Title: MG Convergence of Singular Perturbation Problems

Abstract: The Poisson equation in a square is a nice model
problem for studying the mg convergence, since it is possible

to obtain exact and sharp results. Similarly, one can investigate
the singular perturbation problem

-¢4u +bVu =f in a square &,

provided that periodic boundary conditions are given. This
fact is the basis of the mode analysis.

In the case of the Poisson equation the solutions of the
periodic and the Dirichlet boundary value problem are very similar.
Not so in the case of singular perturbation problems, where the
eigenfunctions related to the Dirichlet condition differs completely
from the periodic eigenfunctions. Even in the one-dimensional case
-¢£u" (x) +bu’ (x)=f there exists no mg convergence proof.

The purpose of this contribution is to close this gap. We show
how to prove mg convergence in the Dirichlet case by means of the
convergence results for the periodic case.
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Abstract. An analysis of multi-grid methods applied to singularly
perturbed Dirichlet boundary value problems was missing up to now.
Only for periodic boundary conditions the Fourier transformation
(mode analysis) applies. However, it is not obvious that the con- ’
vergence results carry over to the Dirichlet case, since the
eigenfunctions are quite different in both cases. In this paper

we prove a close relationship between multi-grid convergence for tha
easily analysable case of periodic conditions and the convergence

for the Dirichlet case.

1. Introduction

There are results about convergence of multi-grid iterations for
guite general problems (cf[2].[6]). However, they do not yield
uniform convergence rate with respect to increasing singular per-
turbation. In such a situation one often studies a pde problem
with constant coefficients and periodic boundary conditions. The
analysis of this model problem is also named ‘local mode analysis’
(cf [3],04]).

For the unperturbed boundary value problems like -4u=f in the
unit sguare the choice of the kind of boundary condition (perio=
dic or Dirichlet) is not essential. The eigenfunctions of the

difference schemes are exp(iW(wx+py)) in the periodic case and
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gin(wﬁx)sim&&ﬁx) for Dirichlet's condition. The local mode analysis

uses the complex Fourier transformation, while the real Fourier
rransformation is applied in the Dirichlet case. It is not surprising that
the close relationship of exp(i¥(vx+py)) and sin(Vrx)sin (pwx)

implies almost the same convergence results of the multi-grid itera-

tion applied to the respective discrete equations.

Another situation arises in the case of singular perturbation pro-
blems. In this paper we restrict our considerations to the one-dimen-

sional problem
(1.1) mpu” (x)4u’ (%) = £(x) din {=1,+1); (1) =0,

Replacing the Dirichlet boundary condition by the periodic one,

we obtain
(1.2) —~gu"(x)+u'{x) = £(x) in (=1,4+1); u{=1)=ul{1), v’ (~=1)=u'(1).

As again exp(iy®x) are the eigenfunctions in the periodic case, the
multi-grid iteration can be analysed by means of the Fourier transfor-
mation (ie by the local mode analysis). Is the behaviour of the
multi-grid convergence in the periodic case (1.2) close to the con-
vergence behaviour in case of (1.1)? A positive answer is not obvious
“X/2E 540 (wa (x-1)/2) . The
reflects the presents of the boundary layer.

since the eigenfunctions of Eq (1.1) are e
weighting factoxr o %/2¢
Also the related scalar products (uyv)wguvﬂx {(periodic case) and

=% /[€

(ugv)mfe uvdx are quite different.

Hitherto, an analysis of a multi-grid method for the very simple
problem (1.1) has not been given, still less for more complicated
problems. The difficulty is caused by the. fact that it is not possible

-%/2e . .
£ / fsin(...) and the corresponding

to use the eigenfunctions
weighted scalar product for an analysis of the multi-grid iteration.
The first reason is that the exponent x/2¢ of the weighting function
becomes h-dependent in the discrete case with step size h. The

second reason is that the usual restrictions and prolongations within
the multi-grid process are no longer symmetric with respect to the
new scalar product. Therefore, the transformation by means of the

emx/2£

functions gin{...) does not transform the iteration matrix

into a blockdiagonal matrix as in the standard case {c€[51,[13]).



The preceding considerations underline the necessity of studying
the convergence of the multi-grid iteration for Eq (1.1), and, in
particular, the relation between the convergence behaviour in the re-
spective cases (1.1) and (1.2). Such a result is given in this paper.
As a side issue we mention that the presented proving technique ig the
first one that applies to the lexicographical GauB-Seidel iteration
as smoothing iteration in the Dirichlet case.

The periodic case is studied in § 2. We consider two typical dig=-
cretizations of the perturbation term u' in Egq (1.1): the backward
difference and the centred difference with possibly additional 'arti-
ficial viscosity'. The multi-grid iteration is defined in § 2.2. For
the backward and centred difference schemes we use different variants
of the GauB-Seidel iteration. The Fourier analysis is recalled in
§ 2.3. Its results are discussed in § 2.4.

§ 3 is devoted to the Dirichlet boundary condition. In § 3.2
it is proved that a certain norm of the two-grid iteration matrix
in the Dirichlet case equals the spectral norm of the iteration matrix
in the periodic case plus a matrix of rank 1. This relationship
enables the computations of contraction numberse<l for the Dirichlet
problem as reported in § 3.3.
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2. Analysis in the Periodic Case

2.1 Discretization
Eq (1.1) is replaced by the system

(2.1) Lhuh = fhﬁ
where h denotes the step silze
(2.2) h = 1/N (N even) .’
The matrix Lh represents a difference scheme hngmah bh mch], where
-2 -2
{h £¥ah bh mcéguh)(x) = h (mahuh(xMh)+bhuh(x)mchuh(x+h))

for x=vh, V€% . Discretizing the perturbation u'(x) by the backward
difference h™ [-1 1 Oﬁuhy we obtain

(2@31) ah$§+hg bhm2£+h, Chmga

This scheme is known to be stable for all €0 and h»0. The centred
difference (Zh)m?fmﬂ 0 ﬁluﬁmu° leads us to the scheme

(2.3_.) ah$§h+h/2,, bhngh” gnmghmh/g

II
with wellknown difficulties if £, is too emall. In particular, (20311)
yields an M-matrix Ly only if the ratio &hﬁhfgh satisfies

(2.4) %h = h/@h € 2.

The notation &, instead of € indicates that €y might be chosen larger
than & from (1.1). In the latter case it is said that the scheme

(20311) contains 'artificial viscosity’.

Remark 2.1 Scheme (2,31) can be regarded as special case of
(20311) with £hzm£+h/2°

This remark does not extend to the two-dimensional problem .
m£au+uxm£ﬁ
where the analogues of (2931) and KQDBTX) are

-E v,

- (backward ) h (centred
n2log-n ag+h -¢] ‘difference’, 4, h/2-E difference’ *
e -£

2.2. Multi-Grid Iteration
We start with the two—-grid iteration. It consists of a °‘smoothing
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step' and ‘coarse-grid correction'. The former step requires the
choice of a suitable ‘'smoothing iteration’ I

old new _,Y (uold,f old+T £

(2«5) uh W uh h) = sh h h ho

Sh is the iteration matrix of the iteration f%. In the cases (2,31)

and (2.311) we choose GauB~Seidel iterations based on different

orderings:

(2.61) .f;: GauB-Seidel iteration with lexicographical
ordering (h-1,2h-1,...,1-h,1} of the grid points:;

(2°61I) f%: GauB-Seidel iteration with 'red-black' ordering

(h"‘1g3h"’1'-¢-y1-3h,1”h'2h—1’4h-1'ooa’1°2hg1) °

The coarse-grid correction requires a ‘restriction' r from the
h-grid onto the 2h-grid and a 'prolongation’ ©p in the opposite
direction. The most natural choice is

(2.7) (ru,) (x) = -—u (x=h)+ Zu (x) + (x+h), (x=2v»h)
uzh(x) if x=2vh,
(2.8) (puZh)(x)
[u,, (x=h)+u,, (x+h)] /2 1f x=(2w+1)h.

The two-grid iteration is defined by

ug: given j”&h iterate;
(2.9a) Gh: result of v steps of iteration j; applied to ug;
3+ .. 5 -pp”] 3 -
(2.9Db) up 2= Uy pLZhr(Lhuh fh).

; . -1
The 'coarse-grid matrices’ L, =(2h) [—aZh b2h -czh] cqrresponding to
(2031) and (2.311), respectively, are

(20101) a2h=£+2h, b2h=2£+2h, Con™ =&,
(2.1OII) a2h_£éh+h b2h=2£2h, c2h=£2h—h

with £2h possibly larger than ehs
The multi-grid iteration is the iteration (2.9a,b) if we replace

the exact soclution of L2hV2h=?2h mr(Lh h fh) by few multi-grid itera-~

tions in the 2h-grid (cf[6,1%]). This approach requires auxiliary

step sizes 4h,8h,...,%00. In case of (29311) and (2°1OII) cne obtains

e A e i oS



the same ratios w%zmh/ﬁhmﬁ%hszhfﬁgh at two consecutive levels 1f
&, and €4y, ATE related by

(2.11) Eyp= 26, o

This choice ensures that LZhVEhngh is an ecquation with the same
strength of perturbation as the original problem Lhuhxfho

In the following we shall restrict our considerations to the two-
grid iteration {2.9%a,b), since the multi-corid convergénce is closely

related to the two~-grid convergence (cf [6]).

2.3 Pourier Analysis
Let U, the set of all grid functions defined on {-1,h~1,...,1-h}.
uh@Uh may be regarded as a 2-periodically extended function on the

infinite grid h%. Eg we write uhimﬁmh) instead of mh(imh), The scalar
product on Uh is

2N~ 1 :
(u,,vy) = g%@ u, (=1+vh) thm1+wh)@

The constant function with value 1 at all grid points is denoted by #.
The space orthogonal to 4 is denoted by

Uier = fvps (ﬁ,vh)m0§9

Eq (2.1), Lhuhﬁfhp can only be solved 1f fhﬁUg@Ke Furthermore, the
solution of Eq {(2.1) becomes unigue by th@ condition uh@Uger@ The

Pourier transformation of uhéuh is @h with

N, u
(2.12) u, (%) = 2o u () alp®x

pET-N (x=vh, vel) .

The two-grid iteration (2.9) can be written as

3+1 J,
{(2.13) ug = MhuhﬁNhfh

where the iteration matrix Mh is

. ™ N - . -
(2.14) M o= €S,  Cp = I-pl,, T, .
m’g

8, is the iteration matrix of yﬁ (cf(2.5)). Loy is defined as mapping
from Ugir onto Ugﬁlo For the following analysis it is convenient

=1 er
to extend L, and L,, onto Uhmug. ® span () by

- -1 g
(2.15) Lhﬁ;—»ﬁ, Lo =4,



These definitions together with pd=4, rd=4 imply Chﬁ =0.

The frequency p in (2.12) varies in EEN (integers modulo 2N),
Define the set of 'low freqguencies' by

I, = {1-N/2,2-N/2,...,N/2}.

low

Each €I, . can be associated with a 'high frequency’ WP$P+N£ZZ2N5110W°

It will turn out that the subspace
: $ a ¥
span{elﬁ%x,elf@ Wxg’ pé Ilow' pt =kl
is invariant under multiplication by the iteration matrix th There~
fore, the Fourier transformation of Egq (2.13) into
| up == Mhuh+Nhfh
leads us to a blockdiagonal matrix

A \ A (g8)
(2.16) M, = blockdiagim ¥
h {11 gﬁéllow

with 2x2 matrices MéM)D The proof of the representation

(2.16) follows from

A 14%

M = (I- pLZh )s

and
0 Sl W)= 26 2w Ap)1Y
(2.17) = [1 L))"t e pel] [sr)]
The block matrices can be verified to be
2
cos (rwh/Z)

4 (ps) A (pe) 2 .2
(2.18) p 7 = ) r'® = |lcos®@rh/2) sin®(uwh/2 },
sin® (urh/2) [ ¥ sin”{pan/2)

(2.19) 1w

h h™%n r8p
A(w) -2, _  _~ip2vh oip2wh

(2.20) Loy’ = (2h) “(-a, e +by, ~c,y e P ) (n+40),
24(0) _ =2, 2 . (0)

(2.21) 1.7 = n"“aiaglh®,a b e}, LY =1 (#=0) ,

The blocks Séw) of the smoothing iteration§(2n61) and (2°GII) are

=} h ima h =ip® h
e ipThy -c e r /[bh+ahe r 1&

(gﬂ) - ipwh
(2.225) S = diaggche P /Ebhmah

hmzdiag {-ahe”iPWh+b -C eirwh a emiPNh+bh+chelrwh}(ﬁ#O)s

e




alp) |« = ipwh winih
(2.22,,) S al] P o = E%@ «%«%@-?g Emh@

g+1 ool
of
h 2

The representation (2.16) implies

. A A

Lemma 2.2 QMhéﬁ o= gmhze =  max gméﬁﬁg ,
FET 1o

where [°[l 1is the spectral norm.

Al
The formulae (2.17 = 2.22) show that the 2x2 matrix M}g’%) depends
#f
on the product pwh only. We rewrite ﬁgéﬁ) by M(pwh). Note that ,
. & . (0) < ¢ o . £
%:TO M(B) =My by definition (2.21). Since §§awhm ga@i]i’l@wgﬁf w/2,+9/2], one -
concludes from Lemma 2.2 the estimate stated in
A
Lemma 2.3 M 0 € max pM(EN for all h.
1Ele%/2 ‘

The estimate is sharp because Mhﬁ approaches the right-hand side

as h—+ 0, h/¢=const.

2.4 Results of the Fourier Analysis

We present the results in ‘ , oo

Case I: difference schemes mg%), mamxbg
smoothing iteration (2.6.)s W]

and in

Case II: difference schemes (28313% ma‘ﬁaxﬁg] ' |
smoothing iteration Weﬁxﬁ s vml, | :

In Case I define the contraction number

A
@(él;: mas fTwill
1Bisn/2
since the right-hand side in Lemma 2.3 depends on
%€ =h/€.

Some values of () are shown in Tab. 2.71:

w O Oa‘i 0@% oie@ '2'@0 1@@@ «® OO

Clae) 12/3 0425 00348 00286 0.212 04069 @ 0

Tab. 2.1 Contraction numbers £(%) for Case I

The worst case 18 =0 which i8 equivalent to the discretization of
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the unperturbed equation -u"=f. Hence, one obtains

Proposition 2,4 1In Case I the estimate @M, 0¢ J2/320.47 holds

for all h and all ¢»0.

Proposition 2.4 implies uniform two-grid convergence for all h and &.
Of course the contraction number HMhﬂ is a too pessimistic measure
of the convergence. In fact the estimate }ﬂMh)§1/3 can be proved

for the convergence rate.

The reason of &(w)-» O (w—ed is the fact that the larger % is
the better the GauB-Seidel iteration (2061) works. Especially for
%= (ie £=0) one step of the GauB-Seidel iteration yields the exact
result. This would not be true if we invert the ordering of the grid

" . point. Applying the GauB-Seidel iteration from the right to the

left, we would obtain a very poor or even divergent two-grid itera-
tion. This fact has severe consequences for the two-dimensional
case. The GauB-Seidel iteration 3; has to follow the flow direction
(c£{3]). This is often inconvenient and one would prefer a multi-
grid method admitting GauB-Seidel iterations of any ordering, eg

gf the neutral choice in (2,611)@

In Case II with £, =2¢, the contraction numbers ' §(a ),
xh=h/£h=&§h=2h/€2h, are given in Tab. 2.2 :

ggh=x2h 2@0' 165 1@14 1.0 0@8 Oef @@6 05 Oe1 % O

Cae) | 43" 15/16 . 708 662 .630 623 .622 .626 .684 | 1/J5

Tab. 2.2 Contractién numbers génh) for Case IT with £, =2¢

h

Although whaz ylelds a reasonable difference scheme (cf (2.4)),

not only the contraction number but also the spectral radius is 31"“

for u,32. The divergence is not the resglt of the ‘wrong' choice

mZEh. All values in Tab. 2.2 marked by an asterisk canno@hpgwwmw
Q1+xﬁ/% /2
\ 2h" 4
(instead of £,,=2¢) does improve the other contraction numbers
of Tab 2.2 as can be seen from Tab 2.3.

é
2h h
improved by any choice of €2h, These values are [M(w/2)ll =mh

which are obviocusly independent of %Zh or €2h. The cholice ¢
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ghm%hliz 250 ia§ ﬁ®ﬁ£3% ils0 @@3 @@? @aé @953 0ol . O

Eoe) | B 15/16 | (656 1565 4Bk 456 435 415 o386 | - 0.385

Tab. 2.3 Contraction numbers gkmhﬁ for Case II with &, =&

These numbers clearly indicate the strategy of choosing € {and

L4107 &gy e -+ AN the multi-grid case). If 2%0.6 theﬁchoiae €0 =8
implying mZh?i“@ would cause a too poor convergence of the multi-grid
process in the 2h-grid. In that case u,, =wr  (ie géhngﬁ) is required.
Only if wh@Osﬁ we may chooge o1 closer to &0 since then the con~
vergence in the h-grid is improved while %zhgasﬁ guarantee the appli-
cability of the multli-grid iteration in the coarser grid. The resulting:
"definition of &, 1s | '

(2.23) géhzmax(ghgzhf@@ﬁ)&;m&xégmgﬁeﬁEm%®

|
]

Using this definition also ﬁ@x‘g@hg gﬁh” oo W& CAR ensure
%, € maxﬁcoﬁywh) for 1=1,2,¢..

Proposition 2.5 In Case II with &,66, 626, the estimate M, Us1/42
holds for all whmhf£h$ﬁ@%%$mg ' ‘




3. Analysis in the Dirichlet Case

3.1 Discretization and Notations

The Dirichlet problem (1.1) is discretized by the same difference
schemes as in Section 2.1. The solution is in
o =23 o ﬁ =
02 = fv,: v, (C1)=0} €U, .
We shall extensively use the fact that the orthogonal projection
. per em 11 e
(3.1) Q20 + U, Qu sm w - sp(d,u)d 2 4

is a one~to-one mapping from Ug onto Uierg

From now the symbols
shy Ch, Mh ) (Cf (2&6)0 (2014))

denote the respective matrices for the Dirichlet boundary condition,

whereas the matrices in the periodic case are renamed
per ,.per . Dper
Sh & Ch 74 Mh @

3.2 Relationship of M, and Mﬁef

e o per ..per . (e) per
.As sheuhfauh and Sh °Uh ﬂavhg one has to compare QhSh° Uhf'u
ahd thierth U§Wa0§ero The following considerations are based on

Lemma 3.1 In Case I (cf § 2.4) the identity

- per T
(3.2) %Sp = %S 9 * Q¥ dy
holds, where the vectors Wy and @h are given by
Y _ e+h Y
(3.3a) wh(m1+wh) = (ah/bh’ = (ﬁEiﬁ) (O6weg2N=-1) ,
er e +
(3.3b) g = [1-(sP®)Je_ € UPST witn e, (*1)=1, e (x)=0 otherwise.

Proof. Set Vh=Shuh@Ug with vh(ﬁ13220@ By definition of the GauB~-
Seidel iteration (2@61) the function'vh‘fulfilﬁ

(3.4) vy, (x) = Eahvhéx@h)%chuh€x+h}3/bh (x=h=1,2h=1,c.0.,1=h) .

i

'
1
'
[
!
{

|
|
i
|



w 1@ o

Set

per __ . per __ Per per, e wPeT_

uh g = Qhuhg Vh H Sh uh 3 éuh 2 uh uh aﬁﬁ
with e=(4,u )/ZNg By definition vg@r satisfies
(3.5) P@rm = [a,vPF (x-h)+epubF txeh)] /by (x=he,2h=T 0000, 1=ho D)
By (3.4) and (3.5) the difference

@ =3 p@rm

dvy, = Vo "V
fulfils
(3.6) gvh(x) = fahgvhixmh)%ahguh(x%h)ﬁ/bh (x=h=1,2h=150c00,1=h)
As ap+cp= by, the constant function éuﬂzwﬁ is a solution of
(3.7 du, (x) = =[a du <th§+chéah(x+h>3/b. (x=h=-1,2h=1,0..,1"0,1) .

Set zh:

(X§ &® g&h hix hﬁ%g}jbhﬁg%&h/bhy $h<3§ h) (xghm‘i’aeog'ﬁmh)a
Hence 2 has the representation z, (= %%wh)m@ahfb ) zh( 1} ox
zy = zhim?) Wy,
with wy from (3.3a). Since Qhﬁuh@w@hﬁlmmp we have
p@r p@r

= P@ - = =

per , ‘
thh Qh% & thh @%Sp@xgh% % zh(“” Qhwhﬂ
Froﬁwuhimﬁ)ﬂvh(mﬁ)%é'we conclude
fu, (=1) =dvp (=1) = [P (=1)=uy (-1)] ~[vBOF () (=11 = -
oPT (1)~ PO (-1) = {[T-sPloyu, f-1) =
~cPer -
(@Oygl Sh EQhuh) = (@hﬁukJ

#

zn(wﬁb

]

it

with e  and @hﬁgh$h vfrem (3.30). @
" A similar result can be obtained in Cage IIL:

Lemma 3.2 In Case II (cf § 2.4) identity (3.2) holds with

(3.8a) w ($1)=1, w, (x)=0. otherwise;
2, 2, 2 .+ ) '
+ep) /by if x==1 ‘
2,2 a
. . -c, /b 1f wx=-1+2h|
h'’"h \, pexr
(3@8b3 éhgx)% 2 2 @ Uh ]
=ay, /by if x=1-2h |

o) @lsewh@xeé

L
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er ' N _
Proof. Apply thh and QhSE Qh to the unit vector e, with ei( 1+ih) =1,
e. (x)=0 otherwise. If i is odd the first half-step of the Gaus-
h e
Seidel iteration (Z.GII) annihilates the non-zero coefficient:

_ per = - =0 .
0, 5,2;=9,5y,  Qne4=0r proving éh( 14ih)=0 for odd i. If i is even

and in the interval [~-1+4h,1-4h], Q,Spe, and thﬁerQhei equal the
vector | -
2 2, 2 T
(309) Qh(ooep Op cﬁ/brz" ch/bhg 2ahch/bhy ah/bhp ah/bh' Ogooo)
¢ "

[

x==141h

demonstrating ¢h(n1+ih)=og It remains to discuss the cases i=2 and

i=2N-2. Let i=2.thS§erQhez is again the vector (3.9), whereas

2,2
thhe2 has a zero at x=-1 instead of ch/bho Hence

0y552=2, SET Qe slef /b)) 0w, =0, 5P 0, 040, wy e, .
The case i=2N-2 (ie x=1-2h) is analogous. The definition of ¢, (*1) is
irrelevant since ¢h is multiplied by some uheug with uh(i‘l)zoo The
choice of ¢h(11) is uniquely determined by @héUﬁer. |

per

We recall the definition of the coarse-grid matrices Ch and Ch

(cf (2.14)):

e o™ o
Ch = I pLZhth | in U,
per _ .__per per,-1_per _.per per

Lemma 3.3 thh=cﬁerph in Case I and Case II.
Proof. Let uheug be arbitrary. By Lﬁerﬁ =0 one has
er '
(Lhuh)(x) = (Lﬁ uh)(x) = (LgerQhuh)(x) for x=h-1,2h~1,c..,1=h.

and dpersn

per _ . o=
Hence the restrictions r and r yield th. thuh >h

per. pexr

r Lh Qhuh with
dy (x) = a5PF(x) for x=2h-1,4h-1,...,1-4h,1=2h,

Since the values th(i1) play no r&le in the Dirichlet case, we may

identify th and dgﬁréuggr, The coarse-grid solutions .

o= o exr er, =1
Von=Lop 56U, and vbe =(LOEY) d,, 6UPST differ by a multiple
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of 4. Thus,

JPer

Vah = Q2nVon
follows. Set V, 2=PV oy and vger@mpper ggr and note that pperuuggr

e , er er
Uger and pp Y4d=4 imply pp lQZhﬂthp s

per ,_ _per per _ - per,
vper a= pPEIVERE = pPo vo = 0 0P v, = e,

per

where the last step uses p=p on Ughn Hence, we have

« - JPer _ per per =1 Per; per
QpPL oy Thpuy = v = (Lo ) Lh “nt

per(Lper) 1rper per

=1 _.per
proving thLzh 0P Qh and Qh h C Qh §

Combining Lemmata 3.1 to 3.3 and recalling Mh hsx (cf (2.14)),

one obtains for w=1 the relation

- - cPer o p@r per Ty
QM = 0C 8y = Cpm 8y = [ o8 0 0wy )=

]

per per T
Mo Oy + Cpo Q.
Hence, we have proved

Proposition 3.4 Assume Case I or Case II with »=1. Then the two-grid
er

iteration matrices Mh (zssociated with Dirichlet condition) and Mg
(associated with periodic condition) are related by

| _ .per per T
(3.10) O My = M T Q + Cp Qhwhw@h
with Wy, and @hﬁuger from (3.3a,b) (Case I) or (3.8a,b) (Case II),
respectively.

In the introduction we raised the question: What is a suitable
norm (or scalar product) in the Dirichlet case? The approach.of
this chapter leads us to the choice of

535 uhgga 8= @Qhuhgg = (Qh hg@h h)

which i1s obviously a norm on Uga The associated matrix norm is

denoted by W Wl , too.

A= sup§ iau, W/ Bu B z@%uﬁgug

1/2
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Proposition 3.5 Under the assumptions of Proposition 3.4 the con-
traction number of the two-grid iteration in the Dirichlet case
equals '

(3.11) WM W = WMPSTacPoTo T

Proof. For any uhgug the estimate : L |

My, W=1Q, M, u, B= J[MPTQ +CPTO W . ﬁ Ju V=0( Mger{cgerohwﬁﬂlohuh i 4
¢ IRy by Hlloguy B = RUET+cP o ¢ 0 u i

is valid. Further, the equality sign holdskfor an appropriate uueug.

The right-hand side in Eq (3.11) can be estimated by means of
Lemma 3.6 QA-#—wyT | 2 &£ H.Au2+ d with

2 2 4. 4
d= |BULWL o ayaf + (BEEIVE 4 gun? ya? (ay, xexiag®) V2

TA+axa2ny+ATxyTl!a The

anf. Use §A+xyT”2= H(AT+yxT)(A+XyT)ﬁg ﬁATA+yx
estimate

uA+xyTg2£ ﬁAﬁz +§yxTA+@xu2ny+ATxyTﬁ

yields the inequality of Lemma 3.6 , U

Setting .
{(3.12) A""'Mger ¢ chﬁerghwh v Y= éh
we can apply Lemma 3.6 to the right-hand side of Eq (3.11). Note that
QJANQ xﬁMﬁerﬂz is known from § 2, while d can immediately evaluated,

since x and y are explicitly known. d depends on N=1/h and ¥=h/g
(ox xh=h/£hx A first necessary requirement for a uniform estimate
[iM, 01 €1 is the uniform boundedness of d for all N.
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Proposition 3.7 1In Case I and im Case IT (whmhlgh constant) the num=
ber § evaluated for (3.12) is uniformly bounded for all N=1/h (and
for all ®#=h/¢ in Case I).

Proof. It is sufficient to prove gxi,yydeconsté® for all N. In Case II
the definitions (3.8a,b) imply 8w i=1, ”dﬁﬁﬁz from which axun,uy¥4 const
follows. In gase I the estimate @yﬂ“ﬁéhﬁﬁz is obvious,

whereas ﬁwh& g (2+%) /(3+2w) is not uniform with respect to

per

%=h/¢ . However, #8x{ ~ﬂc QW h" is not increasing to infinity as

w90 , since for w-vee the functions Wy becomes smoother and the coarse=
grid correction Cger is increasingly efficient. A longer exercise

shows

2_ poper 2 ;
i ﬂa Qpw, |

w@f

with
e =a, /b ﬁm@@(gg +e, )/ (a —ee )] =8.,, /¢
h'/Pn ntop) /(8= Conde ¥=89n/Cops

‘ _ 2.,  Nei |
& =(B=1) (1=eNy f(pN=1), 4= &PV @op ) o SITK, gata®1) /2]

From which Exn<const can be concluded for all 2. §

In the next subsection the number § from Lemma 3.7 is evaluated
for varlious parameters.




o 17

3.3 Contraction Numbers in the Dirichlet Case

Tab 3.1 contains the number § from Lemma 3.6 in Case I. More
precisely, the values in Tab 3.1 are the maximal &'s taken over
hef1/8,1/16,1/32,1/64}. It turns out that the dependence of d
on h=1/N is rather noticeable. From these values d and from the
bounds of ﬂMﬁerﬁ given in Tab 2.1 one obtaing the bounds of
] th according to Lemma 3.6.

2% 0 0.1 0.5 1.0 2.0 10.0 — co

$ 0.64 0.537 0.382 0.323 0.277 0.240 -» O

IWMhM§ 0.93 0.847 0.709 0.636 0.567 0.494 -+ 0

Tab 3.1 Values of §(cf Lemma 3.6) and bounds of wmhm in Case I

The figures show the counterpart of Proposition 2.4 in the case
of Dirichle& boundary conditionss

Propositionk3.8 In Case I with Dirichlet boundary condition

the estimate
(3.13) MM M £ e
holds independent of h and &>0.

Inequality (3.13) proves uniform convergence of the two-grid
iteration, although the bound c¢=0.93 suggested by Tab 3.1 is too

pessimistic.

w, =Wy, 2.0 1.5 1.14 1.0 0.7 0.5 0.1 - O

& 0.89 0.51 0.35 0.31 0.25 0.23 0.200 |—» 0.199
UM We 1.7 1.18 0.92 0.87 0.80 0.79 0.817 |—» 0.836

Tab. 3.2 Values of ¢ and upper bounds of (HMhm in Case II

The respective numbers in Case II are exhibited in Tab 3.2,
Convergence follows for all m%é10?48 which are also considered

in Proposition 2.53



m:&gm'

proposition 3,9 Consider Case II with €,,=2¢, for the Dirichlet
problem (1.1). The estimate (3.13) is valid for all h and all

#, =h/g,€1.148.

Conclusion. Even the rough estimate of thw by means of Lemma 3.5
per.
M=l

was sufficient for proving that the contraction member ||

and thm are closely related.

k3
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k3
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