UCRL-87912
PREPRINT

Analysis of a Multigrid Method

as an Iterative Technique for Solving Linear Systems

Anne Greenbaum

This paper was prepared for presentation at
1982 DOE NASIG Meeting
June 23=25, 1982
Los Alamos, N. M.

June 18, 1982

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the un-
derstanding that it will not be cited or reproduced without the permission of the author.



Analysis of a Multigrid Method as an Iterative Technique

for Solving Linear Systems*

ABSTRACT

A general class of iterative methods is introduced for solving
symmetric, positive definite linear systems. These methods use two
different approximations to the inverse of the matrix of the problem,
one of which involves the inverse of a smaller matrix. It is shown
that the methods of this class reduce the error by a constant factor
at each step and that under "ideal" circumstances this constant is

]
equal to iﬁ:l-, where «' is the ratio of the largest eigenvalue to

the (J+1)5t

eigenvalue of the matrix, J being the dimension of the
smaller matrix involved. A multigrid method is presented as an example
of a method of this class, and it is shown that while the multigrid
method does not quite achieve this optimal rate of convergence, it

does reduce the error at each step by a constant factor independent

of the mesh spacing h.
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support of this work, This work was performed under the auspices of
the U. S. Department of Energy by Lawrence Livermore Laboratory under
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1. Introduction

Many iterative methods for solving a linear system, Ax = b,

can be written in the general form

(1) Koot ol ) k=12,

where x* is a given initial guess to the solution and each iterate xk

represents a hopefully improved approximation to the solution. The

matrix M"]

1

is taken to be an approximation to A'] such that the product

of M' times an arbitrary vector is easy to compute. For example,

1 -1

taking M™' to be (diag(A)) ' gives Jacobi's method, and taking M to
be (lower triangle of A)'] gives the Gauss-Seidel method. The error
ek = A b - XK is then given by

(2) ek = (1-mTay &1,

th

and the norm of the error at the k= step satisfies

k -1 k-1
[T < [1T-M A [le™ ] .

d

The error is reduced quickly if the norm of the matrix I-M"]A is much

less than one.



Multigrid methods [cf. 1,2,3] can be written in the general form (1),

where the iterates xk represent quantities generated after a "coarse

grid correction cyclie" and a given number of "relaxation sweeps”.

k-1

That is, given an approximation x to the solution, the multigrid

k=1,0

algorithm generates a new approximation x via a formula of the form

(3) 10y gy -y

where the matrix B represents a "coarse grid" approximation to A'1,

The method then generates a fixed number, say £, of new approximations,

xk']’j, j=1,...,2, by performing "relaxation sweeps" of the form

(4) NUSLEN IS N ALt C(b - Axk_]’j_]) s o d =1, 000,04,

where the matrix C also represents an approximation to A']o If we

k k-1,£ o

denote by x the quantity x f (4), then we find

(5) K=k - r-em)tr-a)AT (b - ATy
and the error ek satisfies
(6) ek = (1-carb1-pa)et T,



Thus, for multigrid methods the iteration matrix, I-M"]A in (2), is
of the special form (I-CA)K(I-BA), for certain matrices B and C.
As with other iterative methods, the amount by which the error is
reduced at a given step depends on the norm of this iteration matrix.

In the following section we analyze iterations of the form (3)-(4),
where the matrix B is also of a special form, involving the inverse
of a smaller matrix. In section 3 we examine a multigrid method
(or, more precisely, a two-grid method) as an example of such an
iteration and determine how close it comes to achieving a certain

"optimal" convergence rate for methods of this class.



2. Analysis of a General Class of Iterative Methods

We will consider only problems in which the matrix A is symmetric

and positive definite, and we will estimate the rate at which the

A-norm of the error, ||ek||A = <ek,Aek>]/2, is reduced. To avoid

working directly with A-norms, we can define a modified error vector,
sk = A]/zek, and consider the rate at which the Euclidean norm of sk
(which is the A-norm of ek) is reduced. From equation (6) we have

(7) Sk - (I-A]/ZCA]/Z)E(I-A]/zBA]/Z) Skm]

£

k

and hence the Euclidean norm of s  (denoted by ||-|| ) satisfies

(8) 1K1 < 11-a12eal/ 2y a2l /2y ) 1Ty
The quantity ||(1-A"/%cal/2)%(1-a"/28a1/2)[| in (8) is called the
contraction number of the method and will be denoted by x.

A simple bound for « is given by

(9) n < ||1-AY2cal/2) 8 | 1-a 2812

Thus, if the matrices B and C are chosen so that ||I‘A]/ZCA]/2|| and

||I-A]/ZBA]/2|| are both Tess than or equal to one, with one of these
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norms strictly less than one, then the iteration (3)-(4) will converge
to the solution and, moreover, the A-norm of the error will be reduced
at each step. The class of iterative methods to be considered in this
section employ such matrices B and C and hence are convergent whenever
the matrix A is symmetric and positive definite.

Inequality (9), however, is too crude an estimate to provide much
useful information about the rate of convergence. In fact, the methods
to be considered are designed to use matrices B and C which complement
each other in such a way that the norm of the matrix product in (8)
is much less than the product of the norms in (9). Instead of

inequality (9), we estimate ~ with the following bound:

(10) < max |[(1-A2al/ 8y ypp A/ 2eal /2y
[yl]=1 o 12
y € range(I-A /2ppl/2y

If the range of I—A]/ZBA”2 is a restricted set of vectors on which
the operator (I—AVZCA]/Z)2 is highly contractive, then the bound
in (10) may be much smaller than that in (9).



We now define the form of the matrix B in iteration (3). Suppose
A is an N by N matrix and J is some number less than N. Let P be

some arbitrary N by J matrix and define a J by N matrix Q by

]
~3

(11) Q
Next define a J by J matrix Ay by
(12) AJ =QAP,

and take B to be’the matrix

The hope is that the matrix P can be defined in such a way that the
smaller matrix AJ is easier to invert than A and, in some sense,
approximates A. We might then expect that the N by N matrix B

would be a good approximation to A-1. Without specifically defining
the matrix P, we can use the relations (11)-(13) to determine the norm
and range of the matrix ]‘.-/!\1/ZBA1/2 in (10). (We are assuming,

of course, that P is chosen in such a way that AJ is invertible.)



Theorem. If the matrix B is defined by (11)-(13), then we have
(14) al/2.p(1-a"2012) < n(q)

where R(-) denotes the range and n(-) the null space of an operator.

The norm of the matrix I-i\]/zBA]/2 satisfies

(15) 111-AV/ 2812 = 1,

Proof: Let y be a vector in the range of I—AVZBA]/2 . Then there is

a vector z such that
y = (1-a/281/%) £

Multiplying by QA2 and using the definition (13) of B gives

oa'2y = (0 - amena) A%z

But from (12), QAP 1is just AJ, and so the right-hand side of this
equation is zero, thus proving (14).

To establish (15), we note that I-A]/ZBA]/2 is a symmetric matrix
and hence its norm is the absolute value of its largest eigenvalue.

1/28A1/2

If z is an eigenvector of I-A with eigenvalue X, then we can write

'/ 2(1-a" 212y, = aal/2; = ¢ .

It follows that either A =0 or A]/Zz e n{Q). In the latter case,
BA]/ZZ is zero, and hence we have X = 1. Thus, the eigenvalues of

ImAVzBAV2 are 0 and 1, and (15) is proved.
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Applying the theorem, inequality (10) becomes

(16) r< max ||(1-AV2cal/2yE g,

|y] =1
A2y ¢ n(Q)

Thus, in designing a method of the form (3)-(4), (11)-(13),
we would like to choose matrices Q and C for which the bound in (16)
is small. For the purpose of analysis, we will assume that the
matrix C is chosen to be symmetric (though some multigrid methods
use nonsymmetric matrices C and hence will not be covered by our
general theory without some modification). Let d, < <d

'l__.uo__ N
the eigenvalues of A]/ZCA1/2, with corresponding normalized

be

eigenvectors Vis eoes Vpo Let y be any vector with norm one.

We can expand y and (I—A]/ZCA1/2)£y in terms of Vis ceos Vy a5 follows:

N N 5
(17) Y= LYV Vs I <y,vi>" =]
i=1 i=1
C12.1/28 N 2
(18) (I-A/CA'/ Y-y = _Z1<y,vi> (1-d1) v
. 1=
172..1/2:8 2 _ N 2 20
(19) |1 (1-A"7“CA™ )" yi|© = .Z]<y,vi> (1-d)°" .
'|=
Bounding the quantity in (19), we have
(20) max H(I-AUZCA]/Z)K yll2 g_max‘{(l-d])ZK, (1-dN)2£} .

[y]]=1



Now suppose y satisfies the additional constraint A]/zy e n(Q),
or, equivalently, A1/2y.¢,R(P). If P and C have been chosen in such
a way that some of the eigenvectors of A]/ZCA1/2, say, the first J

eigenvectors, are of the form
(21) vi= A%z, ie1,0

for some vectors Zss then y has no components in the directions of these
eigenvectors. We can‘say that these components were annihilated by the
partial step (3) of the iteration. Expression (19) for [I(I-A1/2CA1/2)£yl|2

then becomes

| N
(22)  |1a-AZAl 2y g 112 = 5 <yvs? (1-40%
=g+l ] !
and the bound in (20) is replaced by
(23) max | (1-AY2AV2) y 112 < max ((1-40,0)%, (120078
l]ly,l)l"-ﬂ
A2y ¢ n(q)

Thus, under the "ideal" conditions (21), the norm of the iteration
matrix is effectively reduced from expression (20) -- which it would
have been had we iterated using only steps of the form (4) -- to the

possibly much smaller value in (23).

~0-



As an example, suppose C is taken to be of the form

where the constant v is chosen in some optimal or near optimal way.

Then the eigenvectors of A]/ZCA]/2 are just the eigenvectors of A.
If A] < .. E-AN are the eigenvalues of A, then the bound (20) becomes
2
(25) max || (1-yA)" y] 1% < max (1), (1o
[y[]=1

To minimize this bound we take

o2
Y = s
A1+AN

and (25) becomes

A=A

ANt

(26) max || (1-vA)% y[1? <
Hyll=1

This is the usual bound for the method of steepest descent.
On the other hand, if the conditions (21) are satisfied, then

the improved bound (23) holds, and for our example (23) becomes

-10-



(27) max |I(I-YA)K Y||2 f_max'{(1-yxd+])2£, (]-YAN)ZK} .
IMH |
al/ y € n(Q)
To minimize this bound we take
2
Y = 3
Age1ry
and (27) becomes
e A
(28) max || (1-vA) Eylne A:+kj:: 2t . (K.+})2£ ,  K'= Ag :
|ly]]=1 ¥
A2y ¢ n{Q)

Thus, for our example, the effective condition number of the iteration
matrix has been reduced from « = AN/A1 to k' = AN/AJ+1 . If the

tatter ratio is much smaller, as is typically the case when the matrix

A approximates a differential operator, then much faster convergence

is achieved by using a partial step of the form (3) than by iterating only
with steps of the form (4). A goal, then, in designing a method of the
form described, with C of the form (24), is to choose a matrix P

for which (21) 1is approximately satisfied. In the following section

we define the matrix P according to a multigrid prescription and

decide how nearly the ideal conditions (21) are approximated.

“11-



3, Analysis of a Specific Multigrid Method

Suppose the matrix A arises from a finite element approximation
to a se1f-adjoint.e11iptic boundary value problem on a region Q
using a grid with N free nodes and maximum mesh spacing h. Assume
that the differential operator L is of order 2m and that the finite
element space Sh contains all admissible polynomials of degree r-1
or less, where r > 2m. For any N-vector v, let v(x) denote the
piecewise polynomial in Sh that is represented by the vector v.
Assume that a coarser J-point grid (with elements of the same shape;
e.g., triangles, rectangles, etc.) can be formed by deleting some
nodes of the N-point grid and that the maximum mesh spacing on the
J-point grid is ph, p > 1. Again, for any J-vector w, let w(x)
denote the piecewise polynomial in the corresponding finite element
space Sph for the coarse grid, that is represented by the vector w,

Define the coarse to fine interpolation matrix P of section 2,
so that functions in Sph map into themselves in Sh; that is, so that
the piecewise polynomial represented by any J-vector w is the same as
that represented by the N-vector Pw:

(29) wix) = (PW)(x) ,  YweR,

-12-



With these definitions, it is shown in [4] that the solution to

a differential equation

with the given boundary conditions, is related to the finite element

approximation z(x) in Sh by

() alu0-z(x),u(0)-2(0)% < e 1" u()] ], »

h

assuming that u(x) lies in Hzm(ﬂ), the (2m)t Sobolev space with

norm o Here Cy is some constant independent of h and a(e,°)
is the energy inner product as defined in [4].

The differential equation (30) with the given boundary conditions
is equivalent to the minimization problem: Find u(x) ¢ Hg (the set
of functions in the Sobolev space Hm(Q) which satisfy the essential

boundary conditions) to minimize
a(u(x),u(x)) = 2(u(x),F(x)) .

The function ?(x) is equal to f(x) if the boundary conditions are
homogeneous and is modified by an appropriate boundary term for

nonhomogeneous boundary conditions. (See [4], sections 1.7-1.8.)

13w



With appropriate smoothness conditions on the coefficients of the

differential operator L, and assuming that %(x) Ties in the Sobolev

space HO(Q), it is further shown that
(32) HuG) < e HFE I, S ¢, independent of h .

We will make the additional assumption that if ?(x) 1ies in the
h

finite element space S, so that the finite element system for

equation (30) is

H
-h >
@

(33) Az

then the Ho-norm of the function ?(x) is related to the Euclidean norm

of the vector f by
(34) II%(X)IIO < cq HEL ¢, independent of h .
Combining inequalities (31)-(34) we have

(35)  alu(x)-z(x).u(x)-z(x))"? < ¢ 1" ||Az|] ,

C = CyCyCq independent of h.

Similarly, using these same assumptions, it can be shown that if w(x)
represents the finite element approximation in Sph for the differential

equation (30), then w(x) is related to u(x) by

-14-



(36) a(u(x)-w(x),u(x)-w(x))/% < ¢ o™ 0" ||Az]|

°

We will use the relations (35) and (36) to determine how well the
desired conditions (21) of section 2 are approximated, assuming that
C is of the form (24). Again, letting ViseoesVy denote the eigenvectors
of A, with A] < oo g,xN the corresponding eigenvalues, we have the

following theorem:

Theorem 3.1. If v is any vector in span[v1,...,vj], J <N, and

if ||v]] <1, then v can be written in the form

Vepyss where ||§]] < ¢ (1+™) A" /2

37 = A .
(37) v [

for some J=-vector w.
Proof: let z = A"1/2v, and consider the minimization problem:

Find u(x) in Hg to minimize
a(u(x),u(x)) - 2(u(x), (A% (x)) .

The finite element system for this problem is

Az = AV/2y

and so from (35), z(x) is related to u(x) by

(38) a(u(x)mz(x),u(x)-z;(x))]/2 <ch” IIAT/ZVII <ch" k}/z .

Simitarly, if w(x) is the finite element approximation in Sph for

this same minimization problem, then from (36) w(x) is related to u(x) by

~15=



(39) a(U(X)-w(X),u(X)-W(X))W_ mopm a2

Combining (38) and (39) using the triangle inequality, we find that

z(x) is related to w(x) by
(40)  alz(0)w(x),2(0)w(x)E < ¢ (1) 1212

Now w(x) is the same as Pw(x), and from the definition of the
finite element matrix A it can be shown that for any function z(x)

in Sh, a(z(x),z(x))]/2 = ||z||A . Thus (40) becomes

1/2

Iz = Pully = Ly - A2 < e (™ 2372

which is the desired result. QED.

We now use theorem 3.1 to bound the quantity on the right-hand
side of (16), again assuming that the matrix C is of the form (24).
We can write inequality (16) in the form
N

1-YX1) IRy
i=j+1

21

We will try to choose the number j so that the first sum in this
expression is small, and we will then choose vy to approximately

minimize the second sum. Taking y to be

«16=-



(42) y =

Mg
we can write

2 J 2

' j
(43) n< max [ I <YsV>T F (i +})2£ (1- % gy,v.>2) ],
L 1= =1
7 x
A"y e n(Q) k' = X—ﬂ- .
i+
1/2 | _
Theorem 3.2. If Ay e n(Q) and |]y|| = 1, then we have
J 2 my om o 1/2
(44) L <y,vi>" < ¢ (1+p") h Aj .

i=1

Proof: The left-hand side of expression (44) is the square of the

norm of the vector

<
i
&~ e

, < > Yo
AR

i

and according to theorem 3.1, v can be written in the form

1/2 1/2

v=AYPw s, 1muic(nﬂ)mxj

1/2

The condition Ai/zy e n{Q) implies that y is orthogonal to A’/ "Pw,

and so we have

<YsV> = <Y,8> .

Since <y,v> = <v,v> we have

2
[vi® < Tt
from which the theorem follows. QED.

-17-



With theorem 3.2, then, assuming that the right-hand side of (44) is

less than or equal to one, (43) becomes

(45) W2 < ¢ (1+™) WM a2y (5¥i%)2£ [1-c¢ (1™ W™ a/27 |
A
S
J+1

Since the matrix A approximates a differential operator of order

2m, it can be shown that the largest eigenvalue of A is of order h-2m’

B
say,

Ay = o h™@™ 4 independent of h.

Let 8 > 0 be some number less than o and independent of h, and choose j
so that Aj is the largest eigenvalue less than or equal to Bh“zm:

-2m -2m
Aj_g B h , xj+] >Bh .

Then expression (45) becomes

‘ e S I T - U I

(46) 2% < ¢ (1+pM) 61/2

g
B L]

provided 8 is chosen so that the first term in (46) is less than cne. We thus
obtain a bound on nz that is strictly less than one and is independent
of h. If B is chosen small enough, then the first term in (46) will

be negligible compared to the second, and we will have established

i
a bound on 12 that is approximately equal to (5—11022

< T » where k' = a/B

is independent of h.

-18-



We have thus shown that by using a matrix C of the form (24),
with v chosen appropriately, we obtain a multigrid method (actually
a two-grid method since we have assumed that the matrix AJ is inverted
exactly) that reduces the A-norm of the error at each step by a certain
constant factor independent of the mesh spacing h. The eigenvalues
AN and Aj+1
constant v is chosen in an optimal way at each step, as in the method

in the expression for vy are usually not known, but if the

of steepest descent, then the same result holds.

The analysis presented here is actually for a two-grid method,
as we have assumed that the matrix A; in (13) is inverted exactly.
In a true multigrid method, the 1ine§r systems with coefficient matrix
AJ would not be solved exactly, but instead would be solved to within
some specified tolerance by using the multigrid method with still
coarser grids. Since the linear systems would not be solved exactly,
the error terms would have to enter into the ana1ysis. For a precise
analysis of true multigrid methods, we refer the reader to [3], where
it is shown that if the equations on each of the coarser grids ake
solved only to within the truncation error of the finite element
approximation for that grid, then the fine grid solution is obtained
to within truncation error in O(N) operations. The results presented
here are similar to those in [3] and also to those in [2], though we

have presented them from a somewhat different point of view.

«70-



4, Numerical Examples and Different Forms for the Matrix C

Expression (46) provides the key to determining under what
circumstances the multigrid method of section 3 will or will not
converge quickly. If the constant c in (46) is large, then B will
have to be chbsen small in order to make the first term in expression (46)
small., But then the ratio o/f will probably be large, resulting in a
slow (but still independent of h) convergence rate for the multigrid
method. The constant ¢ is not usually known but can sometimes be
estimated for model problems.

In Table 1 we show the results of using the algorithm of section 3

to solve the diffusion equation

=Vep(x,y)Vu = f on (0,1)X(0,1)
u(x,0) = u(x,1) = u(0,y) = u(l,y) =0

using piecewise bilinear finite elements (r = 2, m = 1) on a square

21 X 21 grid (N = 21, h = 1/22). An iteration consisted of one coarse
grid correction cycle (J = 10, p = 2, ph = 1/11) followed by one (£ = 1)
steepest descent relaxation step. The coarse grid matrix AJ was |
inverted directly. The number of iterations required to reduce the

Euclidean norm of the residual to the level 10"6

is given in Table 1
along with the number of iterations required by another popular

algorithm -- the conjugate gradient method with diagonal scaling,

=20-



An estimate of the constant ¢ for this problem involves the ratio

1/2 . . -
pmax/pmin [4, p. 47]. For c of moderate size, the multigrid method

outperformed CG-DS in terms of number of iterations, for all problems

tried (p(x,y) = 1, T+xty, 1+x2+y2).

(Though we should point out that

an "iteration” of a true multigrid method would involve solving to
within truncation error an equation on the grid with spacing 2h, and
hence would probably be considerably more expensive than a conjugate
gradient iteration, On the other hand, the grid used in this experiment
is rather coarse, and with smaller values of h the difference in

number of iterations between the conjugate gradient method and the
multigrid method is even greater in favor of the multigrid computation.)

By taking p(x,y) to be .1+x2+y2, however, we increased the ratio

1/2
Prax’ P

method. An attempt to use the multigrid method with p(x,y) equal to

.O1+x2+y2

min and greatly slowed the cohvekgence rate of the multigrid
failed to converge after 200 iterations. We also tried the
multigrid method on a problem for which it really was not designed
(p(x,y) = 1 if x < .5, 100 if x > .5) because the coefficients of

the differential operator are not smooth and so the approximation
theorems of section 3 do not hold. As might be predicted, the method
performed very poorly and its convergence rate was not independent of h.
Methods have been suggested for improving the performance of the
multigrid method on such problems by using a different interpolation

matrix, but we will not discuss these ideas here,

=27



In looking at Table 1, one is struck by the consistency with
which the conjugate gradient method with diagonal scaling performed
on all of these problems. Had the conjugate gradient method been used
without diagonal scaling, it too would have exhibited the type of
behavior displayed by the multigrid method -- slowing down on problems
for which the diagonal elements of A varied greatly. Perhaps the
multigrid method should be used with a relaxation step that also
involves diagonal scaling, such as Jacobi's method or the steepest
descent method with diagonal scaling or even conjugate gradients with
diagonal scaling.

The theory that we have given, however, applies only when the
matrix C is of the form a constant times the identity. The finite
element theory tells us (theorem 3.1) that some of the eigenvectors
of A can be well approximated by vectors of the form A1/2Pwa
But to establish fast convergence we need to know that some
eigenvectors of A]/ZCA]/2 are approximated by vectors of this form.
Even for C of the simple form C = (diag(A))'], we have not yet
established a general result relating the eigenvectors of A]/ZCA]/2
to vectors of the desired form.

Despite the lack of theory, we tried combining the multigrid
method with CG-DS relaxation steps, and the results are shown in

Table 2. Here we combined one coarse grid correction cycle with

~29.



either one, two, or three conjugate gradient steps, and shown in

the table are the number of fine grid steps required to reduce the
residual to 10'6. Similar results were obtained using the steepest
descent method with diagonal scaling as the relaxation method.

By using diagonal scaling, all of the problems except the last were
made essentially as easy for the multigrid method as the Poisson
equation (p = 1). Numerical experiments indicated a convergence rate
independent of h, so it is conjectured that some eigenvectors of
A1/20A1/2 are approximated by vectors of the form A]/ZPW, just as
some eigenvectors of A are so approximated. For the last problem,

in which the theory of section 3 does not apb1y, the extra coarse
grid correction cycles still reduced slightly the number of iterations
required by the conjugate gradient method to achieve convergence.
This is probably because at least some eigenvectors of the iteration
matrix are approximated by vectors of the desired form, but not

closely enough to give a convergence rate independent of h.
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# Iterations

p(x,y) MG-SD CG-DS
1 13 44
14 x + 28 44
14+ x84y 30 44 Table 1. Multigrid with
Steepest Descent (MG-SD) Vs.
. 5 Conjugate Gradients with
1+ x° + 140 49 Diagonal Scaling (CG-DS)
for the Equation
) ) -Vep(x,y)Vu = f .
01 + x™ + > 200 49
00, X% 3 > 200 46
# Fine Grid Steps
p(x,y) |MGCGDS (1) {MGCGDS(2) | MGCEDS(3)
1 13 11 18
T+ x + 13 11 19
2 2 Table 2. Multigrid
T+ x4 13 H 17 with One, Two, or Three
Steps of Conjugate
2 2 Gradients with Diagonal
T+ x+ 13 1 ‘ 18 Scaling (MGCGDS(+))
for the Equation
01 + x4y 13 11 18 “Uep(y)Tu = f.
1, x<.5
100, x> .5 35 30 31
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