like method, designed to take the
dependence of p on ¢ into closer account., The extremely poor performance of
GSVLE seems to indicate that the simple approach of updating the coefficients
more frequently is not the selution,

It is also cbvicus that it is necessary to clearly define what is meant by a
golution. For M. = 0.80, the prediction of the CF apparently is very little
effected after convergence of a certain minimal amount has been achieved. This
indicates that variation in computed results is due to variation in the computa-
tional model, including the degree of refinement and the placement of grids as
well as the finite difference equations. Such effects.account for most of the
difference between M G4 and CONRAX results. Unfortunately, it is impossible to
" compare computed resulls with a "true inviscid solution”. Comparison with
experiment should be more reasonable after coupling to a separate boundary
layer preogram. However, the only hope of monitoring convergence internally to
the computation is by estimating truncation error as suggested by Brandt [1].
We have made some preliminary attempts to do so, with the result that the esti-
mates are quite large. This may be correct, bul needs further study. It is
suspect largely because of the uncertainty, especially for ¥, = 0.96, whether
the error has been sufficiently smoothed to permit such estimates.
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some rather more specific observations may be made from the computed
results. Referring to table 1, we find that good results can be achicved with rela-
tively cheap calculations. Some of these, such as PJ, are highly vectorizable ag
well. Note that one can afford & cycles of PJ for the cost of 1 cycle of FI, with
residuals larger by only a factor of 3. For vector calculaticns, PJ might well be
superior. It should be recalled, too, that since the grids considered here are not
large in the vertical direction, the size of the tridiagonal systems encountered in
the VLE methods, and the bandwidth of the systems in F7, is not large. In
three-dimensional applications the solution of these system: will occupy alarger
proportion of the computing time,

The poor performance of some of the schemes, such as GSVLF, may be due
to a failure to take sufficiently many relaxation sweeps after grid refinement.
Apparently the (linear) interpolation used introduces some high frequency error
which is eliminated only by several sweeps. It is essential to note that we have
not attempted teo optimize the performance of any of the solvers,

A definite feature of the computed data is the horizontal smearing of
features, which may well be an artifact of excessive reliance on coarse grids.
This is especially evident in the M.. = 0.98 case, where the pressure rise is antici-
pated well in advance, resulting in an underprediction of the minimum presgsure,
This phenomenon is indicative of excess artificial viscosity, induced here in the
form of upstream shifting of density evaluations. Since these shifts are propor-
tional to the mesh size, they can be quite large on the coarsest grids, It is
apparent that some balance must be struck which will limit the artificial viscos-
ity and yet maintain stability. We have attempted to relate all shifts to the mesh
size of the finest grid, but calculations on coarse grids then become unstable.
The matter requires more attention, as does the question of shifting for super-
sonic inflow on fine grids.

We have little experience so far Wlth the unfitted grids, We have done calcu-
lations with 3 levels of fitted grids and 3 levels of Cartesian grids, with good
results. There seerns to be no difficulty in achieving the appropriate mass bal-
ances near the body, and, in fact, in some cases the computed CP's appear
closer to experimental data than those shown here. Linear interpolation
between the finest Cartesian and coarsest sheared grids, however, did not .
appear to be effective, nor did cubic interpolation exhibit particularly superior
characteristics.: We anticipate further work in this area.

"V_[l. Cavéat

1t must be emphasized that the program MG4 which we describe here
remains in a state of development.. The results which we show were obtained
partially for the purpose of testing the method, but mainly for the purpose of
testing the code. This code has not been extensively exercised. In view of its
complexity, it is quite possible that coding errors remain to be uncovered. We
caution against placing premature reliance on negative results. Considering the
- crmubryonic nature of the software, we must report that, at this stage, the

method and program both work remarkably well. ,
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