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ABSTRACT

A multi-grid algorithm has been developed to speed the iterative
convergence of calculations for the transounic potential flow past
swept wings and wing-fuselage combinations. The method is based upon
a fully-conservative, finite-volume approximation to the steady poten-
tial equation which is second-order accurate everywhere in the flow
field except near shock waves. The multi-grid scheme is incorporated
within the framework of an alternating successive-line-overrelaxation
(SLOR) solver of the difference equations. Computed results confirm
the second-order accuracy of the scheme, and demonstrate the effect-

iveness of the multi-grid procedure.
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1. INTRODUCTION

In the past sevefal years, algorithms have been developed for
predicting the transonic potential flow past reasonably complete air-
~craft configurations. In particular, the finite-volume method of
- Jameson and Caugheyl‘3 has made it possible to calculate the transonic
‘potential flow past any configuration for which a suitable boundary-
conforming coordinate grid can be constructed. These schemes still
remain quite expensive in terms of computer resources for practical
use, however, primarily because of the large number of grid cells
necessary for adequate resolution in three—dimensionai problems and
the large number of iterations required to achieve even modest conver-
gence on these fine grids. The present paper describes work addressed
primarily at this last difficulty, but also includes an improvement
which addresses the first problem.

The major thrust of the current work is the incorporation of a

-5 to solve the difference equations, At the

multi-grid algorithmu
same time, the artificial viscosity terms have been modified to main-
tain almost everywhere the second-order accuracy of the original
central-difference approximation used in subsonic regions of the £1ow-
field in a manner similar to that used for two-dimensional calcula-
tions by Jameson in Reference 6. When using multi-grid to accelerate
convergence in two-dimensional calculations, Jameson’ found it neces-
sary to use a generalized Alterhating—Direction-Implicit (ADI). smooth-
ing routine to eliminate all ﬁigh wavenumber components of the error,
however the results of Shmilovich and Caughey8 and their extension to
the current work demonstrates that good rates 6f convefgence can be
obtained using'modified versions of the original SLOR algorithms. In
order to provide reliable convergence, the bandwidth of the original
SLOR scheme has been increased to allow pentadiagonal inversions along

each line (instead of the tridiagonal inversions of the original

échemé).



In the present paper, a brief review of the fully-conservative
finite volume scheme will first be presented, concentrating upon those
aspects necessafy for an understanding of the improvements in the |
artificial viscosity, the modified SLOR schemes, and the implemeﬁ~
‘tation of the multi-grid algorithm. The changes resulting from the
implementation of the new features will then be described, and results
indicating the improved iterative convergence and accuracy of the new
scheme will be presented. A comparison of results calculated using
the original first-order accurate and new second-order accurate
schemes will also provide some guidelines on the number of mesh points
required for given levels of accuracy in force coefficients for these

three-dimensional calculations.



I1. ANALYSIS

The current work is based upon the finite-volume method of Jame~

son and Caughey.1'3

That method provides a discrete approximation to
the nonlinear potential equation of transonic flow which may be inter-
preted either as a finite-difference method which balances fluxes
across cell faces or as a finite element method based.upon the Bateman
variational principle., 1In the original formulation of that method, a
first~order truncation error was introduced by the addition of an ar-
tificial viscosity needed to stabilize the scheme in regions of super-

sonic flow, and the difference equations were solved by an SLOR

scheme.

A. Finite-Volume Formulation

Many aerodynamic problems of practical interest, including tran-
sonic flows with weak shock waves, can be usefully approximated as
poténtial and steady. In strong conservation form, the equation for
the velocity potential & can be written in Cartesian coordinates

(x,vy,z) as:

(p2 ) + (p2 ) + (p2) =0, (1
XX vy z'z

where p 1is the density, given by'the,isentropic law

qz)}l/(Y—l)

o= [1+ (v-1/2 M 21 - (2)

Here M_ .is the Mach number of the free stream, q 1is the magnitude
of the velocity V&, and tﬁe density and velocity have been normalized
by their freestream values.

“ The finite-voluﬁevmethod for traﬁsonic potential flowl=3 is a
geometrically-general technique based upon a numerical evaluation of

the transformation metrics produced by an arbitrary transformation to



boundary-conforming coordinates. Consider a transformation to a new
set of coordinates X,Y,Z. Let the Jacobian matrix of the transfor-

mation be defined by

X X X

, x Xy ¥z .
H o=y, ¥ ¥, , ' (3)
Z z Z
x *y %z

and let h denote the determinant of H. The metric tensor of the new

. : . . : . T
coordinate system is given by the matrix G = HH , and the contra-

variant .components of the velocity vector U, V, and W are given by

U | o u —1‘ @X

Vy= H v) = G @Y . (4)
‘ ®
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_Eq.(1), upon multiplication by h, can then be written
.(phU)X + (phV)Y + (phw)Z = 0. o (5)

The fully-conservative, finite-volume approximation corresponding
to Eq.(5) is constructed by assuming separate trilinear variations of

the independent and dependent variables within each mesh cell.

| 8
x =82 x.(1/6 + X, X0(1/4 + Y., O(1/4 + Z,2). (6)
=1 1 1 1 1

Similar formulas hold for vy, z and ®. If we introduce the avérag—

ing and differencing operators

Wi s = V2 st fie12,5060

(7)

Sefi, ik ™ Eie1/2,5,6 fi-l/2,j,k) ’



then the transformation dervivatives, evaluated at the cell centers,

can be expressed by formulas such as

*x T Wyzx®
Xy T Mg &% (8)
Xy T gy Sy

with éimilar-expressions for the derivatives of vy, z and the poten-
tial. Such formulas can be used to determine ¢, h, U, V, and W at
the center of each cell using Eqs.(2), (3), and (4). Eq.(5) is repre-
sented by consefving fluxes across the boundaries of auxiliary cells
whose faces are chosen to be midway between the faces of the primary

mesh cells. This can be represented as
uYZGX(phU) + uXZGY(phV) + uXYéz(phW) = 0. : (9)

This formula can also be obtained by applying the Bateman variational

principle that the integral of the pressure
1 = [ p dx dy dz . (10)

is’stétionary, and approximating I by a simple one-point integration
scheme in which the pressure at the center of each grid cell is multi-
plied by the cell volume. In this way, for subsonic flow, the finite-
volume method can equally well be regarded as a finite element method
with isoparametric trilinear elements.

The use of the one-point integration scheme leading to Eq.(9) has
the advantage of requiring only one density evaluation per mesh point,
~ but also has the undesirable effect of tending to decouple the solu-
tion at odd- and even-numbered points of the grid, and suitable re-

“coupling terms can be added to improve the stability of the solution.



We define

T = -efu, 8y (ag + AW S
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where X 90, 9

Ay = ph(g™* = U%/a%),

AY = ph(g22 - Vz/az), _ (12)

A, = ph(g33 - Wz/az),
are the coefficii?ts of QXX’ ¢YY’ and ®ZZ’ in the expanded form of
Eq.(5). Here g 3 are the elements of the inverse of the metric

tensor G_} and a2 is the square of the local speed of sound. The

addition of T to Eq.(5) provides recoupling for 0 < € < 1/2. For
e = 1/2, this reduces Eq.(9) to the usual second-order accurate,
‘seven—point Laplacian operator for incompressible flow on a uniform
Cartesian grid.

The scheme is stabilized in supersonic regions by the explicit
addition of an artificial viscosity. The viscosity terms added in the
original formulation are chosen to emulate the directional bias intro-
duced by the rotated difference scheme of Jameson." The fluxes ﬁ?,?i

and 1; are defined such that

A g 2002
P pho/a®(U"8,  + UVE, , + WS, )@,
~ _ 2 2
Qi,j,k— Phd/a (UvésXY + Vv GYY + VWGYZ)¢, (13)
A o 2 : 2
= (W W §
Ri,j,k phag/a“( ze + V 6Yz + W ZZ)@,

where the switching function



6 = max(0., 1 - <MC/M>2> (4

is non-zero only for values of the local Mach number M greater than

some critical Mach number M, Then, after defining
A .
P, Sk U >0,
- 1575 -
Pii1/2,3,k s ‘<o (15)
itl,j,k ’ ’
with similar shifts for Q and R, Eq.(9) is represented as
GX(uYZ(phU) + P) + 8 (uy, (phV) + Q
‘ (16)

+ SZ(UXY(phw) + R + T = 0.

The difference Eqs.(9) approximate the original differential
Eq.(5) to within a formal truncation error of second order in the mesh
'spacing in the physicél plane when the mesh is smooth. Since the ad-
d1t10na1 fluxes P, Q, and R added in supercritical regions are of
‘ the order of the physical mesh spacing itself, however, Egs. (16) ap-
proximate Eq.(5) to within a truncation error of only first order in
the mesh spacing; The error resulting from the introduction of the
artificial viscosity can be reduced to second order nearly everyﬁhere

in the flow field if we define®

vi’j’k =1 = KGXuYZp (17

where K 1is a constant of order unity, and

'1; v ’1? >0

| i, 5,0 Vi, i,k in1, 5,k A
Piv1/2,5,6 o ~ | (18)

U < 0.

~P . R VN . . .
Piat, 5,7 Vinl, 5,42, 5,00

Similar expressions are used for the contributons from the Q and R

fluxes. In regions where the solution 1s smooth, the term KGXuYZp

is of first order in the mesh spacing, and the v1sc081ty is formally a

second order quantity. Near a shock, for an approprlate value of K,



the quantity Vv, becomes small, and Eqs.(18) approximate Egs.(15)

i,j,k
~~- i,e,, the viscosity reverts to the original first-order form. This
hybridization of the second-order scheme has been found necessary to

stabilize computations for solutions containing strong shocks.

B. Multi-CGrid Iteration

The difference equations resulting from Eq.(16)‘¢an be solvéd by
‘carefully constructed SLOR schemes. The SLOR schemes described in
References 1-3 were constructed in a manner that required only tri-
diagonal inversions along each line. When the contributions arising
from the inclusion of the artificial viscosity terms are included, the
corrections at each point are coupled to those of its two neighbors on
one side (either side must be allowed in a general scheme, depending
upon the sign of the velocity) for the first-order scheme, and its
three nearest neighbors on one side for the second-order form of the
viscosity. Thus, a general scheme which accounts for all these con—’
tributions would require a pentadiagonal inversion for the first-order
scheme, or a septadiagonal inversion for the second-order scheme. It
was foﬁnd(tﬁat the penﬁadiagonal inveréion scheme was substantially
more stable'than the tridiagonal scheme when the second-order form of
the viscosity was used, but made little difference in convérgence be-
havior when the first«order‘viscosity was used, Complementary exper-
iments by A. Jameson of Princeton University have shown no consistent’
advantage in using septadiagonal inversions (over the pentadiagonal
scheme) when the second-order viscosity is used. The pentadiagonal
inversion scheme has been incorporated for the present calculations.

Both X-line aﬁd Y-line schemes have been implemented. Only the
Y-line scheme will be deécribed here; the X-line scheme can be simi-
larly constructed. Also, the coefficients will be described only for
thé case when U,V;W 2‘0; the coefficients for other cases can easily

be constructed by analogy.
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where 0 is a parameter goveruning the amount of Qst type damping
added explicitly to the time dependent equation modelling the

relaxation process. Also,

- 2,.2
Ay pholU“/a“, |
Ay = phov?/a?, (20)
Aww = phowz/az.

Then the correction to the potential

(n+1) (n) v
.. = &), - s 21
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where Ri,j,k is the residual of Eq.(16), calculated using valueé of
the potential from the previous iteration, and ® 1is an overrelaxa-
tion parameter; which is set to 2 in supersonic regions. Eq.(22)
requires a pentadiagonal inversion along each i~line since for U <0
the formula must be modified to include the effect of the correction
at the (i+2,j,k) point. The V and W components should be non-nega-
tive in supersonic zdnesAfor the relaxation sweeps to proceed in the
pbsitive Y- and Z- directions. Note that the influence of corrections
at the (i,j+l,k) and (i,j,k+1), (i,j,k-2) points as well as the
(i-3,3,k), (i,j-3,k) and (i,j,k-3) points have been eliminated by the
effective addition of mixed space-time differences. | ‘

These SLOR schemes have the advantages of being quite stéble,’and
of rapidly eliminating ahy.large local errors in the initial estimates
for the potential field. Their rates of convergence decrease as ‘the
local errors become smaller, however, with the result that convergence
to very small residuals can be excruciatingly slow, especially when
the mesh spacing is small.

"An efficient alternative has been demoﬁstrated by Jameson,6
based upon the multi-level adaptive-grid technique first proposed by
Fedorenko,“ and developed and popularized by Brandt..5 The. concept
Behind the multi-grid method is to eliminate each band of wavenumbers
'in the error spectrum on a finite-difference grid which is, in a
sense, optimal for that component. Thus, low wavenumber errors are
eliminated on coarse grids, and only the high wavenumber components
need be eliminated on the fine grids. Alternatively, the use of
‘coarse grids to eliminate the low wavenumber component of the error
" can be thought of as allowing a very high signal speed for the effects
of this error to be transmitted across the grid.

The multi-grid method was first applied to the tranmsonic small
disturbance equation by South and Brandt,9 who noted the problems

associated with highly stretched grids when using SLOR as the
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smoothing algorithm, and suggested using alternating SLOR as a rem-
edy. Three-dimensional calculations using the full potential equation
(in non-conservation form) have been performed by McCarthy and Reyh-
-her,10 for the ttahsonic fibw past axisymmetric inlets., Their compu-
tations were performed in a non-body-aligned, cylindrical coordinate
system, )

The structure of the multi-grid method is as follows. Let the
discretization of Eq.(16) -be represented by

Pkl gk ) 0Lk, C(23)

. . K . .
on a heirarchy of graid levels GO, Gl,...,G , with K denoting the

finest grid. The iterative solution is started from some initial es-
timate on the finest grid. After the high wavenumber component of the
" error has been eliminated, the fine-grid residual is calculated and

. réstficted to the next coarsest grid. On all but the finest grid, the
residual must be modifiéd'to account for the difference in

truncation error on the various grid levels (i.e., Lk® #0 .unless

k = K, when ® is the converged solution on the K-th grid). Thus

R IE'Ichb(n), (24)

where ‘Ik is a restriction operator which averages the residuals
over the fine mesh points in the vicinity of each coarse grid point.
After the high wavenumber error on the coarser grid has been elimina-

ted, the finer mesh solution can be improved according to

Q(n+1) _ Q(n) . 1< (Q(n+1) _ <I)(n)), (25)
k-1 . ‘
. k- . . . . .
where Ik—l is a prolongation operator which is used to -interpolate

the coarse grid corrections onto the finer grid.
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While the essence of the idea has been described above for two
grid levels, the idea can be extended to as many levels as feasible in
order to work on the broadest possible band of the error wavenumber
spectrum. Useful error reduction can be achieved on very coarse
grids, containing only a few cells in each coordinate direction,

In the original implementation of Brandt,5 an adaptive strategy
was envisioned for determining when to change from one grid level to
the next. The smoothing would continue on a particular grid level un-
til the convergence rate fell below some predetermined tolerance, at
which time the residual from that grid would be restricted to the next
coarsest grid. The smoothing on that grid would proceed until the
convergence rate again slowed, at which time the residual would again
be restricted to a coarser grid, and the process repeated. When the
solution had converged on the coarsest level, the corrections would
successively be added back to the finer grid solutions, and the cycle
would be repeated. In the present implementation, a simple fixed
strategy has been found effective. A fixed number of relaxation
sweeps is performed on each grid before restricting the residual from
that grid to the next coarsest level, and a fixed number of relaxation
sweeps is performed on each grid after the corrections are added from
. the preceding grid before the corrections are added to the next finest
grid.

In the present codes, as in our earlier work,8 the restriction
operator averages the residuals at the 27 fine grid neighbors of
each coarse grid point, weighted according to the fraction of the
coarse grid cell volume associated with each fine grid cell in the
computational space. The prolongation operator uses four-point Lag-
rangian interpolation in each coordinate direction, except.near bound-
aries where the order must be reduced,

The computational labor required for one multi-grid cycle using

this fixed strategy is estimated as follows. Let one work unit be
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" defined as the labor required for one relaxation sweep on the finest
grid. Then if m; sweeps are done on each grid éfter the residual
has been restricted from the next finest grid, and m) sweeps are
done on each grid after the corrections have been prolonged from the
next coarsest grid, the cost of one complete multi~-grid cycle is
approximately ‘

{8(m2 + 1) + ml}/7 work units.

This includes the cost of computing the residual on each grid for re-
striction to the ﬁext coarsest grid as approximately equal that of a
relaxation sweep on that grid (since most of the labor is involved in
computing the residual, not in the actual update of the solution), but
neglects the overhead'in restricting residuals and prolonging correc-
tions. For m] = mg = 1, one multi-grid cycle requires approximately
2-3/7 WOrk‘units. '

. The success of the multiple-grid method depends upon the effi-
cient elimination of high wavenumber errors on any given grid. Jame-
son6 used a generalized alternating-direction scheme, in which he re-
placed the usual constant in each factor by the sum of a constant and
first-order difference operators in each coordinate direction. Shmil-
ovich and Caughey8 have shown thaf, even for SLOR schemes, the growth
factor in a von Neumann analysis should never exceed approximately‘
0.78 per multi-grid cycle if the multi~grid algorithm is effective on
error with low wavenumber components in any of the three coordinate
directions.‘ The effectiveness of the multi~grid procedure in elimi-
nating error having low wavenumber component in only one (or two)
directions‘was not completeiy verified in the present work; rather,
it was found effective to alternate between X-line and Y-line SLOR in
conjunction witﬂ the multi-grid procedure. This can be done in two
different ways: (1) alternate multi-grid cycles can be performed using

the two schemes, or (2) the two schemes can be alternated at each
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level within each multi—gfid cycle (if m; and my are greater tham
one). The most effective procedure seems to be the second option

(with m} = 4 or 6 and mp = 2 ),

C. Ceometrical Aspects

“The aigorithm'described above has been incorporated into two com-
" puter programs for calculating the transonic potential flow past
three-dimensional wings and wing-fuselage combinations. These codes
are known generally as FLO-27 and FLO-30.  FLO-27 analyses the flow
past swept wings of essentially arbitrary planform and section shape;
FLO-30 analyses the flow past such wings mounted upon arbitrary fuse-
1agé shapes.,

Both codes construct boundary-conforming coordinate grids by se-
" quences of simple conformal and shearing transformations., The compu-
tational domain in each-prbgram is terminated at artificial bound-
aries, located approximately ten chords distant from the wing surface
in éach spanwise surface, and approximately four semi-spans from the
symmetry plane or fuselage in the lateral direction. On the upstream
"and lateral boundaries, the potential describing perturbations from
the uniform free stream is set to zero, while on the downstream bound-~
afy, the velocity perturbations in the streamwise direction are set to
zero (consistent with a fully-developed flow in the Trefftz plane).
The no-flux condition is enforced directly in the flux balances at
solid boundaries, and a linearized approximation to the vortex sheet,
which assumes the shed vorticity trails in the freestream direction in
a fixed surface downétream of the trailing edge is used. The flux
balance represented by Eq.(16) is also satisfied at points on the vor-
tex sheet, since it does not require differences across the sheet.

These codes, and their associated grid generation techniques, are

described in greater detail in References 1-3.
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III. RESULTS

Results will be presented illustrating both the improved rate of
convergence of the multi-grid algorithm, and the increased accuracy of

the scheme with the second-order viscosity.

A. Computational Aspects

Both programs have been designed to run on either modest com-
puters with large virtual memory or on advanced machines with large
high-speed memories. Even so, only the Cartesian coordinates of the
mesh and the solution vector can reasonably be stored for fine meshes,
and the transformation derivatives are recomputed at each mesh. point
in each iteration. Largely because of this, the program runs
efficieﬁtly on vector machines even though the actual line inversions
for the solution are inherently recursive. On a grid containing'
160x24x32 mesh cells in the X, Y, and Z directions, respectively,
FLO;BO requires about 830,000 words of storage on the Cray-I computer,
and requires about 2.0 CPU seconds per work unit on this grid. This
corresponds to an estimated average comput ational rate of 32 mega-
flops. A typical solution is converged to within reasonable engineer-
ing accuracy after about 30 work units; this requires approximately

65 seconds on this (relatively fine) grid.

B. Computed Results

The -first results to be presented are for the high-aspect-ratio,

_supercritical wing (Wing A) tested by Hinson and Burdges.11

A per-
spective view of the wing is shown in Figure 2. The flow past the

' wing at a freestream Mach number of 0.82 and 1.5 degrees angle of
attack was anélysed using FLO-27. The analysis was performed on a
sequence of three grids, each obtained by doubling the number of mesh

cells in each coordinate direction from the preceding grid, and pro-
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longing the results of the converged solution from the preceding grid
as the initial estimate on the next grid. The finest grid contained
128x16x32 mesh cells. Calculations were performed with both the -
first- and second-order forms of the artificial viscosity; the itera-
ﬁive convergence rates were nearly identical. Figure 3 shows the con-
vergence history of the second-order scheme on the finest grid. The
.logarithm of the average residual, the root section lift coefficient,
and the number of supersonic points are plotted as a function of com-
putational work (measured in work units); the lift coefficient is
normalized by its final converged value, and the number of supersonic
points 1is normalized'by twice its final converged value, while the
residual is normalized by its initial value. The solid lines repre-
sent the convergence of the multi-grid algorithm (with my = 6, my = 2,
and the alternating SLOR scheme (ASLOR)) using 4 grid levels, and the
.dashed lines represent the convergence of a relaxation solution for
the same initial quess. Note that after even 100 relaxation sweeps,
the SLOR scheme has eliminated only about half of the error in root
section lift coefficient and in the number of supersonic points. This
illustrates the slowness with which SLOR eliminates the low wavenumber
component of error. With the multi-grid scheme, both of these meas-
ures have éonverged to within the plottable accuracy of the figure in
the eduivalent of 50 relaxation sweeps. The wing surface pressure
distribution for the first- and second-order accurate schemes are pre-
sented in Figures 4(a) and 4(b), and the streamwise pressure distribu~
tions at the 25 per cent semi-span station are presented for both
schemes in Figures 5(a) and 5(b). Note the increased sharpness with
which the shocks are resolved by the higher-drder scheme. Finally, a
convergence study of the wing 1ift and drag coefficients with mesh.

. spacing is shown in Figure 6. Both first- and second-order accurate
results are plotted; the former vs. mesh spacing and the latter vs.

the square of the mesh spacing. Straight lines through the finer mesh
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results for both schemes converge to the same asymptotic value for the
lift coefficient in the limit of zero mesh width, but the drag results
" have not yet reached their asymptotic rates on these grids. The ab-
solute error in lift for the second-order scheme on the finest grid is
about 2 per cent, while a mesh containing more than eight times as
many cells (a factor of 2 in each coordinate direction) would be re-
quired for similar accuracy using the first-order scheme. The abso-
lute error in the drag coefficient for the second-order scheme is
about 3 per cent, while similar accuracy for using the first-order
scheme would seem to require approximately 64 times as many mesh cells
(a factor of four in each coordinate direction).

Although the iterative convergence of the previous example is
quite good, the highly stretched nature of the grid in the férfield
does degrade the performance of the multi-grid algorithm. This is
more clearly seen in Figure 7, which compares the convergence proper-
. ties of the ASLOR multi-grid scheme of the previous example with those
of the ASLOR scheme without multi-grid, and an SLOR implementation of
multi-grid (using an X-line scheme). Clearly, the convergence of the
straight ASLOR scheme (without multi-grid) is not appreciably better
than that of the straight SLOR scheme. The convergence properties of
the SLOR multi-grid algorithm are more problematic, however. For that
scheme, the asymptotic rate is nearly as bad as that of the straight
SLOR (or ASLOR) schemes, but the convergence of the global errvor in
the solution (as measured by 1lift coefficient or number of supersonic
points) is as good as the ASLOR multi-grid scheme. (The convergence
plots for these measures nearly overplot the ASLOR multi-grid results,
and are thus nearly invisible in the figure.)

Even the ASLOR multi-grid scheme is moderately sensitive to the

stretching of the grid in the far field. An example of this depen-
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. dence is shown in Figure 8. Fof the same Lockheed wing test case as
in the previous example, the convergence rates of the ASLOR multi-grid
scheme are plotted for the solutions computed on two slightly differ-
ent grids. The grids were chosen to have approximately the same far-
field boundaries, but the stretching functions were modified to make
“the grid more nearly uniform at large distances from the wing (without
affecting the distribution of mesh cells on the wing surface). The
improved asymptotic convergence'rate of the solution computed on the
modified grid reflects this iess severe stretching in the far field.

Finally, to illustrate the reliability of the scheme, results for
a strongly supercritical case are presented. The flow past the ONERA
M-6 wing,l2 mounted upon a circular cylinder, was computed using
FLO-30. Figure 9 shows the coordinate lines in the wing and fuselage
surfaces for the grid used; for clarity, only every fourth line of the
fine grid containing 160x24x32 mesh cells is shown. The solution
waé computed at a freestream Mach number of 0.923 and 3.06 degrees
angle of attack. Nearly 20 per cent of the mesh points have super~
sonic velocities for this case. The wing pressure distribution, show-
ing the strong shocks at the trailing édge of the upper surface and
the substantial supersonic pocket outboard on the lower surface, is
plotted in Figure 10. The convergence history is plotted in Figure
11. Again, the root section lift coefficient and the number of super-
sonic points have converged ﬁo within plottable accuracy in the equi-

valent of about 50 relaxation sweeps.
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IV. CONCLUDING REMARKS

A ﬁulti—grid algorithm has been combined with a successive-line-
overrelaxation (SLOR) iterative scheme to provide improved rates of
convergence in the iterative sense for the computation of transonic
potential flows past swept wing and wing-fuselage configurations. At
the same time, a modified form of artificial viscosity has been incor-
porated which results in second-order accuracy for the scheme nearly
everywhere in the flow field. The method has been incorporated into
two computer. programs for calculating the transonic potential flow
past three-dimensional wings and wing-fuselage combinations. Results
indicate that convergeunce adequate for most engineering purposes can
be achieved with the new multi-grid algorithm in less than the time
required for about 50 relaxation sweeps using the original SLOR

scheme.,
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(a) Physical cell (b) Computational cell

Figure 1. Mapping of mesh cells.
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VIEW OF WING

Figure 2. Geometry of Lockheed Wing A. Sections at
computational stations on finest grid are shown.
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Lockheed Wing A at M_ = 0.82 and

of attack;

gsecond~order scheme.
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UPPER SURFACE PSESSURE LOWEA SURFACE PRESSURE

LOCHHEED WING A
MOCH J.320 ALPHA 1,500
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(a) First-order viscosity.
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(b) Second-order viscosity

Figure 4, Three-dimensional wing surface pressure distributions
for Lockheed Wing A at M_= 0.82 and 1.5 degrees
angle of attack,
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Figure.5. Streamwise surface pressure distributions for Lockheed
Wing A at 25 per cent semi-span station. Same
freestream conditions as Figure 4.
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CONVERGENCE OF FORCE COEFFICIENTS WITH MESH SPACING

LOCKHEED WING A
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Figure.6. Convergence study of wing 1ift and drag coefficients
for Lockheed Wing A. Same freestream conditions as
Figures 4 and 5.

28.



Figure 7. Iterative convergencé for calculation of flow past
Lockheed Wing A at M_= 0.82 and 1.5 degrees angle
of attack; second-order scheme. '
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Figure 9. Geometry of ONERA wing-cylinder combination, Grid
lines in wing and fuselage surfaces only. Every
fourth line of finest grid is shown,
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UPPER SURFACE PRESSURE ~ LOWER SURFACE PRESSURE

Figure 10. Three-d imensional wing surface pressure distributions
for flow past ONERA wing-cylinder combination at at
M_=0.923 and 3.06 degrees angle of attack,
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Figure 11. Iterative convergence for calculation of flow past
ONERA wing-cylinder combination. Freestream
" conditions as in Figure 10.
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