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The steady-state equations of inviscid fluid flow, the Euler equations, are
8 nonlinear nonelliptic system of equations admitting solutions with dis-
continuities {for example, shocks). The efficient numerical solution of these
equations poses a strenuous challenge to multigrid methods. A multigrid
code has been developed for the numerical solution of the Euler equations.
In this paper some of the factors that had to be taken into account in the
design and development of the code are reviewed. These factors include the
fmportance of choosing an appropriate difference scheme, the usefulness of
local mode analysis as a design tool, and the crucial question of how to
treat the nonlinearity. Sample calculations of transonic flow about airfoils
Will be presented. No claim is made that the particular algorithm presented
is optimal. ’

§1. Introduction.

This paper will discuss the numerical solution of the steady Euler équatiens }

using multigrid techniques. The problem studied will be that of steady two-
dimensional flow about an airfoil section. This work has as its ultimate
motivation the desire to provide an effective tool for aircraft designers. Apart
from this motivation, the discussion in this paper should be valuable to
workers seeking to implement multigrid methods for complicated problems.

A great deal of effort has been expended in the last decade on devising
-~ efficient solution schemes for the transonic full potential equation (a scalar
equation describing inviscid fluid flow, derived assuming the flow is irrota-
tional, incompressible, and isentropic). Both multigrid and non-multigrid
techniques have been developed (Jameson [1] , Shmilovich and Caughey [2]

and Holst [3] ). The recent discovery of possible multiple soluticns for the
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transonic full potential equation (Steinhoff and Jameson [4] ), the desire to
compute flows with shocks stronger than those for which the potential equa-
tion is adequate, and the desire ultimately to compute the vortex wake be-
hind a wing without a priori modeling it in some fashion have led to a recent
surge of interest in efficient computational methods for the Euler equations.
Standard solution techniques for the steady Euler equations are based on
time-like methods with various aftifices employed to speed convergence (sce
for example Jameson, Schmidt, and Turkel [5], Steger [6] , and Pulliam,
Jespersen, and Childs [7] ). This work is an attempt to apply multigrid
techniques directly to the steady Euler equations, bypassing any time-like
iteration. Tt thus differs from work of Steger [8] , who employed a multigrid
technique as a component of a standard implicit algorithm, and from work
of Ni‘(‘[Q] and Johnson [10] , who use “multiple grids” to accelerate an explicit
time-marching algorithm. |

In the next section of this paper the differential equation problem
is described, including the transformation to general curvilinear coor-
dinates. In section 3 a discretization method using flux-vector splitting is
described. Section 4 comnsiders the important question of how to deal with
the nonlinearity of the equations. The Newton-multigrid and FAS (Full‘
Approxim}ation Scheme) approaches will be described and discussed. Section
5 gives some computed results for flows about airfoils, including transonic
flows with shocks.

$2. The Euler Equations ,

This section describes the differential system that is the object of study.
The unsteady Euler equations are a nonlinear hyperbolic system of equations
that describe the conservation of mass, momentum, and energy for inviscid

fluid flow. In two space dimensions they may be written

0:Q + 0. E(Q) -+ 8,F(Q) = 0, (2.1)



where Q) is the four-vector Q@ = (q1,q2,93,94)7 = (p, pu, pv,e)¥. Here p is
‘density, » and v are Cartesian velocity components, and e is total energy
per unit volume. The flux functions E,F' : D € R* — R* are nonlinear
functions given by

B(Q) = (pu, pu® + p, puv, ule + p)T
F(Q) = (pv, puv, pv* + p,v(e + p))T.

The pressure p is given by the equation of state

p=(v— 1)e— plu® ++°)/2),

where 4 is a constant {7y = 1.4 for air). This paper deals only with the steady
Euler equations, which are obtained by setting the time derivative term in
(2.1) equal to 0, thus obtaining

BEQ@+0,F@=0 (22)

There is little or no mathematical theory to rely on in studying these equa-
tions. They are nonlinear, nonelliptic by the definition of Agmon, Douglis
and Nirenberg [11] (even in subsonic flow regions, unlike the potential equa-
tion, which is elliptic in regions of subsonic flow), and admit discontinuous
solutions (e.g., Shocks). Furthermore, it is not clear what are proper houn-
dary conditions for the system (2.2). The lack of an adequate theory makes
it virtually impossible to prove rigorous convergence results for solutions of
diseretizations of (2.2).

The region where we wish to solve (2:2) is a bounded region containing an
airfoil section (see Figure 1). Typically the outer boundary will be located 6
chord lengths from the airfoil. It will be desirable to map from the physical
(z,y) space with its relatively complicated geometry to a “computational”

(&,m) space with a simple geometry. The use of such a transformation



simplifies the applications of boundary conditions, allows one to cluster grid
points in regions of rapid variation of @ (e.g., near shocks or at the leading
edge), and allows all finite difference equations to be written on a uniform
mesh. The price paid for this is a more complicated set of equations to solve.
Specifically, if £ = £(2,y) and n == 9(z,y) are the components of the map
(z,9) — (€,7) (note that (2,y) — (£,%) is not continuous, or even single-
valued, due to the cut in the wai{e), then the transformed equations may be
written |

35[%5(@) — 2 F(Q)] + 8y — e E(Q) + z:F(Q)] = O, (2.3)

or ' '
e E(Q) + 8,7(Q) = 0. (2.4)

Now the geometry is simpler but the flux functions E and F are more
complicated. The metric coefficients y,, etc., in (2.3) can vary over several
orders of magnitude. Thus we must consider a nonlinear system with widely
varying coefficients. |

We will take the image of the physical domain of Figure 1 to be a rectangle
in computational space, see Figure 2. The image of the airfoil boundary lies
along the line segment BC in the computational plane, the segments AF and
DE are the images of the outflow boundary, the segment EF' is the image
of the inflow and far field boundary, and the segments AB and CD are the
images of the cut in the wake. Extra boundary conditions must be prescribed
along AB and CD; these boundary conditions say that ¢ is continuous across

the wake cut.

§3. Discretization

The difference scheme will be constructed on a uniform mesh in computa-
tional space. We will assume the computational space is a rectangle 1 <
£ < jmax, 1 < 7 < kmax. The flow variables at (7, k) will be denoted @ .



(Thus we are using a non-staggered grid.) There are many possible difference
schemes for (2.4); the simplest is probably central differencing. Simply replace
the derivatives in (2.4) by centered differences, obtaining the equation (usmg
At =An=1and multiplying through by 2)

(Ejtrp — Ejm1,0) + (Fipgr — Fje—m)=0 - (3.1)
“where we write Fj414 = E(Qj+1,k), etc. Local linearization of these

equations would lead to a matrix with 4-by-4 blocks of zeros on the main
diagonal. Any form of point Gauss-Seidel would then be impossible. ‘It is
true that central differencing with some form of artificial viscosity would lead
to a difference scheme to which Gauss-Seidel can be applied, but Gauss-Seidel
is a slgwly convergent relaxation scheme, and has a poor smoothing rate, for
central differencing applied to a convection-dominated prdblem Wiﬂi a very
small viscosity term. (It may be the case that some form of Distributive
(Gauss-Seidel can be applied, on a staggered grid; see Brandt [12] See also

Childs and Pulliam [13] for a centrally-differenced algorithm using artificial
| viscosity and Euler implicit relaxation.) |

Another relaxation scheme that can be applied to a linearization of (3.1)
is Kaczmarz relaxation (McCormick [14] ). The Kaczmarz scheme is defined

for the n-by-n linear system Au = f by

( fy z)AT

2% 4 U —
|ATe;l|3

i=1..,n, (3.2)
where the left arrow denotes replacement, the brackets (:,-} denote the Io
inner product, and e; are the usual unit vectors. Thus one step of the
Kaczmarz scheme consists of n substeps, where the 7t substep involves
adding a multiple of the i** row of A to the current solution, the multiple
being chosen so that after the addition the i** equation is satisfied. It is

known that the convergence rate of Kaczmarz relaxation for the matrix A is



e

the same as the convergence rate of Gauss-Seidel relaxation for the matrix

AAT . Tt can also be shown that the smoothing rate of Kaczmarz relaxation for

the matrix A is the same as the smoothing rate of Gauss-Seidel for the matrix

AAT. Use of these facts and consideration of simple linear scalar problems
shows that Kaczmarz relaxation is not suitable as a relaxation scheme for
central differencing applied to a first order equaﬁon.

The failure of Gauss-Seidel and i{aczmarz forces one to search for a new
relaxation scheme, to use a different (staggered?) grid, or to use different,
differencing scheme. In this work the third approach will be adopted. We
will consider alternatives to central differencing.

A variety of one-sided discretization methods have been proposed for the
(unsteady) Euler equations. The approach that will be adopted in this paper
is the flux vector splitting method of Steger and Warming [15] . In this
method, use is made of the fact that the flux functions E(Q) and F{Q) (as

“well as £ and F") are homogeneous of degree one in Q, i.e. E(aQ) = aB(Q),
F(aQ) = aF(Q) for any scalar g. Using Euler’s theorem on homogeneous
functions, one can write E(Q) = AQ and F(Q) = BQ where A= AQ) =
E[0Q and B = B(Q) = 8F/0Q. Then one uses the fact that A and B

“are diagonalizable with real eigenvalues to write XIAX = A=At + A"
where A = Diag(\y, - M), A+ = Diag\T, .- M), A = max()\;,0), and
A; = min{\;, 0); the B term s handled similarly. Define A+ = X pEx
and similarly for B¥+. Finally, define Et = ATQ and F* = B¥Q. One
gebs E:k and ﬁ'i by starting with A and B, which are linear combinations

" of A and B. The system (2.4) is then equivalent to

~ R g N e
OF OF oF oF
6£v+ Y ~+ T + (3.3)

a1
One problem with this formulation of flux vector splitting is the discontinuity
in slope of \;". Following a suggestion of Steger [16] , an attempt was made




to remedy this by altering the definition of AF to A= (4 W) /2
and \j” = A — AF, where ¢ is a “small” number; in this work ¢ = .03
was used. For the time-dependent problem in one space dimension (where
8Q /0t is added to the left-hand side of Eq. (2.4)), the theory of characteristics
indicates that backward differencing is appropriate for the “1" terms, while
forward differencing is appropriate for the “—" terms. We will adopt the
same spatial dlﬁ'erencmg scheme given by this approach. For the steady~
state problem we will therefore use the one-sided differencing suggested by
the theory of characteristics. Defining b and 6/ as backward and forward
~ difference operators, respectively, (both first-order and second-order operators

will be considered), the nonlinear discrete equations become

.

i 4 6E + i e =0 |
¢ 3 7 opt” =14, (3.4)

‘where appropriate analytical and numerical boundary conditions have to be
adjoined to complete the specification of the problem. Boundary conditions
will be considered later. After a (local or global) linearization of the discrete
equations (3.4) we have a linear system. The linear system is of the form (for

a global linearization)

[A (s )AQ}—I—af[A (@ )AQ]
+o Qs +oET @) )

== rhs,

where A% — 05%/00 and similarly for B, Here Q" = QJ is fixed and
AQ = AQ,j is the unknown. The right-hand side is just the negative of

the left-hand side of Eq. (3.4) (evaluated ab Q"). (We note in passing that
A + % AT and similarly for A and Bi but it is known that the eigenvalues
of A" and B are nonnegative while those of A~ and B~ are nonpositive.)

A local linearization of (3.4) (replacing Qj,c by QJ . -+ AQjr and expanding




in AQj;1) gives the equation

const - (JA(Q") + 1 B@Q"NAQ s =rhs, (3.6)

where const = 1 for first-order differencing, = 3/2 for second;order
at A", and similarly for B. (The first-order
one-sided difference operators are defined by 6buj = Uy — Ujm1, §f Uj =

differencing, and |A] =

%;4-1 — u;; second-order one-sided difference operators are defined by § bu.j ==
(8uj — duj—q + uj0)/2, 8 u; = (—3u; + 4ujq 1 — Uj40)/2.)

There seems to be no natural way to order the scalar entries of @ to
allow the use of a scalar Gauss-Seidel algorithm. On the other hand, it
is very natural to consider the use of block Gauss-Seidel (oi' “collective”
Gauss-Seidel), which simply means changing all 4 unknowns ¢y, ¢a, ¢s, q4
at a given mesh point (7, k) simultaneously. If we consider a block Gauss-
Seidel algorithm for (3.5), we find a 4-by-4 linear system with cosfficient
matrix = const- (JA(Q)] +|B(Q)]). It can be proved (J.-A. Desideri, personal
communication) that this matrix is nonsingular provided that u £ 0 £ v,
i.e., provided we are not at a stagnation point. (This also shows that the
4-by-4 linear system of (3.6) is solvable.) Thus (collective) Gauss-Seidel is a
feasible relaxation scheme.

The quality of a relagation scheme as a component of a multigrid algorithm
can be evaluated by local mode analysis. This analysis is based on the premise
that the most important property of a multigrid relaxation scheme is that it
rapidly damp high frequency components of the error. It is assumed that low
frequency components of the error will be efficiently reduced on coarser grids.
Thus one assumes constant coefficients, ignores boundaries, and expands the
error in a discrete Fourier series. High freqﬁencies are defined as those Fourier
components which oscillate rapidly in at least one direction.

Consider collective Gauss-Seidel for Eq. (3.5) at a grid point (7, k). If one
orders the grid points “lexicographically” (left to right, bottom to top) and



considers first-order difference operators, one gets the relaxation scheme

— AN (Qi-10AQ)H — BT (Qsi-1)0QpEL,
+ |AQ;)AQEEY +1B(Q;,1)|AQ%

+ A (Qj41,4)AQF 41, F Bm(Qj,k+1)AQ?,k+1
== rhs,

- where n is the iteration index. This is a 4-by-4 linear system to be solved
for AQ7 T, since AQﬂ"jl and AQ7t] | are already known. For local mode
analysis one only needs to consider the homogeneous equations, so take rhs =
0. Todo lqcal mode analysis, assume that @) is constant, and assume a Fourier

' mode for AQ: take AQT, = \"¢*7%¢**9U° where U° is a constant 4-vector.

. Here" 0 and(b range from —a to 7, and the high frequencies are defined

to be those modes for which 7/2 < max(|6],|#|) < 7. Insert this form of

AQ in Eq. (3.7) and get a generalized eigenvalue problem for A; solve this

problem, obtaining A = Am(8, ¢), m = 1,2, 3,4. The smoothing rate of the

relaxation scheme is defined as

po= ma

= eppzmmi o <r s Pl P)l)

The generalizedy eigenvalue problem can be solved numerically (the matrices
}li and Bi are quite complicated). The following results are presented.
One must fix some values for the entries of ¢). T'wo cases were censidefed,
corresponding to subsonic and supersonic flow. For the subsonic case, a
representative set of flwo variables (corresponding to freestream conditions)
was 4 = 8, v=20,p=1,¢c=1. For the supersonic case, a Teasonable
choice is to take # = 1.1 and the other variables were as in the subsonic case.
Assuming independent coordinate stretching (i.e., £ = £(z) and n = 7n(y)),
the only remaining parameter is the ratio z¢/y, (which corresponds to a mesh

aspect ratio, width over height of mesh cell). We give the smoothing rate

(3.7)



as a function of z¢/y, for both first-order and second-order differencing (see
Fig. 3).

From Fig. 3 one can conclude that Gauss-Seidel relaxation in conjunction
with three-point second-order one-sided differencing is unacceptable as 3
relaxation scheme (poor smoothing rate, perhaps even divergence), whereas
first-order one-sided differencing in conjunction with Gauss-Seidel gives an
acceptable smoothing rate. Further investigation revealed that the second-
order scheme is acceptable only if min(u/c,v/c) > .5 (roughly). To help
understand this result, consider the one-dimensional case, where Gauss-Seidel

with the natural ordei'ing is applied to the linear system
bea ™ A -
(A AQ)+ /(A AQ)=0. o (3.8)

No*v\:}l_i are 3-by-3 matrices. Fig. 4 gives the smoothing rate y as a function
of u/c for first and second-order differencing.

~ From Fig. 4 we see that with first-order differencing, the smoothing rate is
less than 1 for u>>—c, whereas for second-order differencing the smoothing
rate is greater than 1 unless u>c/2, approximately. One concludes from these
results that_Gauss-Seidel with second-order differencing is unacceptable as a
relaxation scheme. Consider a general one-dimensional constant-coefficient
problem (AQ), = 0 where A is a diagonalizable n-by-n matrix. Local mode
analysis applied to first-order flux v_ector splitting leads to the equation

det((e” — NA™ + M1 — e )AT) = 0.

If A is diagonal and A~ £ 0, then \ = —e® is a solution for any value of 6,
hence the smoothing rate of the relaxation scheme is at least. 1. Local mode

analysis applied to second-order flux vector splitting leads to
det((Qew — %egw — g)\)A“

+ )\(g —2e7 4 %e"zi")A"“) == (.

10



~ Again, if A is diagonal and A~ 5 0, one solution is A = }e%(4 — ¢%%), which

has modulus greater than 1 for 0 < § < 27, and so local mode analysis gives

a smoothing rate greater than 1.

Another analysis technique can be used to study the behavior of a proposed
relaxation scheme. The idea for this technique goes back to Garabedian
[17] and is based on the concept of artificial time. One considers the relaxa-
tion scheme as a time-accurate aﬁproximatidn (with iteration index as time)
to some time-dependent operator L, writes down +the opefator L, and studies
its properties. If all solutions of the partial differential equatibﬁ,L'u = f ap-
proach steady state one expects the relaxation scheme to converge, while if
the partial differential equation has a nondecaying solution then the relaxa-

tion scheme will likely not converge. When this analysis technique was applied

to the one-dimensional Euler equations with first-order spatial differencing,

~ (assuming constant spatial coefficients) it was found that L was given by

| - - TV B
LQ = ——-2~At2A Qu: — AtA Qi+ AtAzZAQ,, — —2-A:v2|A]Qm + AzAQ,.

The mode @ = eMeisy satisfies LQ = 0 if
~ det(— %Atﬁx%“ — AtA N+ AtAziwA + -;-Ax%)zl}l] + iwAzA) = 0.

We see that if A = 0 then Re(M\) = 0, while if A+ == ( then there are two
roots \, one with real part 0, the other with negative real part. (The case
A £ 0 # _;l+ is too messy to do by inspection.) For second-order space

differencing, the operator L turns out to be
3 3 25— ~ -+ ‘
LQ = —~§AtA Qi+ AzAQ, — :{At A Qi+ Az ALA Q.

It A+ == () there are modes Q = ¢*¢**§ with L@ = 0 and Re(\) > 0, hence
there are growing solutions, and one does not expect the difference scheme

to be convergent.

11
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In sum, both local mode analysis and the Garabedian artificial time analysis
predict Gauss-Seidel will not converge for second order spatial differencing.
Gauss-Seidel must then be rejected as the relaxation scheme.

For fluid flow problems it is natural to attempt to align the relaxation
direction with the flow direction. In problems with systems of equations
or where the flow direction is not known o priori one can try a symmetric
relaxation scheme, so consider sj;mmetric Gauss-Seidel (SGS). For SGS each
relaxation step is composed of two half-steps, the first being a Gauss-Seidel
sweep in the direction of increasing j and %, the second a Gauss-Seidel sweep
in the direction of decreasing j and k. For the one-dimensional problem with

first-order differencing the artificial-time analysis leads to the operator

.

LQ = —MATIATAT(Qu+ 3A1Qu) + AdlAlQu + AtQu — L A0Q..).

Now one can show that for either of the cases X’F =0or A =0, any
solution @ = e e™%q of LQ = 0 satisfies Re(\) = 0. Thus one expects
SGS to be convergent. A similar result holds for the algebraically messier
case of second-order spatial differencing. Local mode analysis applied to SGS
gives results shown in Fig. 5. These results indicate that SGS has reasonaoly
good smoothing behavior (the smoothmg deteriorating as the mesh stretching
becomes more severe).

One could attempt to improve the smoothing rate by adopting a lin
relaxation algorithm (say, symmetric line-Gauss-Seidel, SLGS). This indeed
will improve the smoothing rate but gives a linear system with block pen-
- tadiagonal (in the case of second-order space differencing) matrix to solve on
each line. The expense of the block pentadiagonal solver almost outweighs
the gain due to better smoothing rate. Specifically, for the Newton-multigrid
algorithm to be discussed in the next section, the SGS algorithm cost (with
non-optimal coding) about 1000 floating point operations per grid point per

12



sweep. The SLGS algorithm cost about 4000 ﬂoating_ point operations per
grid point per sweep, and gave a smoothing rate about 5 times better than ‘
SGS. Thus SLGS will give'only a marginal gain'in total computing time over
SGS. One can attempt to make further modiﬁcatiovns, such as approximating
the block pentadiagonal matrix by a block tridiagonal matrix. There does
not seem to be much to be gail}ed, however, by so doing. Thus the SGS
relaxation scheme was adopted. | |

§4. Nonlinearity.

The nonlinearity of the system (2.4) and ‘its discretization (3.4) poses a
difficult challenge to numerical methods. From a practical W}iewpoint, how
well one handles the nonlinearity is perhaps the most important crit.erion in
deteﬁnin’ing the success or failure of an algorithm. Two algorithms will be
discussed in this section, the Newton-multigrid algorithm and the FAS (Full
Approximation Storage)-Newton algorithm. |

The Newton-multigrid algorithm is: apply Newton's method to (3.4), using
multigrid to solve the linear problems that arise at each stage of Newton’s
method. If (3.4) is written as 7(Q) =0 Newton's method is, with an initial

guess Q°,
‘ DF(@™(AQ™) = —F(Q™)

Qn-{-l _— Qn’l'AQ”"
In (4.1), DF(Q") is the Jacobian matrix of the nonlinear function 7. It is
the linear system DF(Q")(AQ") = —F(Q™) which is solved via multigrid.
Some of the favorable aspects of this algorithm are:

(4.1)

1. Newton’s method has been intensively studied and is well-understood;

9. Convergence is guaranteed provided the initial guess is sufficiently close to
the (numerical) solution;

3. Multigrid is only used to solve linear problems (and multigrid theory is better
understood for linear problems);

4. The matrices Ai and Bﬂ:, which are expensive to compute, are held con-

13



stant in each Newton step, thus the expense of recomputing them is avoided;
5. For problems with shocks, the solution AQ™ to the linear problem may be
“smooth after the shock has set up, 50 muitigrid should work well;

6. “Global Newton” methods exist, which guarantee convergence from an ar-
bitrary initial guess; .

7. A good theory exists for “nice” elliptic problems [18] , which indicates that
with the nested multigrid algorithm (or full mﬁitigrid, FMG), one Newton step
per level is sufficient (asymptotically). |

Some of the disadvantages of the Newton-multigrid algorithm are:
1. Full Newton (solving each linear problem to completion) is too expensive,
and one must resort to a modified Newton algorithm, which raises the thorny
question of stopping criteria for the linear problems; |
2. Any time spent on solving linear problems too accurately is wasted;
3. Newton’s method may not converge (if the starting guess is not sufficiently
accurate-examples of this have arisen in practice);
4. The solution of the linear problem may be singular (not smooth) even if the
~ coefficients are smooth, which can cause trouble for both the multigrid solver
and the Newton method;
5. For the problem at hand, some sort of underrelaxation must be employed,

or else the pressure or density at a grid point can become negative after the Newton

update and the code cannot continue;

6. In practice, quadratic convergence is irrelevant, since if one is “close enough”

for quadratic convergence to take over then one already has a good enough answer

(for engineering purposes); |
7. The proper (global) linearization of the equation and boundary conditions -
can be quite difficult, especially if the boundary conditions are nonlocal and/or
nonlinear.

- The FAS-Newton algorithm is: attack the nonlinear system (3.4) directly,

14



using multigrid in the FAS mode (Brandt [19] ) as the solver. For the relaxa-
tion sweeps, linearize locally and take one step of Newton’s method at each
grid point (see (3.6)). This method is easier to program than the Newton-
multigrid method and uses less arithmetic in the relaxation scheme (there are
fewer matrix-vector multiplies). |

Disadvantages of this method are:

1. Updating the “tilde” matrices ?&i and Bi is expensive (it costs about 814
nt

floating point operations and 18 square roots to compute Aj:, , &7, and
FEata given grid point); : o
9. There is not much theory to guide in the construction of a good multigrid
algorithm (for example, when to switch grids);
3. Coarse grids don’t do a gdod job of representing solutions with shocks;
4. Tt is not clear that the relaxation scheme (one Newton step at each grid point)
smooths the error. |
In sum, both the Newton-multigrid and FAS-Newton algorithms have ad-
vantages and disadvantages. The Newton-multigrid algorithm as coded cost
about 1020 floating point operations per grid point per relaxatjon step (not
counting the work required to update the tilde matrices), while the FAS-
Newton algorithm cost about 2114 floating point operations plus 36 square
roots per grid point per relaxation step. Results for both algorithms will be
given in the next section.

§5. Sample Calculations.

A code was written using SGS relaxation and either Newton-multigrid or
FAS-Newton. For the Newton-multigrid algorithm, the restriction operator
was taken to be straight (unweighted) injection, while for FAS-Newton the
restriction operator was full-weighted restriction. In both cases the inter-
polation operator was bilinear interpolation. Useful assistance in coding was
provided by the code of Brandt and Cryer [20] .. The unknowns were taken
tobe {Qj :2 £ j £ jmax— 1, 2 £ k < kmax — 1}. Values for jmax

15



ranged from 65 to 161, values for kmax ranged from 25 to 33. For the results
to be shown, jmax was 145 and kmax was 33. Fig. 6 shows the grid.

Boundary conditions for the numerical scheme were as follows: all quan-
tities (g1, g2, g3, g2) held fixed at inflow; all quantities extrapolated on outflow
(using zeroth order extrapolation); on the airfoil, normal component df
velocity held equal to 0, while density, tangential velocity component, and
pressure were extrapolated usinngemth order extrapolation; on the wake cut,
all variables defined by linear averaging. Notice that the boundary condition
involving the pressure is nonlinear in terms of the variables (g1, go, g3, q4),
- while the boundary condition in the wake is nonlocal in (¢,7) space. Both
these factors require that great care be taken in the linearization (either global

or logal) near the airfoil and wake cut.

Three-point one-sided second-order differencing Was' used »evefywhere ex-
cept near the boundaries, where two-point first-order one-sided differencing
was employed in the direction normal to the boundary.

Figure 7 shows a sequence of plots of pressure coefficient as the Neﬁvtoné
- multigrid iteration proceeded. The Newton-multigrid iteration had to be
modified in order to produce a convergent process. The update step of (4.1)
was modified to |

ot = 0% +wpAoH

where w;; was chosen to be the largest number (less than or equal to 1) of the
form 27" such that the density and pressure at grid point (7, k) and iteration
index n -1 were positive (thus the Newton update was point-underrelaxed).
Also, the strategy for solving the linear problems was modified to force the
o norm of the dynamic residuals to decrease by a given factor (4 in this
case) before the linear problem was regarded as solved. This has the effect
of ensuring that the linear problem is solved reasonably accurately at each
Newton step. The Newton-multigrid process then converged, with initial

16



guess of freestream values for all variables. Multigrid was use;d in the “Coarse
Grid Correction” mode. The sequence shown in Figure 7 seems to be typical
(and has been noted for other flow conditions): the flow field sets up fairly
rapidly away from the shock, and near the shock strong oscillations appear,
which gradually die away. The computations were done on a VAX 11-780;
total CPU time was about 3.25 hours for 11 steps. A comparison of the final
solution with a solution obtained by a central difference algorithm showed
good agreement in the shock locations and shock strengths.

Figure 8 shows a sequence of plots of presSure coeﬂ‘icient for the FAS-
Newton algorithm. The flow field is slower to set up, and strong oscillations.
do not appear near the shock. CPU time for this case was about 2.5 minutes
per werk unit (1 work unit is defined as 1 ‘relaxatién sweep on the finest grid,
thus 1 relaxation sweep on the next-ﬂnesf grid is .25 work units, etc.). Total
time for a converged solution was about 1.5 hours. |

‘In conclusion, it has been demonstrated that multigrid methods can solve
transonic flow problems with shocks. The choice of diﬁ‘erehcing scheme is
important; a flux-vector splitting scheme was used. A symmetric collective
Gauss-Seidel relaxation scheme was adopted. Local mode analysis is a useful
tool in analyzing relaxation schemes. Both the Newton-multigrid algorithm
and the FAS-Newton algorithm were shown to be viable. It is too early to
make a judgment as to the ultimate impact of multigrid on steady transonic

Euler equation calculations.
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Figure T: NACA 0012 airfoil, Mach number 0.75, angle of attack 2
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