LA-UR-83-625

BLACK BOX MULTIGRID FOR NONSYMMETRIC PROBLEMS

J. E. Dendy

To be presented at:
International Multigrid Conference,

Copper Mountain, CO, April 6-8, 1983; | L A

To be submitted to: @S @m@g

The Journal of Applied Mathematics & Computation. Los Alamos National Laboratory
Los Alamos,New Mexico 87545




BLACK BOX MULTIGRID FOR NONSYMMETRIC PROBLEMS
J. E. Dendy, Jr.

Theoretical Division, MS-B284
Los Alamos National Laboratory

Los Alamos, NM 87545

Abstract

One ‘major problem with the multigrid method has been that
each new grid configuration has required a major programming
effort to develop a code that specifically handles that grid
configuration. Such a penalty is not required for methods like
SOR, ICCG, etc.; in these methods, one need only specify the
matrix problem no matter what the grid configuration, In
previous work, this defect was overcome and a code written .in
which one .needed only to specify the logically rectangular,
positive definite matrix problem; the code did everything else
necessary to-set up the auxilliary coarser problem to achieve a
multigrid solution. -In this paper, the previous work is extended
to a single nonsymmetric equation.

I. REVIEW OF THE POSITIVE DEFINITE CASE
Let us begin with a 7sﬁmmary of the previous work for positive

definite, logically vrecﬁénguiaf -pfoblems. Let the continuous problem
WW=F

be approximated on a grid‘GM By
Mt = M | (1.1)

In the simplest form of the multigrid method, one comstructs a sequence of



grids Gl, eony GM with corresponding mesh sizes hl’ ceny hM’ where

hi-l = Zhic One does a fixed number, IM, of relaxation sweeps (Gauss-
Seidel, for example) on (1.1) and then drops down to grid GM-1 and the
eguation

LM—IVM°1 - fM-l - Ig_l(FM _ LMVM)

) (1.2)

where VM-'1 is to be the GM-1 approximation to VM = UM - uM, where vM = uM

M-1 M M-1

is the last iterate on GM and where IM :6° > 6 7. To solve (1.2)

approximately, one resorts to recursion, taking ID relaxation sweeps on Gk
before dropping down to Gk-l, M=-1 > k > 2 and the equation

k-1 k-1 _ k-1 k-1,.k k k

LV = =L (f - L)
. 1. . 1,1 _ 1 .
When grid G is reached, the equation L'V" = £~ can be solved directly and
v2 < v2 + I?v1 performed. Then one does IU relaxation sweeps on kal
before forming vk < vk + Ii_lvknl, 3 <k <HM.

If L is positive definite with well behaved coefficients, one can take

It-l to be bilinear interpolation and It_l to be (Ii_l)* or just injection.

If, however, L has poorly behaved coefficients (e.g., LU = -V:(DVU), where
D is piecewise constant and jumps by orders of magnitude across
interfaces), then a more exotic choice of these operators is required.[D]

The idea is to use the difference equation to define the interpolation

Ii_l:ck"l N T (IF,JF) ¢ X is the same point as (IC,JC)e Gk'l, It_l

is just given by replacement:

k k-1 _ k-1

Te1¥ Dir,av = Vic,ac

If (IF+1,JF) & G lies between (IC,JC) & G5 1 and (IC+1,3¢) & 651 and LF



has at (IF+1,JF) the template

-NW =N =NE
-W C -E , (1.3)
=SW =S =SE s
then
‘ .. k-1 ; k-1
ik vk"'l) ) (NW+W+SW)VIC’JC + (NE+E+SE)VIc+1,JC L
k-1 IF+1,JF C=N-8 ‘ -4)

The idea is to sum the columns of (1.3) to average out the vertical

dependence.’ A similar = formula holds for (IF,JF+1) ¢ Gk between

k-1 k-1

(1¢,JC) ¢ G and (IC,JC+1) £ G ~. [Enough information is now present to

use the difference template at points (IF+1,JF+1) ¢ Gk which are the

centers of  rectangles formed by (IC,JC), (IC+1,JC), (IC,JC+1),

(IC+1,JC+1) ¢ Gknl. That is, if (1.3) now represents the template of such

a point (IF+1,JF+1), then

k - k-1

eV Diper,ome1 = (W(I§«1Vk_1)IF,JF+1 ¥ E(I§-1Vk—1)ly+z,JF+1
* S(It-lvkml)IF,JF * N(I§~1Vkm1)1F,JF+2
* Sw(v?%iJF) * SE(V¥£12,JF) * Nw(v?%fJF+2)
* N (o gpag) )/

To complete the ‘description in the positive definite case, one takes
k-1 _ k(. k-1 _ _k-1.k. k
K = (Ik—l) and L = Ik L Ik-l'

The original motivation for black box multigrid was to extend

I

multigrid to handle operators like -V-(DV:) where D jumps by orders of

magnitude across internal interfaces. The result was a method in which



only the matrix of the finest grid equations needs to be specified. An
additional bonus is that the number of unknowns on the finest grid do not
have to be of a special form (e.g., number of x points = NXM = NXO(Zk) + 3,
etc.) in order that special cases in interpolation be avoided; in fact, as
shown in [D], even equations on curved domains can be solved. [D] also
exhibited success with mapping techniques and Lagrangian grids. This paper
will exhibit success for all of the above for the case of a single

nonsymmetric equation.

II. THE NONSYMMETRIC CASE

As a model problem for the nonsymmetric case, consider

LSU = -gAU + gg + gg =F ,onQC R2 R (2.1)

where & > 0, and the corresponding discretization on a uniform grid with

mesh spacing h:

x,h v '
= - + ’ + : =
AAPEEUNES Sk A hui,j F oo (2.2)
where
1
= - . . . . .. + U, .
Ah i,j h2 4Ul,_] Ul'l,J itl,] i, j=1 1,J+1) ’
x, 1
Dy hUi,j - Zh(Ui+1,j i—l,j) ’

and

Yy - 1 -
Do hUi,j - 2h(Ui,j+1 Ui,j-l)



The behavior of (2.2) depends a lot on boundary data. If, for example,
Q= (0,1) x (0,1) and U is specified on all the points on the boundary of
{0, then if & « %h, the solution of (2.2) has oscillations which have
nothing to do with the solution of (2.1). If however, U is specified only
on (x,0), 0 <x <1, and.(0,y), O <y <1, and proper care is taken at the
boundaries (x,1), 0 < x <1 and (1,y), O <y <1, then (2.2) can yield a
reasonable approximation, even if & = 0 (which is, of course, the case for
which such boundary conditions make sense). The emphasis in this paper is
on the former case or at any rate on situations in which extra dissipation

is needed; hence, (2.2) will be approximated by

h : X V4 hU ,
LU..:mhA],,U..+D’hU..=%~D’ . . =F, . 2.3
Bh i, ] B is] 0 "i,j 0 i, i, i (2.3)

where B = 0(1). Although (2.3) with Dirichlet boundary conditions on all
of 3Q, is formally (spatially) stable for B > 0, in practice there are
ocsillations which are numerically unacceptable for B less than about 1/8

[Hy] .

k k-1

and I

There are several choices for Ikml gk Which will reduce to the

prescription in Sec. I, and we investigate several of them in Sec. III.
Are there any that will work for (2.3)? There are two guiding principles
in answering this question.. The first is that if the equation happens to

be positive definite (the "B = ®" case of (2.3)), then the choices of Lk,

Iinl’ and Iinl should reduce to the choices made in Sec. I. The second

principle is in the- paper- [Bl]. There it was suggested that since the

operator Lgh has an wupstream bias, the residual weighting operators

Iinl should have a downstream bias. Also it was suggested that a good

choice for Iﬁml should be bilinear interpolation. The goodness of these



choices was borne out by numerical experiments, showing them to be the best
among many other alternatives. We emphasize, however, that the operators
Lk were formed directly in [B1]; formation of Lk_1 as It-ILkIt_l was not
investigated therein.

Let us refer to the grid with mesh spacing h in (2.3) as GM (thus

hM = h) and write (2.3) as the matrix equation
Mt =

Consider the symmetric part of Lk, symm(Lk) = %(Lk + (Lk)*), k <M and
define Ii-l using symm(Lk) instead of Lk. For example, (1.3) would now

represent the template of symm(Lk) at (IF+1,JF), etc. Note that in the

k
k-1°

And, in the case of positive definite Lk, this prescription reduces to the

case of (2.3), this prescription leads to bilinear interpolation for I

previous one, since symm(Lk) = Lk in that case.

For the definition of Ii-l , define Ji—l using (Lk)* instead of Lk.

For example, (1.3) would now represent the template of (Lk)* at (IF+1,JF),

etc. Then define Ii_l = (Ji_l)*, and to complete the description, define

as before Lkm1 = It-l kpk

We will refer to the above derivations of Ii-l and JE-I by saying that
It_l is based on %(Lk + (Lk)*) and that Jt-l is based on (Lk)*. Note that
if (1.3) represents the template of (Lk)* at (IF+1), it can happen that
C-N-5 = 0; hence, our code checks for this case before dividing by C-N-S.

As in [D], the use of the right hand side in interpolation is
important. Generally, the use of the right hand side provides an O(hz)

correction to interpolation and is not worthwhile. In the black box

approach, however, the right hand side next to the boundary can contain



boundary data, and in such cases, not using the right hand side can lead to
0(1) interpolation errors. To use the right hand side, we use the same
method as din [D}; 4if J,r:k is the residual at a given point and Dk is the

diagonal coefficient of the difference operator, we add on a correction of

rk/Dka For example, if (1.3) represents the template of symm(Lk) at

P k i . o - k .
(IF+1,JF), EIF+193E* is the residual at (IF+1,JF), and DIE+1,JF is the
diagonal coefficient at (IF+1,JF), then

k-1 k=1
EaNEY - R4 SE
(Ik kal) ) (NW+W SW)VIC,JC + (NF+F+SE)VIC+1,JC
k-1 IF+1,JF C-N-§
(2.4)
k k
* Trper, 38/ V1w 0w

There remains the issue of what kind of relaxation scheme to uge. In
general, point and line Gauss-Seidel, which were adeguate for the positive
definite case [D], will not suffice. Eq. (2.3) is of positive type if
B > %, but there is a sweep direction dependence for Gauss~Seidel unless
g >1 [Bl]. In any case the formation of Lkm1 as IimlLklgml may lead to
Gauss-Seidel's being unacceptable on some coarser level even if it is
acceptable on the finest Ilevel GMn Hence, in general, it seems to be

necessary to resort to a2 relaxation scheme like point or line Kaczmarz.

Point Kaczmarz [K] relaxation may be described as follows: let

5
e

i
Badl
=

]

- 1L,N

, . . . . . k
be the system of equations for which a solution is desired. Given x )



xk+1 is defined by finding successively, for each i, a éi such that
N K
j; 235 ¥ A8 = £ (2.5)

is satisfied. Then the substitutions x?+1 «xF 4 aijﬁi are performed. It

is straightforward to see that point Kaczmarz relaxation for Ax = § is
equivalent to point Gauss-Seidel for AATy = f, where ATy = x; this relation
gives a way of studying the smoothing rate for point Kacmarz.[B2]

Line Kaczmarz relaxation consists of satisfying (2.5) for a whole line

of points at once. This requires the solution of a pentadiagonal system.

ITI. NUMERICAL EXPERIMENTS

To describe the results of the experiments, we introduce a few of the
parameters used in the code; they have the séme names as those used in [D].
TOL is the tolerance; iteration continues until the discrete L2 norm
of the residual on the finest grid is less than TOL or until too much work

has been performed. Alternatively, if ALPHM > 0 is specified, the code

will iterate until the discrete L2 norm of It-le - Lk_lft_lUk is less than
ALPHM times lIrMII, the discrete L2 noxm of the residual on GM, the finest

k-1

grid; here Tk

denotes injection. The purpose of ALPHM is to detect when
truncation error has been achieved, and the theoretical value for achieving
truncation error is ALPHM < 2; this value assumes that the equations are in
undivided form and that the Gk residuals are computed dynamically (and thus
roughly twice the size of the static Gk residuals).

IRELAX denotes the kind of relaxation. For IRELAX = 1, 2, 3, 4, see

[D]. IRELAX = 5, 6, 7, or 8 denotes point Kaczmarz, line Kaczmarz by lines



in x, line Kaczmarz by lines in y, and line Kaczmarz by lines in % followed
by line Kaczmarz by lines im y, respectively.

IVW denotes the kind of multigrid cycle employed. IVW = 1 or 2
denotes V or W cycles respectively.[D] In all except ome of the examples,
the code begins on the coarsest level and bootstraps itself up to the
finest level before continuing with V or W cycles.

In most of the experiments below, we report the number of multigrid
cycles, NCYC, which were uvsed. NCYC~1 is the number of time the finest
grid is visited. All of the examples take IU = ID = 1 and IM = 2; see Sec.
1.

The first example is

auf  ouP

~f B + S e = oS i + g1
BhAU 57 3y Co8 X sin ¥V + sin X cos' y

it
bri

(3.1)

in Q = (0,3) x (0,2)

UB = gin X sin y on 9Q

The solution of (3.1) with B = 0 is UO(x,y) = sin x sin v. As described in

Sec. II,
auf o auf
ox% oy

are differenced with central differencing and AU is replaced by the five
point Laplacian. As in [D] the Dirichlet data is handled by absorbing it
into F; thus, the boundary is not treated as part of the grid. The results
of using the method described in Seg:° IT are summarized in Table 3.1. To

facilitate comparison with the results in [B1] we give the Ll(Q’) and
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CF in first and

last
numb

cycle and
er of cyles

TABLE 3.1
Results for method applied to (3.1)
CPU time
max(0’) in seconds
error on CRAY-1
8.8,-2 .20
b.4,-2 .22
2.2,-2 .33
1.0,-2 .33%
8.8,-2 27
b.4,~2 26
2.2,-2 43
1.0,-2 5%
8.1,-2 06
1.6,-1 02
9.0,-2 06
4.5,-2 06
2.3,-2 06

. Problem size and Ll(Q’)
parameters error

47x31 (M=4), TOL = 10°° 5.4,-2
IRELAX=5, IVW=1, B=1
47x31 (M=4), TOL = 107° 2.6,-2
IRELAX=5, IVW=1, B=%
47x31 (M=4), TOL = 107° 1.2,-2
IRELAX=5, IVW=1, B=}%
47x31 (M=4), TOL = 107  5.8,-3
IRELAX=5, IVW=1, B=1/8
47x31 (M=4), TOL = 1070 ———
IRELAX=5, IVW=2, B=1/16
47x31 (M=4), TOL = 107° 5.4,-2
IRELAX=5, IVW=2, B = 1
47x31 (M=4), TOL = 107° 2.6,-2
IRELAX=5, IVW=2, B=%
47x31 (M=4), TOL = 107° 1.2,-2
IRELAX=5, IVW=2, B=} |
47x31 (M=4), TOL = 107° 5.8,-3
IRELAX=5, IVW=2, B=1/8
23x15 (M=3), TOL = 1070 5.0,-2
IRELAX=5, IVW=1, B=%
11x7 (M=2), TOL = 10°° 1.2,-1
IRELAX=5, IVW=1, B=}
47x31 (M=4), ALPHM=2.0 5.6,-2
IRELAX=5, IVW=1, B=1
47x31 (M=4), ALPHM=2.0 3.2,~-2
IRELAX=5, IVW=1, B=}%
47%31 (M=4), ALPHM=2.0 2.4,-2

IRELAX=5, IWW=1, B=%

.17,

.20,

.29,

42,

.0, 4.

.15,

.18,

.27,

41,

.20,

.20,

.17,

.20,

.29,

.30, NCYC=11

.34, NCYC=13

.49, NCYC=20

.64, NCYC=20

5, NCYC=20

.31, NCYC=11

.33, NCYC=11

.50, NCYC=19

.65, NCYC=20

.29, NCY(C=9

.23, NCYC=13

.19, NCYC=2

22, NCYC=2

.34, NCYC=2



Table 3.1 (concluded)

i CPU time CF in first and

Problem size and LY@ max(Q) in seconds last cycle and

parameters Error error on CRAY~]1 number of cyles

47x31 (M=4), ALPHM=2.0 4.7,-2 6.4,~2 .05 A2, 42, NCYC=1

IRELAX=5, IVW=1, B=1/8 ‘

47x31 (M=4), ALPHM=2.0 5.3,~2 8.8,-2 .08 .15, .14, NCYC=2
IRELAX=5, IVW=2, f=1

47x31 (M=4), ALPHM=2.0 2.5,-2 bhob, -2 .08 .26, .18, NCYC=2
IRELAX=5, IVW=2, B=%

47%31 (M=4), ALPHM=2.0 1.2,-2 2.2,-2 .08 .27, .27, NCYC=2
IRELAX=5, IVW=2, @=%

47x31 (M=4), ALPHM=2.0 2.7,~2 3.6,-2 .06 241, .41, NCYC=1

IRELAX=5, IVW=3, B=1/8

ola

#* TFailed to reduce norm of residual below 10“6

in alloted number of cycles.

max(Q’) noxrms of the error ol - 0 in the subdomain Q' = {(x,y):0 < x < 2,
0 <y < 4/3}, where the max(Q’) error is (ih,mﬁ¥€ Qr Eu?’j - U?,jis The
CPU times in seconds on the CRAY-1 computer are given mostly for purposes
of comparison between different rums, since little effort has been invested
in writing efficient code; the times are scalar times since no vectoriza-
tion has been introduced.

In the last column are given CF in the first and last cycle and the
number of cycles; CF is the convergence factor, the reduction in the
discrete LZ noym of the residual in a single cycle. Twenty was the maximum
number of cycles allowed. The notation 5.4,-2, for example, is used to
indicate 5.4 X EOMZ,

Note that the behavior of the error with the number of unknowns and P

is as theory predicts, and the CPU times support the linear dependence of

the reduction of the error on the number of unknowns. For TOL = 10m6 there
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is no advantage to W-cycles over V-cycles, but for ALPHM =2; the W-cycles
give better results for:B =% but still fail to achieve truncation error as
advertised when B =1/8. |

Note also that the convergence factor per cycle is not nearly as good
as in the positive definite case; in that case for smooth coefficients and
V-cycles, a convergence factor of around .1 was' observed. It is worth
repeating the argument in [B1] that suggests that, in fact, one cannot
expect such good convergence factors in the singular perturbation case.
Suppose there are two levels and that (2.3) is the discretization on the
finest level. The argument in [B1] uses first-differential approximation
(FDA) analysis in which the difference operators are replaced by their

first-differential approximations, inter-grid transfer operators are

ignored, and relaxation is ignored. The FDA approximation to LEh is
Lh = -BhA + 52 + 5%, Consider a characteristic smooth error component Vh,
i.e.,
v, vt
ox ay i
, . . h . . . .
its residual is =-PhAV". The coarse grid equation, assuming the same

discretization is

2h 2h :
2h 2h _ 2h |, 3V vy
1" = —gomyav® + O+ 5y~ = “BBAV
. e . o2h _ ,.h . .
and its solution is V7 = %V . Thus the new error on the fine grid after a

full multigrid cycle is
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The extension of this argument to M > 2 levels suggests that if V cycles
are used, convergence no better than lmel could be expected per cycle;
[B1] concludes, however, that this analysis is too pessimistic and also
points to numerical experiments in which using W cycles instead of V cycles
gave rise to convergence rates better than .5 per cycle.

In order to apply the above analysis to the present situation, one
must discover how much dissipation is generated numerically.  We have done
this numerically for the 47 X 31 (M=4) case of Table 3.1, and the results

(away from boundaries) are presented in Table 3.2; the notation is:

8 1
= + + -
Ahkui»j NEACEI B ISR IO T TSR PRV TSR A R
XY _ 4n0,%.0,v
Y = 20 %Y,
SW o _ _nyASK Xy
Dh = ﬁﬁh + (1 G)Ah + Dh ; for some 8 , 0 <0 <1 |

Ah = @Ah + (lm@)Agk , for some 0 , 0 <0 <1 ;

sW . I . . . . .
L is dissipative in the streamwise direction and an

note that -~D
approximation to m(§g o+ 53)(52 + 53);/see [B1] and [H].

Thus it appears that the method tends to a "B" of .5, although the
form of the dissipation is more complicated than in (2.3). Also of
interest is the bebavior of the dissipation with respect to the original
B's being greater than or less than %. In the former case the B's decrease
monotonically to %; in the latter case there is an initial increase and

then a decrease to %; if B =% on the finest grid, it remains % on all

grids.
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TABIE 3.2
Form of dissipation on G for various B's

Strength of

Bk Dissipation dissipation

1 3 -h(.3125A + .3125A5° + .625D2) = ~h(.625D%") .625h
. sk XYy .. sw lc R

1 2 -h(.16664 + .3460A " + .2625DY) = -h(.2625D}"+ .254 ) .5125h

1 1 -h(.1016A, + .3985A°% .37520Y) = -n(.375D%"+ 12580 .5000h

1 _ sk XYy - . sW lc

3 3 -h(.258 + 250" + .250)7) = -n(.25D]" + .254,°) .5h

52 -h(.1258 + .37585% .375D]Y) = -n(.37508" + 12541°) .5h

. - sk XYy . o sw lc

3, 1 -h(.06254 + .4375A° + .4375D)Y) = -h(.4375D;" + .06254, ) .5h

1 _ sk XYy _ _ swW lc X

, 3 -h(.31254 + .31254)° + .5DY) = ~h(.5Dp" + .1254°) .625h

y 2 -h(.08978 + .azzsazk + ,asuiy) = ~h(.45D;w+ .0625Aﬁc) .5125h

N _ sk XYy _ _ sW lc

) 1 -h(.0371a + .4630A° + .4689D}7) = ~h(.4689D;" + .03124 ) .5002h
_ sk XYy sSW 1c .

1/8 3 -h(.53138 + .531367° + DPY) = -h(D}" + .06254) 1.0625h
. sk XYy _ _ SW lc

1/8 2 ~h(.09078 + .55828° + .6177DY) = -h(.6177D;" + .03134 ) .6490h
. sk XYy sW le .

1/8 1 -h(.02438, + .4928A;° + .5015DY) = ~h(.5015D;"+ .01564 ) .5170h

1/16 3 -h(.1388A, + ,9384A;k + 1.0616D,”) = -h(1.0616D;" + .0156Aic) 1.0772h

The approximation that the method yields to the convective terms on
coarser grids is also interesting. It yields approximations to UX + UY
which are a linear combination of the usual central differencing and the
difference Ui+1,j+1 - Uiml,jml'

One other question is why the data in Table 3.1 does not agree with
the experimental conclusion in [B1] that the use of W cycles leads to a
convergence factor of better than .5 per cycle. It is only for B = 1/8

that the convergence factor is worse than .5. Thus, one explanation that

comes to mind is as follows. The correction term in the interpolation
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(2.4) is based on point Gauss-Seidel. For small B, perhaps a correction
term based on point Kaczmarz is more appropriate since it would magnify the
offending frequencies less; in (2.4) the difference would be that instead
of division by D¥F+1,JF’ one would multiphy by D%F+1,JF divided by the sum
of the squares of the coefficients of L¥ at (IF+1,JF). The results of this
change are summarized in Table 3.3. From the table, we see improvement for
W cycles in comparison with V cycles - not the case with Table 3.1, but
using V cycles still uses less CPU time than using W cycles for TOL = 1()“6°
Again for ALPHM = 2, use of W cycles or V cycles does not give truncation
error as advertised for B = 1/8. Note also that CF is larger for V cycles
in Table 3.3 than in Table 3.1. From this example and others we have
investigated, the previous method seems better on the average than this
variant; hence, it is the one that is implemented in the current version of

the code.

TABLIE 3.3

Resulte for method applied to (3.1) with modified use of
right hand side in interpolation

1 CPU time CF in first and
Problem size and L) max{Q') in seconds last cycle and
parameters 2Yrror error on CRAY-1 number of cyles
47x31 (M=4), TOL = 10“6,
IRELAX=5, IVW=1, B=1 5.4,-2 8.8,-2 .21 .16, .37, NCYC=12
47x31 (M=4), TOL = 10“69
IRELAX=5, IVW=1, B=% 2.6,-2 b.b -2 .21 .18, .39, NCY(C=12
47%31 (M-4), TOL = 10°°,
IRELAX=5, IVW=1, B=% 1.2,-2 2.2,-2 .25 .23, .50, NCYC=15
47x31 (M=4), TOL = 10“6y
IRELAX=5, IVW=1, B=1/8 5.8,-3 1.0,-2 . 33% .29, .67, NCYC=20



Problem size and
parameters
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Table 3.3 concluded

47x31 (M=4), TOL = 10“6,

IRELAX=5, IVW=1, B=1/16

47x31 (M=4), TOL = 10 °,
IRELAX=5, IVW=1, B=1/32

47x31 (M=4), TOL = 1
IRELAX=5, IVW=2, B=1

47x31 (M=4), TOL = 10°°,
IRELAX=5, IVW=2, B=}%
47x31 (M=4), TOL = 10’6,
IRELAX=5, IVW=2, B=}
47x31 (M=4), TOL = 10'6,
IRELAX=5, IVW=2, P=1/8
47x31 (M=4), TOL = 10“6,
IRELAX=5, IVW=2, B=1/16

47x31 (M=4), ALPHM = 2.,
IRELAX=5, IVW=1, B=1

47x31 (M=4), ALPHM = 2.,
IRELAX=5, IVW=1, B=%

47%x31 (M=4), ALPHM = 2.,
IRELAX=5, IVW=1, B=% -

47x31 (M=4), ALPHM = 2.,
IRELAX=5, IVW=1, p=1/8

47x31 (M=4), ALPHM = 2.,
TRELAX=5, IVW=2, B=1

47x31 (M=4), ALPHM = 2.,
IRELAX=5, IVW=2, =%
47x31 (M=4), ALPHM = 2.,

TRELAX=5, IVW=2, =%
47x31 (M=4), ALPHM = 2.,
IRELAX=5, IVW=2, B=1/8

# TFailed to reduce norm of residual below 10_6

1 ‘CPU time
L(Q) max(Q') in seconds
error error on CRAY-1
2.5,-3 8.8,-3 .33%
5.4,-2 8.8,-2 .29
2.6,-2 b.4,-2 .28
1.2,-2 2.2,-2 .35
5.8,-3 1.0,-2 .39
2.5,-3 8.8,-3 L45%
5.5,-2 8.8,-2 .06
2.8,-2 4£.2,-2 .06
1.1,-2 1.6,-2 .05
4.2,-2 5.4,-2 .05
5.3,~2 8.8,-2 .08
2.6,-2 4.4, -2 .08
1.2,-2 2.3,-2 .06
2.9,-2 3.5,-2 .06

12.

CF in first and
last cycle and
number of cyles

.53,

.98, NCYC=20

0, 10.0, NCYC=20

.15,

.28,

.21,

.29,

.61,

.16,

.18,

.23,

.29,

.07,

.21,

.29,

.37, NCYC=13

.39, NCYC=15

.40, NCYC=16

.49, NCYC=17

.83, NCYC=20

.22, NCYC=3

.19, NCYC=3

.23, NCYC=2

.29, NCYC=2

.16, NCYC=3

.11, NCYC=3

.21, NCYC=2

.29, NCYC=2

in allotted number of cycles.
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Another final matter we wish to investigate is

B B
mﬁh&Uﬁ + Qgg + 3 - cos x sin y + sin x cos y in Q@ = (0,3) x (0,2)

UB = sin x sinyony =0 and onx = 0

We compare two treatments of the boundaries x =3 and y = 2, the
Dirichlet case, where UB is specified as before and the outflow boundary
condition case, where the equation on x = 3 and v = 2 is taken to be

1B B LB B ) . .
h(Uigj Ui,jmi) + h(Ui,j Uiml,j) cos x. sin yj + sin X, cos yj

The results are summarized in Table 3.4. The error is measured over
all of Q, and as expected the Dirichlet boundary condition case is bad for

B < % while the outflow case continues to give good results for such B's.

: TABLE 3.4
Comparison of Dirichlet and outflow boundary conditions
1 CPU time CF in first and
Problem size and L7(Q") max(Q") in seconds last cycle and

parameters errorx error on CRAY-1 number of cyles
47x31 (M=4), TOL = 107°,
IRELAX=5, IVW=1, 8=1., ‘
Dirichlet B.C. 2.3,-1 1.8,-1 .20 .17, .30, NCYC=11
47x31 (M=4), TOL = 10”6?
IRELAX=5, IVW=1, B=%
Dirichlet B.C. 1.1,~1 7.4,~2 .22 .20, .34, NCYC=13

47x31 (M=4), TOL = 10”6,

IRELAX=5, IVW=1, B=%
Dirichlet B.C. 8,0,-2 3.1,-1 .33 .29, .49, NCYC=13
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Table 3.4 concluded

1 CPU time CF in first and
Problem size and L) max (') in seconds last cycle and
parameters error error on CRAY-1 number of cyles
47x31 (4=4), TOL = 1075,
IRELAX=5, IVW=1, B=1/8
Dirichlet B.C. 1.1,-1 5.4,-1 G2% .33, .64, NCYC=20
47x31 (M=4), TOL = 10”6,
IRELAX=5, IVW=1, B=1
outflow B.C. 2.3,-1 1.4,-1 .21 .30, .29, NCYC=12
47x31 (M=4), TOL = 10"6,
IRELAX=5, IVW=1, B=1/2
outflow B.C. 1.1,-1 7.4,=2 .22 .33, .34, NCYC=13
47x31 (M=4), TOL = 10"6,
IRELAX=5, IVW=2, B=%
outflow B.C. 5.5,-2 3.8,-2 .33 .39, .49, NCYC=19
47x31 (M=4), TOL = 10’6,
IRELAX=5, IVW=2, B=1/8
outflow B.C. 2.7,-2 3.1,=-2 .33% 42, .71, KCYC=20

* Failed to reduce norm of residual below 10-6 in alloted number of cycles.

Now let us mention various alternatives to the method of Sec. II,

which bases Iiml on ‘@(Lk + (Lk)*) and uses Ii—l = (Jtvl)* where Jiwl is
based on (Lk)*. These methods all reduce to the method of Sec. I in the
positive definite case, and they all take It-l = (J§-1)* and Lk = Iﬁml. The
first bases Iiml = Ji—l on Lk; this method has a CF of .71 per V cycle for
B=1and a CF of 1.1 for B = %. The second bases I§_1 on L¥ and Jiwl on
(Lk)*; it has a CF of 4.8 per V cycle for B = 1. The third bases both
Iiwl = Jtml on 52(1.k + (Lk)*); for =1, %, %, and 1/8, it yields CF's of

.36, .56, .89, and 1.7 per V cycle, respectively. This last method, since
it is related to blind application of the finite element multigrid method

with piecewise bilinear elements deserves at least a little comment. If we
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compute numerically the dissipation of the 47x31 (M=4) case, away from
boundaries, with B = 1, as done in Table 3.2, the result for k = 3 4g
wh(%&h + %Aik J which has strength %h; the vresult for k = 2 isg
wh(,09375Ah + n15625azk) which has strength %h; thus the "B" is apparently
halved on each level, giving rise to problems that are harder and harder to
solve.
The next example is
auf | ouP
d

N S -1 P
BhAU" -+ - + 5y - 0 in Q

i

(0,3) x (0,2)

B (3.2)
UY = H(x=-y=-1) on 3Q ,

where H() = 0 if § < 0 and H(§)

]

1 if £ > 0. The solution for B = 0 is
H(x=y=1). The results are summarized in Table 3.5. Section 4.3 of [B1]
suggests that special care may have to be taken with interpolation near
discontinuities, as in (3.2). The reason for this suggestion is that [B1]

uses the same discretization on each grid. Since the formation of Lk@l as

Iiml Lkliml tends to smear out discontinuities, such special care with

interpolation is apparently not necessary for the method of Sec. II. This

is another advantage of the black box approach.

TABLE 3.5
Results of the method applied to (3.2)
i CPU time CF in first and
Problem size and L") max (") in seconds last cycle and
parameters error errer on CRAY-1 number of cyles
47x31 (M=4), TOL = 10'6,
IRELAX=5, IVW=1, B=1., 2.7,-1 5.4,-1 .22 .21, .31, NCYC=13

47x31 (M=4), TOL = 10”6,

IRELAY=5, IVW=1, B=X 2.0,-1 5.0,-1 .22 .16, .34, NCYC=13
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1 CPU time C¥ in first and
Problem size and L (@") max(Q') in seconds last cycle and
parameters error error < on CRAY-1 number of cyles
47%31 (M=4), TOL = 10°°,
IRELAX=5, IVW=1, B=Y 1.5,-1 4.7,-1 .33 .20, .48, NCYC=19
47x31 (M=4), TOL = 107°,
IRELAX=5, IVW=1, B=1/8 1.1,-1 4.5,-1 .33% .34, .52, NCYC=20
47x31 (M=4), TOL = 10“6,
IRELAX=5, IVW=1, B=1/16 — --- ——- 3.8, 4.1, NCYC=20
47x31 (M=4), ALPHM = 2.,
IRELAX=5, IVW=1, B=1 2.7,-1 5.6,-1 .05 .21, .21, NCYC=1
47x31 (M=4), ALPEM = 2.,
IRELAX=5, IVW=2, B=} 2.0,-1 5.1,-1 .05 .16, .16, NCYC=1
47x31 (M=4), ALPHM = 2.,
TRELAX=5, IVW=2, B=% 1.6,-1 4.9,-1 .05 .20, .20, NCYC=1
47x31 (M=4), ALPHM = 2.,
IRELAX=5, IVW=2, B=1/8 1.4,-1 4.8,-1 .05 .34, .34, NCYC=1

* Failed to reduce norm of residual below 10_‘6

The next example is

p B
-Bhsg (1155 -BhsCIx1%)

auf

auf

R ox tox

dy

in alloted number of cycles.

= =y cos X siny + x cos y sin x in Q@ = (-%,%) x (-%,%)

P -

The solution of (3.3) with B =0 is UO(x,y) = gin xsin y.

differencing is used everywhere for (3.3).

= sin x sin y on 90

(3.3)

Central

Note that the characteristics

in (3.3) are circles. The form of dissipation was recommended by Hyman

[Hy]. The results are summarized in Table 3.6.

Kaczmarz 1is necessary in this problem since

domain and |x| » |yl in other parts of the domain.

ALPHM = 2. case here is an utter failure.

x| « |yl

Note that alternating line
in parts of the

Note also that the
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TABLE 3.6
Results of the method applied to (3.3)
1 CPU time CF in first and
Problem size and L") max(Q') in seconds last cycle and

parameters errox error on CRAY-1 number of cyles
47x47 (M=5), TOL = 1070 3.8,-4  1.6,-3 50% .24, .88, NCYC=20
IRELAE=5, IVW=1, f=1
47267 (M=5), TOL = 107  3.8,-4  1.6,-3 1.4 .23, .55, NCYC=19
TRELAX=6, IVW=1, B=1
67x67 (M=5), TOL = 107° 3.8, 1.6,-3 1.6 14, .34, NCYC=10
TRELAX=8, IVW=1, B=1
57x47 (M=5), TOL = 10° 2.0,~4 1.0,-3 2.2 .27, .54, NCYC=14
IRELAX=8, IVW=1, B=%
G7xb7 (M=5), TOL = lomﬁ o - 3.0% .28, .86, NCYC=20
IRELAE=8, IVW=2, f=%
4767 (4=5), TOL = 1070 oo - —-- 5.0, 5.6, NCYC=20
IRELAX=8, IVW=2, B=1/8
7x47 (M=5), TOL = 10”5 3.8,~4 1.6,-3 1.4 .13, .11, NCYC=6
IRELAX=8, IVW=2, B=1
47x47 (M=5), TOL = 10° 2.0,-4 1.0,-3 1.9 .20, .25, NCYC=9
IRELAX=8, IVW=2, B=%
47x47 (M=5), TOL = 107° 1.0,~6  T.4,-4 3.1 .22, .53, NCYC=15
IRELAX=8, IVW=2, Pek
47x47 (M=5), ALPHM = 2.0  2.0,-3 1.1,-2 .37 .14, .14, NCYC=1
IRELAX=8, TVW=1, B=1
47x47 (M=5), ALPHM = 2.0 4.5,-3 3.5,-2 .37 27, .27, NCYC=1
IRELAX=8, IVi=1, B=%
47x47 (M=5), ALPHM=2.0 1.3,-3 9.1,-3 .43 .13, .13, NCYC=1
IRELAX=8, IVW=1, B=1
47x67 (M=5), ALPHM=2.0 2.9,-3 2.4,-2 .43 .20, .20, NCYC=1
IRELAR=8, IVW=1, 8=%
LTxb7 (M=5), ALPHM=2.0 9.6,-3 3.3,-2 43 .22, .22, NCYC=1

IRELAX=8, IVW=1, P=%

* Failed to reduce norm of residual below 1o"6 in alloted number of cycles.
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The next example is

B B
—BhAUB + Qg; + §g§ = cos x sin y *+ cos y sin x = F(x,y)

in Q= {(x,y):Jx%Hy% < 4}
B _
U

= sin x sin y = g(x,y) on 3Q

(3.4)

The solution of (3.4) with B = 0 is U(x,y) = sin x sin y. We embed  in
Q= (-.5,.5) x (-.5,.5)) as in the similar example in [D]. At points in
0 \\ﬁ we write down the equation u = 0; at points in Q whose north, south,
east, and west neighbors are in ), we use the usual central differencing.
For simplicity we use the simplest treatment for points that do not fall
into either of the above sets. Consider, for example, a point Ui . in Q

b]

whose neighbor Ui+1 i is not in Q and let the distance from Ui . to 3Q be
$ »

Bh. Use of the relation g((i+@)h,jh)) ~ (1-8)U. . + 6U. . gives the
= 153 i+1,j

following difference equation at (ih,jh):

h(-p-3)U;_; 5+ (BB(3+g) +5(1-0U; , + B(-BHH)U, ... + h(-p-R)U, i1

= b’F(ih,jh) + 2h(B-%)g((i+0)h,jh)

The results are summarized in Table 3.7, where Q' = {(x,y):/xZ+yZ < 4}.

The next example is the same except that in this case we use mapping
to solve it. That is, we map the boundary of © onto the boundary of

Q" = (0,1) x (0,1) giving x and y as a function of £ and n on 30" and
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TABLE 3.7
Results of the method applied to (3.4)
1 CPU time CF in first and
Problem size and L Q") max(Q’) in seconds last cycle and
parameters error exrror on (CRAY-] number of cyles
G747 (M=5), TOL = 107 2.1,~4  7.6,-4 41 .24, .30, NCYC=11
IRELAX=5, IVW=2, B=b
23%23 (M=4), TOL = 10° 3.1,=4 1.0,-3 .12 .18, .30, NCYC=11
IRETAX=5, IVW=2, B=%
11x11 (M=3), TOL = 1070 4.0,~4 1.2,-3 .03 .16, .26, NCYC=9
IRELAE=5, IVW=2, B=%
G7xb7 (M=5), ALPHM = 2. 6.2,~4 1.2,-2 .03 24, .24, NCYC=1
IRELAX=5, IVW=2, #=%
23%23 (M=4), ALPHM = 2. 7.3,~4 4.8,-3 .03 .18, .18, NCYC=1
IRELAY=5, IVW=2, B=%
11x11 (M=3), ALPHM = 2. 8.4,-4 2.6,-3 .01 .16, .16, NCYC=1
TRELAX=5, vaa ; B=h
solving approximately the problem
Ax =0 , (E,n) & Q"
x = x(§,n) , (€,n) € aq"
(3.5)

by =0 (Em) e o
y =y(&,n) , (§,n) & 3O

We do this by discretizing Q", approximating (3.5) by five point Laplacians

and specifying

%(ih,1) = & cos(§§ - ih3), y(ik,1) = %~sin(§g - inly

i

2(ih,0) = % cos(wﬁ-% ihy ), y{ih,0) = % 31n(- + 1h*)
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x(0,ih) = % cos(-s—ZE - ihﬂ), y(0,ih) %lsin(ﬁﬂ - ihE)
4 2 4 2

x(1,ih)

i
i

=T, L Ty , S DR
L cos(—z + 1h§), y(1,ih) = % 51n(—z + 1h§).

The transformed equation in the £-n coordinate system is:

B B B
9 ouf, 9 o oU ouP |

(3.6)
wPee,n = g(&,n), (€,n) & aqn

where J = xgy - xnygg note that we have chosen to compute the dissipation
in the transformed system rather than transform the dissipation from (3.4).
Eq. (3.6) is differenced in cell-centered form. The results are summarized
in Table 3.8. Note that because of the singularity introduced by the

mapping, the max(Q) error does not decrease with decreasing h or B.

TABLE 3.8
Results of method applied to (3.4) using mapping
1 CPU time CF in first and
Problem size and L°(@Q") max(Q') in seconds last cycle and

parameters error error on CRAY-1 number of cyles

48x48 (M=5), TOL = 10°°  8.9,-4  1.3,-2 .65 .28, .41, NCYC=13
IRELAX=5, IVW=2, B=1

48x48 (M=5), TOL = 10° 5.1,-4 2.0,-2 .80 .35, .50, NCYC=19
IRELAX=5, IVW=2, B=%

48x48 (M=5), TOL = 10"°  3.2,-4  2.8,-2 81% 43, .71, NCYC=20
IRELAX=5, IVW=2, B=}

48x48 (M=5), TOL = 10~° ——- —- --- 1.01, 1.8, NCYC=20

IRELAX=5, IVW=2, B=1/8



Problem size and
parameters

48x48 (M=5), TOL =
TRELAX=S, IVW=2,

48x48 (M=5), TOL = 10
IRELAX=5, IVW=2, B=%
48x48 (M=5), TOL = 1076
IRELAX=5 , IVW=2, B=%

2Lx24 (M=4), TOL = 10~
IRELAR=5, IVW=2, B=Y

12x12 (M=3), TOL = 10~
IRELAX=5, IVW=2, f=%

6

6

* Failed to reduce norm of residual below 1Ou6
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Table 3.8 concluded

1 CPU time CF in first and
L@ max{Q’) in seconds last cycle and
error error on CRAY-1 number of cyles
8.9,-4 1.3,-2 .25 .28, .41, NCYC=5
5.1,~4 2.0,-2 .32 .35, .50, NCYC=7
3.2,-4 2.8,-2 .29 A3, 071, NCYC=6
9.6,-4 1.9,-2 .19 .33, .45, NCYC=16
1.8,-3 1.9,-2 .05 .29, .38, NCYC=13

in alloted number of cycles.

The next example uses the rather distorted Lagrangian mesh in Fig. 12

of [D].

do mnot know the exact solution,

Table 3.9.

Problem size and

parameters

6

13x13 (M=3), TOL = 10~
IRELAX=5, IVW=1, B=1

13x13 (M=3), TOL = 10"
IRELAX=S5, IVW=1, B=%

We use the same differencing and F and g as for (3.6).

TABLE 3.9
Method applied to Lagrangian mesh
CPU time
in seconds
on_ CRAY-1
.05
6 .06
6 L06%

13x13 (M=3), TOL = 10
IRELAX=5, IVW=1, B

13x13 (M=3), TOL = 107°
IRELAX=5, IVW=1, B=1/8

Since we

we present only convergence data in

CF in first and
last cycle and
number of cycles

.26, .41, NCYC=17

.29, .43, NCYC=20

.34, .79, NCYC=20

.96, 2.7, NCYC=20
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CPU time CF in first and
Problem size and in seconds last cycle and

parameters on CRAY-1 number of cycles

13x13 (=3), TOL = 10”5 .06 .26, .42, NCYC=17
IRELAX=5, IVW=1, B=1

13x13 (M=3), TOL = 10°° .07 .29, .44, NCYC=20
IRELAX=5, IVW=1, B=%

13x13 (M=3), TOL = 10°° .07% .33, .68, NCYC=20

IRELAX=5, IVW=1, B=}

* Failed to reduce norm of residual below 10_6 in élloted number of cycles.

The final example is a scalar version of the two-dimensional Burger's

equation:

By2 By2
-gav- (0P Py & 32000 4 20D - (3.7)

F = 2y arctan(y(x+y~1))/(1+Y2(X+Y'1)2) in Q@ = (-%,%) x (%,%)
UB = arctan (y(x+y-1)) on 8Q ,

1 1 1 1, .
E’Zg) to U(‘@,Zg) is

where y = 15.8 is chosen so that the jump from U(-
half the range of U. We use Newton's method, "solving" each step by taking
two cycles of the method of Sec. II starting on the finest grid. The
Jacobian is updated after each two cycles and Lk recomputed on all grids.
More sophisticated updating strategies exist, of course, but the object
here is to see if the method can handle this situation, where there is a
large jump in the solution over a few mesh intervals. The initial guess is

the average of linear interpolation of data from the left and right and the

top and bottom boundaries, and the equation to be solved at the BEE step of
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the Newton iteration is

~BhY- (|UB |vug) + (UE 1UE) + ~—(US 1UE)

=F+ 5 50D%) + 5 2 wh?)

The results are summarized in Table 3.9.

TABLE 3.9
Results of method applied to (3.7)
CPU time ‘
Problem size and L' () Max(Q) in seconds Linear Nonlinear
parameters €rroy error on CRAY-1 CF CF
47x47 (M=5), TOL = 107° 4.6,-2 1.8,-1 1.1 .37 .27
IRELAX=5, IVW=1, B=1
47x47 (M=5), TOL = 1070 2.8,~2  2.3,-1 1.1 45 .19
IRELAX=5, IVW=1, B=%
47x47 (M=5), TOL = 1070 3.8,~2  2.9,-1 1.2 .53 .25
IRELAX=5, IVW=1, B=%
47%47 (M=5), TOL = 1070 oo —_ - 5.4%10°  2x10Y7
IRELAX=5, IVW=1, B=1/8 | :
4L7x47 (M=5), TOL = 10°®  4.6,-2  1.8,-1 1.4 .38 .36
IRELAX=5, IVW=2, B=1
4L7x47 (M=5), TOL = 10°° 2.8,-2  2.3,-1 1.2 .25 .15
IRELAY=5, IVW=2, B=% ‘
47x47 (M=5), TOL = 1070 3.8,-2 2.9,-1 f1.2 .48 14

IRELAX=5, IVW=2, B=%

Finally, we comment that in addition to the numerical evidence

presented here, some theoretical investigatioms have now been performed

[B3].
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IV. CONCLUSION

In this paper we have extended the results of [D] to a single
nonsymmetric equation, exhibiting success with test problem analogous to
the ones considered in [D]. The additional problem, raised in [B1], of
discontinuous solutions as opposed to discontinuous fluxes of solutions as
in [D] has been shown to be amenable to treatment by the technique
developed herein.

There are at least two directions for further research. The first is
the extension to systems of equations and to more than two space
dimensions. The second is to equations with zero dissipation. One way of
handling zero dissipation has been discussed in [B1}. There the equations
which are relaxed have added to them a healthy amount of dissipation. When
their residuals are computed for transfer to the next coarser grid,
however, they are computed with zero dissipation. The result is a method
which solves such equations (at least smooth model equations) quite nicely
to the level of truncation error. Such a double discretization could be
implemented into the method of this paper. However, the double
discretization method cannot be solved to convergence and practitioners are
suspicious = and rightly so - of such a method. Hence, the challenge
remains of exhibiting a multigrid method that can solve such equations to

algebraic convergence.
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