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ABSTRACT

A three-dimensional multi-grid algorithm is developed and compared
to an efficient three-dimensional Incomplete Cholesky Conjugate Gradient
(ICC&) algorithm on a suite of test problems with discontinouous and/or
anisotropic coefficients. The multi-grid algorithm used plane
relaxation and a definition of coarse grid operators which dis an
extension of that used for two-dimensional problems with discontinuous
coefficients. Numerical results show that the size of problem for which
multi-grid becomes competitive with ICCG fs targer than would normally
be encountered in reservoir simulation.

INTRODUCTION

Multi-grid methods have proved to be very efficient at solving the
two-dimensional diffusion equation with jump discontinuities in the

equation coefficients (1,2,3,4,5). These problems are essentially
variations of:

VK Vp +op = -q (1)

with strong spatial variation in K. Multi-grid methods have also been
used to solve the non-symmetric convection-diffusion equation 1in two
dimensions (3). These equations are similar to the pressure equation in
0il reservoir simulation (6). In reservoir problems the permeability
tensor K is typically strongly anisotropic and discontinuous.

The method used to solve a two-dimensional version of equation (1)
was originally suggested by Alcouffe et al (1). In this report, we
generalize these techniques 1in order to solve equation (1) in three
dimensions. Several difficult problems are solved to test the
efficiency of this method in three dimensions. The multi-grid solutions
are compared with the solutions produced by a D4 ICCG method (7)

MULTI-GRID IN THREE DIMENSIONS

In the following, we assume that the reader is familiar with the
basic multi-grid method (8). Let the original equation on the finest
grid be denoted by:

Lu = f (2)
with operator L, unknown u and source term f. If there are M levels in
the multi-grid algorithm, then the discretized version of equation (2)
on the finest grid is:



For problems with discontinuous coefficients, the operator on the coarse
grid is defined recursively (1):
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where I&_% is the interpolation operator from grid K-1 to K. The source
the

term on coarse grid is given by:

Kl LK T K (5)

with rK being the residual on grid K.

The coarse to fine interpolation operator IK 1 is defined as
follows, (see Figure 1) where it dis assumed tﬁ%t ‘the fine grid
discretization uses at most nearest and next-nearest neighbours (27
point molecule). For fine points corresponding to coarse points, the
interpolation is the identity (injection). For fine points on a coarse
grid line between two coarse points, the operator LK is averaged in the
two directions perpendicular to the coarse grid line. This averaging
amounts to simply adding th components of LK to produce a collapsed one
dimensional operator (LK)“1, The interpolation 1is then defined by
solving:

(L% L K=o (7)

Next consider fine points not on coarse grid lines, but in the same
plane as two coarse grid lines. These points have four nearest
neighbour coarse grid points. The operator LK is averaged in the
direction perpendicular to éme plane containing the coarse grid lines.
The collapsed operator (LK)“2 is two dimensional, and the interpolation
is defined by solving:

92 K Lo (8)



for uk at the fine point. The remaining fine grid points have eight
nearest neighbour coarse grid points, and the original operator LK can
be used to solve for the fine points:

LK uK = 0 (9)

No averaging is required. Note that the coarse grid operators are 27-
point (nearest and next-nearest neighbours), even if the fine grid
operator has 7 points (nearest neighbours only). This interpolation is
a generalization of the methods developed by Alcouffe et al (1).

SMOOTHING METHODS

In order to solve pathological cases such as:

Pxx * Pyy t €pzz = 0 ‘ (10)

with € << 1, a simple smoothing analysis reveals that plane relaxation
in the x-y plane 1is necessary. This gives a smoothing rate of 52 (8).
However, the cost of factoring Ni/3 planes (assuming a cubical region)
is:

O(N1/3 (N1/3)2 N2/3) - 0(N5/3)

This set-up cost alone compares unfavourably with ICCG or MICCG
(9,10,11,12,13)  which  require O(N*/3) and O(N7/6)  operations
respectively for convergence in three dimensions. In order to avoid
this set-up cost, the planes can be solved iteratively with an ICCG
method in the planes. This technique will be referred to as incomplete
plane relaxation (IPR). The cost of an incomplete LU factorization
(ILU) of all the planes is O(N), while the cost of solving the planes to
a fixed degree of accuracy is O(N4/3) (in the worst case). Consequently,
assuming the number of multi-grid cycles required for convergence is
independent of N, this algorithm will be O(N4/3) in the worst case.

The planes are factored using a third degree (3,7) L D U incomplete
factorization. The compuational molecule is shown in Figure 2, assuming
a nine point operator. The element marked D 1is the diagonal, while
points corresponding to the bands in L are Tabelled by L with a
subscript giving the band number. Similarly with the bands in U. For
convenience, the same template is used on the finest grid (which has a
five point operator in the plane). The bands marked L1,U; are absent in
this case. On the finest grid, this decomposition is between fourth and
fifth degree.

An alternate smoothing method using 3D ILU factorization was coded
and tested. The work for a fixed number of 3D ILU sweeps on each grid
is O(N) per multi-grid cycle. Thus, a multi-grid algoritym based on
this smoothing is also O(N) (assuming the number of cycles to reduce the



residual by a fixed amount is 0(1)). However one knows, a priori, that
such an algorithm will not work well on pathological problems of the
type considered in equation (10).

The 3D ILU factorization used was first degree on the coarse grids,
having twenty-seven bands corresponding to the twenty-seven bands of the
differential operator. On the fine grid the same twenty-seven point
template was used but the factorization was now between second and third
degree, since the differential operator on the fine grid had only seven
points.

COMPARISON METHODS

The performance of the 3D multi-grid algorithm was compared to that
of the 3D Incomplete Cholesky Conjugate Gradient (ICCG) (9,10)
algorithm. The work per iteration for ICCG methods is O(N), while the
number of iterations to reduce the residual by a fixed amount is o(NL/d)
where d 1is the number of spatial dimensions. This means that the 3D
ICCG algorithm is O(N*/3) which implies that it is formally of the same

order as multi-grid with IPR.  Note that the order of 3D ICCG is lower
than that of 2D ICCG.

The particular preconditioning used here was a first degree, D4
ordered incomplete LU (ILU) factorization. This preconditioning, with
ORTHOMIN acceleration, has been found to be optimal for a wide range of
nonsymmetric model and reservoir simulation problems (7,14) in both two
and three spatial dimensions.

TEST PROBLEMS

The test problem used was the three-dimensional problem:
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which was discretized in the following way on the finest grid:
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Terms such as KXjy ik, KYj %i%’k and so'oh, are given by the harmonic
mean to ensure comtinuity of ¥ruid flux (6).

AT1 problems were solved on the unit cube with

NX = NY = NZ

where NX, NY, and NZ are the number of grid nodes in the x-, y- and z-
directions respectively.

For problems #1, #3, #5, #7, and #9 there were unit sources of
opposite sign at (1,1,1) and (NX, NY, NZ) and a compressibility ¢ = 0.

For problems #2, #4, #6, #8, and #10 there was a unit source at
(1,1,1) and a compressibility of ¢ = 10-4.

A1l problems had Neumann boundary conditions. Both 9x9x9 and
17x17x17 problems were solved.

Problems #1 and #2

The geometry of ‘these problems is described by:
KX = KY = KZ = K
and K = 0.001 for
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otherwise K = 1.0.
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and for the 17x17x17 case
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Problems #3 and #4

These problems
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for 1.2 <1< NX
j2 < J < NY
k2 < k < NZ

and K =1 otherwise.
For 9x9x9 case
fip=J1=k1 =4

and 2 = j2 =kp =6
For the 17x17x17 case
ip=3J1 =k =7

and 1o = jo = ko =11

Problems #7 and #8

The geometry of these problems is given by
KX =1
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Problems #9 and #10

In these problems

KX = 1
KY = 102
KZ = 10-2

for
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for 1'1 <1< NX
jl <j<NY
k1 < k < NZ
For the 9x9x9 case
1= g1 =k =4
and for the 17x17x17 case

i1=Jd1 =k =7

COMPUTATIONAL DETAILS AND RESULTS

The multi-grid algorithm with IPR as a smoother was run with 1
sweep of x-y planes followed by x-z planes followed by y-z planes on
each grid. The convergence criterion in each plane was:

Y P -5 (13)
e He < 1 rg Ile x 10 |
or
; -6 14
1P 1y < 1l 11y x 10 )
where || ||w denotes the %, norm, rP denotes the residual in the plane,

rP denotes the residual in the plane after 1 ICCG iteration, and rg
dénotes the initial residual over all grid nodes.



The multi-grid algorithm with 3D ILU smoothing was run with 1 sweep
of ILU on each grid. Both multi-grid algorithms had an exact solve on
the coarsest grid. The outer convergence tolerance for both versions of
the multi-grid algorithm and for the 3D ICCG algorithm was

-6 15
e [l < [Iry || x10 (15)

where || ||o is as above, r is the residual over all nodes and ry is the
initial residual over all nodes. The initial guess was zero for all
algorithms.  The 9x9x9 problems used three multi-grid levels. The
17x17x17 problems used four.

Table 1 gives the results for test problems 1 to 10 for the multi-
grid algorithm with IPR smoothing (for 9x9x9 and 17x17x17 problems) and
for the multi-grid algorithm with 3D ILU smoothing (for the 9x9x9 case

only). Table 2 gives the results for test problems 1 to 10 for the 3D
ICCG algorithm.

The table entries are operation counts (multiplications and
divisions) in terms of a work unit defined by N operations (N being the
number of grid nodes on the finest grid). They include only iteration
work and not set-up work. The number of multi-grid cycles and number of
ICCG iterations are given 1in brackets. Absence of entries indicates
that specified CPU time limit was exceeded.

For disucssion of results the test problems can be divided into
three classes

(i) discontinuous problems (problems #1, #2, #5, and #6)
(ii) anisotropic problems (problems #3, #4, #7, and #8)
(111)anisotropic and discontinuous problems (problems #9 and #10)

From Table 1 we observe that, as expected, 3D ILU smoothing
performed poorly on problems with anisotropies. On problems with
discontinuities it converged more slowly than the algorithm with IPR
smoothing, but the lower work count per cycle made it a competitive
method.

Table 1 also shows that the mulit-grid algorithm with IPR smoothing
performs well on discontinuous (class (i)) problems, taking only a few
cycles for convergence. However, the Targe amount of work to solve all
the planes to an adequate degree of accuracy increases the total work
count substantially. This algorithm also handles the class (ii) and
class (ii1) problems with no compressibility (3=0) adequately. The
class (ii) and class (iii) problems with small compressibility, on the
other hand, are handled very poorly. This result is surprising and we
do not at this time have an explanation for it. We have tested the same
problems with a two level multi-grid scheme with similar results.



Note that as the size of the problem is doubled, multi-grid with
IPR has the same work count. Thus the algorithm in O(N). Recall that
in Section 3 we showed that it was formally O(N4/3). This discrepancy
can be explained by noting that there were two conditions (given by
equations (13) and (14)) governing the number of ICCG sweeps in a plane.
Adherance to condition (13) gives the O(N%/3) property, since the number
of ICCG sweeps in a plane is related to the reduction of the residual by
a fixed amount. In practice the algorithm must be satisfying condition
(14) first, and thus doing only a few ICCG sweeps in each plane. This
fact has been confirmed by actually printing the number of ICCG sweeps
in each plane for a number of cases. Note also that the algorithm has
been run in such a way as to force the plane ICCG to converge to very
tight tolerances. This did not affect the number of multi-grid cycles
required for convergence, nor did it alleviate the difficulty with class
(i1) and (i11) problems with small compressibility.

Table 2 1illustrates the performance of the 3D ICCG algorithm
described in Section 4. For the 9x9x9 problems ICCG is always superior
to multi-grid. For the 17x7x17 problems this is again true, with case 7
being the exception. Thus we conclude that the size of problem for
which multi-grid begins to compete with ICCG is certainly larger than
17x17x17. Extrapolation of the values in Tables 1 and 2 indicates that
the crossover point will probably be larger than 33x33x33, which is
currently Targer than would normally be encountered in reservoir
simulation.

It 1is interesting to note that the class (i1) and class (ii1)
problems with zero compressibility were fairly difficult for the ICCG
algorithm and that the degree of difficulty correlated to the amount of
anisotropy (problem #7 being wmore difficult than problem #3, for
instance). The multi-grid algorithm seemed to find them of the same

degree of difficulty, taking 8 multi-grid cycles for convergence (for
the 9x9x9 case).

Table 2 also shows that 3D ICCG is not an O(N) algorithm. We
expect from theory that the work should increase as

»(2.2,2)13 = 2 (16)
In practice, we do not see this ratio but a range from 1.2 to 3.3. This

could be attributed to the presence of a large number of boundary nodes
in the 9x9%x9 case.

CONCLUSIONS

A three-dimensional multi-grid algorithm has been developed and
compared to a very efficient three-~dimensional ICCG algorithm.

The multi-grid algorithm performed well for problems with
discontinuous coefficients and either zero or small compressibilities.
For problems with discontinuous and/or anisotropic coefficients and zero
compressibilities the multi-grid algorithm also performed well. For



problems with discontinuous and/or anisotropic coefficients and small
compressibilities anomalous results were obtained. Note that the same
results were obtained with a two Tevel scheme.

Multi-grid with three-dimensional ILU as a smoother was adequate
for problems with discontinuous coefficients but not for those with
anisotropic coefficients.

The three-dimensional multi-grid algorithm although not formally of
0(N) was found to be O(N) on all the problems tested. The three-
dimensional ICCG algorithm was not O(N).

The size of problem for which three-dimensional multi-grid is
likely to be a viable solution option is larger than would normally be
encountered in practical reservoir simulation.

It would appear that further investigation of the interpolation

used in the three-dimensional algorithm should be carried out in order
to improve the method for the anomalous cases.
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NOMENCLATURE
D - diagonal matrix
f - source term in differential equation
h - grid spacing
I&_l - interpolation operator for grid K-1 to grid K
%§ Eé— discontinuous coefficients in test problems (permeabilities)
L - differential operator
L - Tower triangular matrix
N - number of grid nodes (=NX * NY * NZ) on finest grid
NX - number of grid nodes in x-direction

Ny - number of grid nodes in y=direction



NZ

- number of grid nodes in z-direction

0 - order

p - pressure

q - source term in test problems

r, rP- residual

u - solution

U - upper triangular matrix

o} - compressibility term in test problems

Subscripts and Indices

T,d,k- grid point labels

Superscripts

€1 - operator collapsed to one spatial dimension

Cor - operator collapsed to two spatial dimensions

K - grid Tevel

p - plane

T - transpose

Symbols

| 1o feo norm
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Table 1

Work Count* of Multi-Grid Algorithm
With Two Different Smoothing Methods

Problem IPR 3D ILU

| 9x9x9 17x17x17 9%x9x9
#1 927 (4) 870 (4) 740 (9)
#2 675 (3) 620 (3) 740 (9)
#3 2,525 (8) 2,542 (8) 7,921 (101)
#4 5,042 (15) 3,476 (10) 8,055 (101)
#5 1,280 (6) 1,041 (5) 818 (10)
#6 1,056 (5) 796 (4) 818 (10)
#7 1,774 (8) 1,587 (7) 7,920 (101)
#8 14,073 (57) 10,668 (48) --
#9 3,357 (8) 4,426 (9) 7,920 (101)
#10 43,385 (101) - -

*One work unit = N operations
Number of cycles/iterations in brackets




Table 2
Work: Count* of ICCG Algorithm

Problem 9x9x9 17x17x17

#1 223 (10). 355 (16)

#2 201 (9) 245 (11)

#3 707 (32) 807 (82)

#4 773 (35) 1,983 (90)

# 179 (8) 399 (18)

#6 311 (14). 641 (29)

¥ | 1,345 (61) 3,127 (142)
#8 | 1,565 (71) 5,283 (240)
#9 | 839 (38) 1,609 (73)

#10 - 949 (43) 1,785 (81)

*One work unit = N operations. Numbers: of cycles/iterations in brackets
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