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SUMMARY

The numerical solution of quasi-linear elliptic partial differential
equations on general two dimensional domains is considered. The equations
are approximated on a staggered grid and solved with a Multigrid technique.
Several aspects of the MG method for the staggered finite difference equa~
tions.are considered, with particular attention to the enforcement of Diri-
chlet boundary conditions and the restriction operator introduced for tran-
sfering information from fine to coarse grids. This paper aims at assessing
the accuracy and the efficiency of appropriate MG techmiques for staggered

differences.

INTRODUCTION

As the numerical models of the heat transfer and fluid motion phenome?
na have become more sophisticated, treatment of variables location has been
improved in order to better represent real physical processes and to c6n~
struct accurate and stabile difference approximations. In particular two dif
ferent discretization schemes have been proposed: the MAC scheme for the so-
lution of Navier-Stokes eqs.[ 1] and the control volume energy balance ap-
proach [2]. In the MAC scheme the velocity components are defined at the cell
midsides, while the pressure is displaced to the center of the cell. With
this scheme major difficulties connected to the enforcement of the incompres
sibility constraint are overcomed and the results do not exhibit any spu-
rious numerical oscillations. Analogously in the control volume scheme, de-
veloped for heat conduction problems, the temperature is defined at the cen-
ter of the cell. In these schemes the variables location is motivated by an
integral conservation law to be satisfied exactly for each individual cell.
Moreover the difference approximation obtained with the MAC scheme to an el-
liptic differential operator have a good discrete ellipticity measure [3].

Both staggered difference schemes have been extended to generalized non-or-



orthogonal coordinates [2, 4] .

The implementation of a MG solver of staggered finite difference proble
ms  should incorporate the development of specialized relaxation techniques,
appropriate transfer operators and boundary conditions representations. Up
to now the attention has been focused primarly on the relaxation schemes
(Convective Successive Line Relaxation[ 5J9 Distributive Gauss-Seidel [3]),
Comparatively less effort has been directed to the analysis of different
transfer operator on staggered grids, in particular for curvilinear meshes
[5] .

A MG solver as been elaborated for the solution of problems defined on
complex geometries.The curvilinear coordinates system is computed using an
elliptic grid generation method solved by an MG technique [63 .

The first test case considered is a problem of heat conduction on a
cartesian grid. Boundary conditions are selected in such a way that the

analytical solution is function of one independent variable.

PRELIMINARY NUMERICAL RESULTS

The numerical technique has been applied to the heat conduction pro-

blem.
gradd = 0
8 =0 V%8 = —c 6 =0
gradg = 0

The one-dimensional analytical solution has the following expression
6=c/2x(1~-x)

First a linear interpolation both for the restriction operator and the

boundary conditions has been considered exhibiting a truncation error of the



first order. Nethertheless the results appear . quite anomalous (Tab. 1):
better accuracy is obtained on the intermediate grid rather than on the fi-
nest level. This behaviour may be interpreted examining the related effects of
the discretization of the boundary conditions and of the transfer of the so
lution. The error induced by the restriction operator appears in the right
hand side of the FAS correction equations. It acts like an additional source
term compensating the effect of the linear interpolation of the boundary
conditions. Better results are obtained on the finest level if the boundary
conditions are represented by a second order plynomial. Indeed on the fi~-

nest grid only the correction is transferred, which in the present problem.
is not affected by the interpolation error of the solution. Instead on the
coarser levels this error spoils the accuracy of the solution. Therefore a

higher order restriction operator should be employed to improve the accura-

cy on each grids.

\\\\\ .
\\\\\\\\\EASE ERRORS 12 = NORM
LEVEL | A B c
4 x 4 .31-02 .39-02 .22-06
8 x 8 .16-06 .48-03 .15-06
16 x 16 .27-03 .98-07 .83-07
(h = .0625)

Tab. 1: A) Linear interpolation of boundary conditions and restriction.
B) Second order b.c. and first order restriction operator.

C) Second order b.c. and fourth order restriction operator [7j .

CONCLUDING REMARKS

Presently the work is in progress on more elaborate test-cases for two
dimensional problems on cartesian grids. The aim is to test the general va-
lidity of the conclusion obtained through the analysis of the present problems,

vhich is essentially one-dimensional.
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