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ABSTRACT

In order to improve efficiency and accuracy in the solution processes,

multi-grid and step technique is developed for studying chemical transport

and diffusion in the atmosphere. The multi-grid and step numerical method

uses in the time dimension: variable order of interpolation polynomial and a
var1a51e time step and uses in the spatial dimensions: a set of different gkid
sizes. The capability and feasibility of the multi-grid and step technique for

solving the stiff partial differential eguations have been described and

demonstrated.



1. INTRODUCTION

Over the years the mechanisms of oxidation of sulfur dioxide to sulfate

have received considerable attention. Numerical modeling of such transformation
mechanisms and rates in the atmosphere have been studied extensively, but simple
Tinear chemical reactions have been considered primarily. In more recent years,
there has been increased concern about nonlinear chemical reactions associated
with a host of homogeneous and heterogeneous oxidation processes. A number

of "one point” comp]icgted kinetic models of photochemistry have been developed.
The mathematical description of such a photochemical process can be reduced to

a set of simultaneous coupled ordinary differential equations in which time is
the only independent variable. It is known that these chemical model equations
are often very stiff, which means that the individual reactions proceed with
vastly different time scale. There are a few successful numerical techniques
(Gear, 1971; Winslow, 1973, 1979; Hindmarsh and Byrne, 1975 and Young, 1980) for
solving such stiff ordinary differential equations. However, in the simulation
of chemical pollutant transport and diffusion in the.ambient atmosphere, which
must include calculations at many spatial grid points, the major numerical
difficulty with which we are faced is to solve such a large system of stiff
partial differential equations jn which both time and space are independent
variables. The usual approach to such problem uses multi-step implicit numerical
integration method at each grid point. The stiff partial differential equations
must be integrated and iterated until convergence is reached at many spatial

grid points over a relatively short periods of time. Thus, computational time

and storage involved in solving these sets of stiff partial differential equations
describing the pollutant transport-diffusion-reaction problem increase dramatically.

Therefore, a fast smoothing technique is needed in order to improve the acceleration
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of the convergence within the iteration and to obtain accurate solutions in

the spatial distribution. The multi-grid technique (Brandt, 1977) is the best
choice for such purpose. Hence, the approach suggested in this study combines

the multi-grid technique with multi-step implicit integration ﬁethod into an
accurate and efficient method for solving time dependent stiff partial differential

equations.
2. MODEL EQUATIONS

A general mathematical description of transport, diffusion and reéction for

M chemical species in the atmosphere can be written in the differential form as

24 = -ye(Vey) + We(OVC,) + Q; + S, - L;(C)C; + Py(C) ; (1)

i=1,2, . .. LM
where Ci is a pollutant for species 1,
V is the wind velocity,
D is the eddy diffusion coefficient,
VCi is the gradient of Ci’
Q.

1

Si is the sink term for species i,

Li(C)Ci is the chemical Toss of species C; in reactions with other species,
and Pi(C) is the chemical production of species C; from other species.

is the source term for species 1,

It is noted that the variables C;s V, D, Q;, and S; in Eq. (1) are generally

functions of time and space.

3. NUMERICAL METHOD
Given approximations for spatial derivatives [i.e., V'(VCi) and Vo(DVCi)],
one can cast Eq. (1) in the following ordinary differential form

dCi . ' (2)

5 = - Lle)e, + By(C)

where Bi(c) = - V°(VC1) + V-(DVCi) + Pi(ﬁ) + Qi + Si



(3.a) Multi-step method

In the numerical solutions of Eq. (2) at each grid point, the method is
based on the extrapolant formulation (Winslow, 1977) which is simple and efficient
technique suitable for chemical kinetic problems. For the method, a Newton
interpolation polynomial Pi,k of order k for species i is constructed by passing

through the unknown solution C?+1 together with the previous k solutions C?,

¢t L O e,
‘ N+l 500 2
P,«i ) - CY_:+1 (t . tn+1) VCn+1/h + ( ~ n+1)(t -t ) v2 /2.h
T L YO O BN C I L Vv 1 (4)
where t7 = t° + nh (5a)
S (5b)
72 = vt ovel = oft - ach + o}
! (5¢)
gheMl o gholgntl | gkl

i i i
and C?+1 is the value of C, for species i at (n + l)th time step. This Newton
interpolation poTynomiaT can be written in terms of the extrapolant by defining

each extrapolant E k for species i to be the extrapolating value from a poly-

nomial p., , of order k at t = " *l over a set of previous solutions C ¢ 1, ces s
i,k ‘ 1

n-k+1

C , 1.8.

ik T Pik

= ¢ + (" £")vei/n + AL YL t”"’l)vzc’;/mh2

ntl ( n+l tn~1)(tn+1 _ tnuz) . (tn+1 _ tn-k+..1)

P C LR L Y

ch?/k!hk - (6)
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The Tower order extrapolant is thus

ntl _ .n
Eiy = G (7)

and the others can be easily obtained from the recursion relation

k n+l n=j

LT U IS SR - o o L 8
ikl isk j=0 " tn~-3-~1 i ik (8)
From Eq. (6), we have
n_ egntl  on
Vci - Eiwl Ci (ga)
voch = gl | pntl
i 1,2 i,1
. (9b)
kon _ ontl n41
A R S (9c)

Using Eq. (7) and Eq. (9), the Eq. (5) can be rewritten as

n+tl _ .+l n+l
[ T ER S P (10a)
2-n+l - n+1 n+1 )
L S ] (10b)
kentl _ ol ontl
Ve =l - By ey (10c)

When the Newton interpolation polynomial is written in terms of the extrapolants
by substituting Eq. (10) into Eq. (4) and then differentiated with respect to

time, Eq. (4) takes on the simple form

n+l n+l
dpi,k = %“1 Ci - Eisi (11)
dt 5=0 tn+1 _ tnmj

+
Applying Eq. (11) to system (2) and solving for L 1at each grid point,
i P

ES

we finally obtain

k-1
T EQ+§ Ry + B?+1(C)At
c?*l - 3=§ 1 s i=1,2, . . . LM
3R+ LT (c)at (12)
j=0



n+l n
here .=t -t
W 3 _tn+l ~ tnw,] (13)

n+l n+l n+l

Noted that B and Ly~ in Eq. (12) are functions of C . The value

n+l
15
Equation (12) is in a form which can be solved fby~0?+1 iteratively by using the
n+l n+l

E in Eq. (12) can be easily obtained from the recursion relation Eq. (8).

and L

last grid values of C?+ to update B until convergence is reached.

The variable time step and order of interpolation polynomial for solving

Eq. (12) can be adjusted through the error control. The truncational error by

ntl n+1 n+i
i

essentially the last neglected term on the right—hand side of Eq. (6), namely
(A ™™y ™ ek )1 here (TR
i

using the extrapolant in Eq. (6) is just (C, ) at t =t which is

is evaluated in an interval between tn’k and tn+1. Then, it is easily .shown that
1

n+l n+1
[c; ] (14)
Defining the relative error
8, = C?+1 E?+i (15)
k ~ ch+l

i

and setting 60 is the desired relative error for the next new time step, we obtain

by combining Eas. (14)and (15)

1

(At) ki

new (Sk (At)o1d | (16)

By computing (At)new for k-1 and k+1 and comparing these vaiues of (At)new
we have a criterion for changing the polynomial order k by +1 whenever it will lead
to a larger time step.
(3.b) Multi-grid and step formulations

The spatial solutions for Eq. (12) can be obtained by applying the m{thod
described above at each grid point in the spatial domain. The common approach in
the spatial calculation is to use a mesh with constant grid size for the solution
processe§9 i;en without considering adaptive grid size as time step presented

/



earlier. Therefore, much computational time can be wasted in solving-an unneces-
sarily large system of algebraic equation (12) by iteration. Hence, a multi-grid
technique based on the structure of multi-level adaptive technique (Brandt, 1977),
which employs a set of different grid sizes to approximate the same domain in the
solution procesSesS combines with the multi-step method presented in the previous
section to be used in this study. Preliminary results using this multi-grid
technique on the time-dependent problems have been presented elsewhere (Lee and
Meyers, 1980).

First, the problem is discretized in space at each specified time step by
numerical apprdximations on a sequence of grids Gl, GZ, .. . G", where Gl is the

coaresest grid. Typically, the grids have mesh size hK = ZhK+1 where hK represents

K n+l, f

the grid size of the grid 6". We assume the exact discrete solutions C; where

f denotes the fine grid, to be the sum of approximate solutions and residual error

functions, such as

+ +1, +1,f
e . (17)

1,f ntl,f

are approximate solutions of (.‘,qi from the iteration procedure,

+
where X?

n+l,f

and € are the residual errors on the find grid domain at (n+1)th time step

for species i. After substituting Eq. (17) into Eq. (12), we have the residual

equation for Eq. (12) on the fine grid domain.

k-1
[z R, + L?+1
j=o 9

o+ T 3 ;
()at] ef™F 4 [T (o) - 1Mt

+ 4
- 81Ty - B o Tat

k=1 ’
41 f -
- F? 1,f _ {[,Z Rj 4 L?+1’{(X)At] X?+19f _ B?+1,f (x)At)
J=0 -
k-1 ' (18)
n+l,f _ ntl
where F,i = % Eigj Rj



Before solving Eq. (18), let Sn*l’

n+l,f

represent the terms in the right-hand

side of Eq. (18). If S for each species fluctuates with a wavelength

larger than 4 he over the fine grid, the residual equation (18) can be solved

n+l,f

on the coarse grid. Therefore, any fluctuations of S with a wavelength

less than 4 hf should be smoothed out through a relaxation technique. Once the

S?+1’f are smoothed, the residual equations then can be interpolated into the

n+l,c n+l,c

coarse grid and solved for e , which are the approximate solutions of €
on the coarse grid. By doing that, the computational time is reduced tremen-
dously by solving the residual equation (18) on the coarse grid instead of
the fine grid. For this purpose, the residual equation on the coarse grid

domain can be constructed as follow:

k-1 -
B A (A NS R MG (I
j=o !
¢ ntlLf k-1 n+l,f n+l,f n+l,f
=16 (7T ([ R +I,. ()At] "B'i (x)nth}
f o =
j=0
+[k):1R + 18 (L o0me1 (18I - 18 T ))at
o £ £\ X (19)
j=
where X?+1 C - e?+1,c + ng?+19f and Ig represents an interpolation operator
from the fine grid to the coarse grid.
" After solving Eq. (19) for Xn 1, on the coarse grid, we interpolate Xn *1,¢
back into fine grid, and therefore, form improved approximations to Xn+1 f, i.e.,
n+l,f nt+l,f f (. ntl,c c _n+l,f
O dnew = 06 77 org * T O 777 = T 700) (20)

The advantage of the multi-grid process is that by a further application
of the same technique until the coarsest grid is reached, Eq. (19) need be

solved only on the coarsest grid.



(3.c.) Pseudospectral approximations for spatial derivatives.

It has been mentioned earlier that approximaﬁioms of spatial derivatives
in BE(C) are required for the computation of Eq. (12). When the finite difference
method is used for evaluating spatial derivatives, computational dispersion is
often a serious problem. Thus, an approximation of a high order of accuracy
is demanded. Such an approximation can be constructed by using a-finite Fourier
transform in which the spatial derivatives are computed with high accuracy.
In this section, a brief summary of the pseudospectral approximations for spatial
derivatives in a nonperiodic problem is given. Detailed derivations and
applications may be found in the work of Lee (1981 a',b)°

For simplicity, assuming the atmosphere is incompressible, Eq. (3) can be

written as

B,(C) = = (V-VD)+VC, + DVC, + P.(C) + Q; + S, (21)

The spatial derivative terms in Eq. (21) are calculated through the pseudos-
pectral technique. The idea is to express the solution &s the sum of periodic
function and a polynomial function in one direction at a time.. The pseudos-
pectral technique is applied only to the periodic function to obfain its
derivatives while the polynomial function can be calculated by obtaining the
polynomial coefficients which can be computed by using periodic polynomial
spline satisfying the boundary conditions (Lee, 1981 b). Thus, Eq. (21) can

be rewritien as

3
B:(C) = -3 (V (W—lﬂﬁw b, x‘“l)
J=1 j J,% (
3 SZCP NJ
+D 1+ 5 &2-1)b : 22)
-ﬁ-g(;;r o METb R wpi(e) + g 4 s, (22)

where Xj = (X, ¥y, z) and Vj = (u, v, w) are the dimensions of the uniform mesh

in X, y and z, respectiveﬂy; CP. denotes a periodic function for species i and
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and bj , are the coefficients of polynomial function with degree Nj in Xju

direction. As mentioned earlier, the derivatives (BCp/an and ach/asz)
can be obtained through pseudospectral technique by applying a finite Fourier

transform and the coefficients bj can be obtained by solving a system of

o B
algebraic equations formulated from the idea of periodic polynomial spline. The
aD/an can be calculated in the same manner as ac/axj.

With the use of Egs. (12), (18), (19}, (20) and (22), a system of stiff
partial differential equation (1) describing the atmospheric chemical pollutant

transport and diffusion can be solved accurately and efficiently by using the

multi-grid and step numerical technicue presented in this paper.

4. NUMERICAL EXAMPLES

In order to implement and test the application of the multi-grid and
step technique, we first performed the calculation of the two-dimensional
advection equation [i.e. the right-hand side of Eq. (2) contains only B (C) =
-V<(¥C)]. The exact solution to the advection equation should keep C unchanged
after a time of one revolution. In this test, the term of B (C) is a function

of Cn+1

, which is known as implicit method. In our experiment, the coarsest
grid has 9 X 9 mesh points and the finest grid has 17 X 17 mesh points. The
Jacobi relaxation technique is used in the calculation of the multi-grid
algorithm. Fig. 1 shows the three-dimensional perspective plots. The shape
of cone is kept very well after one revolution.

In the second test, a stiff problem containing fast and slow reactants
is chosen to demonstrate the feasibility of the technique. In Fig{ 2, solid
1ines are numerical solutions and symbols (square for fast reactant and triangle

for slow reactant) represent analytical solutions. It is seen that the numerical

solutions agree well with this analytical solutions. The upper ordinate of Fig. 2



shows the calculations in the beginning time period in which there are very

sharp stiffnesses. Thereforés the initié? time step At = 10“5 was reduced auto--
matically by the program to At = 1077 for accuracy. In order to illustrate the
stability and efficiency of the method, the time step At and the order of poly-
nomial k are pﬁotted ?ersus time in Fig. 3. In the.beg%nning of simulation,

the time step increases steadily while the order, necesséri?y an.integer, increases
in a step-like fashion. 'Upon reaching equilibrium state, the order remains at

the -maximum order allowed and the time step remains between 0.25 and 0.30. There
are no instabilities occurring.

The next example involves a set of atmospheric chemical kinetic reactions,
based on the mechanisms of the SCHEME model for atmospheric photochemical systemé
(Levine and Schwartz, 1978), as shown here in Table I. The numerical results
using present technique are compared with the one using EPISODE code (Hindmarch
and Byrne, 1975). Comparisons are shown in Table II for. three ahd six hours
simultation, respectively, for 12 chemical species with 30 chemical reactions.

It is seen that the multi-grid and step method has about the same order of accuracy
as EPISODE. However in this test run for six hours simulation, it takés 5.4
minutes for the present technique and 18.7 minutes for EPISODE code on a CDC 7600.
Fok the present code, it requires 3776 time steps for six hours simulation while

it needs 3600 time steps for EPISODE code because small time steps are necessary

for accuracy in the present code during the first minute of simulation.
5. SUMMARY AND CONCLUSION

A muiti-grid and step technique for solving the problem of chemical trans-
port and diffusion in the atmosphere has been described. The basic steps for
nimerical techniques presented in this study are (1) to write a system oﬁ stiff
ordinary differential equation in a form of extrapolant based on backward differ-

entiation method, (2) to discretize the stiff partial differential equation on a



suitable grid domain by using a pseudospectral technique and (3) to solve the
algebraic system by using a multi-grid method.

The present paper has demonstrated the capability and feasibility of the
multi-grid and step technique for solving the stiff partial differential equations.
The accuracy and efficiency have been shown in the test examples. The method of
mu1ti—grid and step has emerged as a potentially useful numerical techniques for

atmospheric chemical probliems.
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Table I. Reaction mechanisms in SCHEME model for atmospheric photo-
chemical systems.

1L NOy— NO4+O3 : @ Yy
2. NO 303 NOx ' ks
9. NO4+NO, 4 O3 —> 2NO3 ksksT
4, INOz+ Oy — (2ZHONOZ)? Yoy’
5. NOy+NO — 2NO; o Yyko/ko[Os]
6. INO2—» NO 4 NO; | ° Yyky0/k2]O2)
7. INOz+NO — 3NO;q o Yykskyar/kz{O2)
8. 3NOy— NOy( +2HONO,) - R A TR e AT (e
9. HONO — NO +HO ° Yoy,
10, NOy+HBO — (HONO3) Yus
11, NO+HO —» HONO 1.
12. NO+ HOg —s NOy - HO : Yas
13, HyOz—> 2HO ®  Yopg
14. NOy 4+ OLEF —» NO, H&@sﬂmg}mﬁ SRC0O0. ®  kikia/ka[O2]
5. OLEF 4+ HO —» ALD 4+ ROq ' k20 '
16. OLEF 4-Oj3 — ALD +RCOO; +HO Yaa
17. ALD— 25RO, +.75HOz ° kzz -
18, ALD 4 HO—» SRCOO, -+ .5HO; kg
19. NO+ ROz~ NO2+ALD 4+ HOz’ kas
20: NO 4 RCOO2 — NOz + ROz ks
21. NOp+ RCOO;— (PAN) : , kae
22. 2HO; — Ha0z - ' ’ k3o
23. ROz HOz— ALD + HO, 4 HO beap
23, ROy~ 2ALID 4 2HOz ' _ Kaz
25, HO—s HO;z : k33[CO)
96. NO; 4 HO3 — HONOG ' o kae
27, S§054HO;z— HO(4HzSO%) Jas
2. S0p+ RO — ALD -+ HOo{ + HaS04) " kas
29, S04+ HO—» H@,@M—Hﬁ@@ ko
30, 50,4+ NOy > NO{ +HzSOq) - ®  Yplaa/ko]O2]

*Rate cocfficient @fﬁ&.p@n&& upon solar intensity.
tCompounds shown in pmuw%m% arc sink species not otherwise Tincluded i in

SCHEME.
7= (ks NOJ +¥ INOZ}}
= {kske/ (6 + o HzO)) ke - )
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