===firstname: Jos\'e ===firstname3: Danny ===affil6: ===lastname3: Guerrero ===email: jmarinma@imm.upv.es ===keyword_other2: ===lastname6: ===affil5: Institut de Matematica Multidisciplinar Universitat Politecnica de Valencia ===lastname4: ===lastname7: ===affil7: ===postal: Institut de Matematica Multidisciplinar Universitat Politecnica de Valencia Camí de Vera, 14 46022 Valencia Spain ===ABSTRACT: \newcommand{\reals}{\mathbb{R}} In this work we study the iterative solution of nonsingular, nonsymmetric linear systems of $n$ equations \begin{equation} Ax=b \end{equation} where the skew-symmetric part of the coefficient matrix $A$ can be approximated by a low-rank matrix. Consider $A=H+K$ where $H$ and $K$ are the symmetric and skew-symmetric parts of $A$, respectively. It is assumed that the skew-symmetric matrix can be written as $K=PQ^T + E$ for some full rank $P,Q \in \reals^{n \times s}$ with $k \ll n$, and $\| E \| \ll 1$. Different strategies have been proposed when the skew-symmetric part $K$ has exactly rank $s \ll n$. In \cite{Beckermann:2008} it is presented a progressive GMRES method that allows for the short-term computation of an orthogonal Krylov subspace basis. As pointed out in \cite{ESSSX.2012}, although the method is mathematically equivalent to full GMRES \cite{sasc:86} in practice it may suffer from instabilities due to the loss of orthogonality between the vectors of the generated Krylov subspace basis. In the same paper, the authors propose a Schur complement method that also permits the application of short-term formulas. The method obtains an approximate solution by applying the MINRES method $s+1$ times. The authors also suggest that can be successfully applied as a preconditioner for GMRES for the problem considered in this paper. We study a method based on the framework proposed in \cite{cmm:16}. Assuming that the matrix $H+PQ^T$ is nonsingular, our approach computes an approximate LU factorization of the matrix \begin{equation}\label{eq:augmented} \left[ \begin{array}{cc} H & P\\ -Q^T & I \end{array} \right] \end{equation} with the Balanced Incomplete Factorization (BIF) algorithm \cite{bmmt:08,bmmt:10}. Interestingly, the matrix in (\ref{eq:augmented}) is similar to the one used in \cite{ESSSX.2012} to develop the Schur complement method, but in this work it is used to update a previously computed preconditioner for the symmetric part $H$. Then, the factorization is used as a preconditioner for the GMRES method. The results of the numerical experiments for different problems will be presented. \begin{thebibliography}{1} \bibitem{Beckermann:2008} Bernhard Beckermann and Lothar Reichel. \newblock The {A}rnoldi process and {GMRES} for nearly symmetric matrices. \newblock {\em SIAM J. Matrix Anal. Appl.}, 30(1):102--120, February 2008. \bibitem{bmmt:08} R.~Bru, J.~Mar{\'{\i}}n, J.~Mas, and M.~T\accent23uma. \newblock Balanced incomplete factorization. \newblock {\em SIAM J. Sci. Comput.}, 30(5):2302--2318, 2008. \bibitem{bmmt:10} R.~Bru, J.~Mar{\'{\i}}n, J.~Mas, and M.~T\accent23uma. \newblock Improved balanced incomplete factorization. \newblock {\em SIAM J. Matrix Anal. Appl.}, 31(5):2431--2452, 2010. \bibitem{cmm:16} J.~Cerd\'an, J.~Mar\'{\i}n, and J.~Mas. \newblock Low-rank updates of balanced incomplete factorization preconditioners. \newblock {\em Submitted.} \bibitem{ESSSX.2012} Mark Embree, Josef~A. Sifuentes, Kirk~M. Soodhalter, Daniel~B. Szyld, and Fei Xue. \newblock Short-term recurrence {K}rylov subspace methods for nearly hermitian matrices. \newblock {\em SIAM. J. Matrix Anal. and Appl.}, 33-2:480--500, 2012. \bibitem{sasc:86} Y.~Saad and M.~H. Schulz. \newblock {GMRES}: {A} generalized minimal residual algorithm for solving nonsymmetric linear systems. \newblock {\em {SIAM} Journal on Scientific and Statistical Computing}, 7:856--869, 1986. \end{thebibliography} ===affil3: Institut de Matematica Multidisciplinar Universitat Politecnica de Valencia ===title: Preconditioners for nonsymmetric linear systems with low-rank skew-symmetric part ===affil2: Institut de Matematica Multidisciplinar Universitat Politecnica de Valencia ===lastname2: Cerd\'an ===firstname4: ===keyword1: Solvers for indefinite systems ===workshop: no ===lastname: Mar{\'{\i}}n ===firstname5: Jos\'e ===keyword2: NOT_SPECIFIED ===otherauths: ===affil4: ===competition: no ===firstname7: ===firstname6: ===keyword_other1: ===lastname5: Mas ===affilother: ===firstname2: Juana