
1

A Multigrid Tutorial

Irad Yavneh

Department of Computer Science

Technion – Israel Institute of Technology

irad@cs.technion.ac.il

2

Some Relevant Books:
1. W.L. Briggs, V.E. Henson, and S.F. McCormick: “A Multigrid

Tutorial”, 2nd ed., SIAM, 2000.

2. U. Trottenberg, C.W. Oosterlee, and A. Schueller:
“Multigrid”, Academic Press, 2001.

3. Brandt, A., “1984 Guide with Applications to Fluid
Dynamics”, GMD-Studie Nr. 85, 1984.

4. Hackbusch, W., “Multigrid Methods and Applications”,
Springer, Berlin, 1985.

5. W. Hackbusch and U Trottenberg eds.: “Multigrid Methods”,
Springer-Verlag, Berlin, 1982.

6. Wienands, R., and Joppich, W., “Practical Fourier Analysis
for Multigrid Methods”, Chapman & Hall/CRC, 2004.

3

What’s it about?

A framework of efficient iterative
methods for solving problems with many
variables and many scales.

4

• Framework: common concept, different methods.
• Efficient: usually O(N) or O(N log N) operations
 The importance of efficient methods becomes greater as

computers grow stronger!
• Iterative: most nontrivial problems in our field cannot be

solved directly efficiently.
• Solving: approximately, subject to appropriate convergence

criteria, constraints, etc.
• Many variables: the larger the number of variables, the

greater the gain of efficient methods.
• Many scales: typical spatial and/or temporal sizes.

A framework of efficient iterative methods for

solving problems with many variables and many
scales.

5

Basic Concepts: Local vs. Global processing.

Imagine a large number of soldiers who need to be
arranged in a straight line and at equal distances from
each other.

The two soldiers at the ends of the line are fixed.
Suppose we number the soldiers 0 to N , and that the
length of the entire line is L.

6

Initial Position

7

Final Position

8

Global processing. Let soldier number j stand on the
line connecting soldier 0 to soldier N at a distance jL/N
from soldier number 0.

9

10

This method solves the problem directly, but it
requires a high degree of sophistication: recognition
of the extreme soldiers and some pretty fancy
arithmetic.

11

Local processing (iterative method). Suppose that the
inner soldiers’ initial position is .
Then repeat for i=1,2,…: Let each soldier j, j=1,…N-1 at
iteration i move to the point midway between the
locations of soldier j-1 and soldier j+1 at iteration i-1:

(0) (0)
1 2 1(, , ,)Nx x x −=x

() () ()()1
1

1
12

1 −
+

−
− += i

j
i
j

i
j xxx

This is an iterative process. Each iteration brings us
closer to the solution(?). The arithmetic is trivial.

12

A step in the right direction

13

14

Slow convergence

15

16

Fast convergence

17

18

Slow convergence

19

Local solution: damping

20

Local solution: damping

21

Local solution: damping

22

Local solution: damping

23

The multiscale idea: Employ the local processing with
simple arithmetic. But do this on all the different
scales.

24

25

Large scale

26

Large scale

27

Intermediate scale

28

Intermediate scale

29

Small scale

30

31

HOW MUCH DO WE SAVE?

Analysis of the Jacobi iterative process

Matrix representation:

() ()1−= ii Sxx
where

=

01
101

101

101
101

10

2
1

S

32

This matrix S has N - 1 linearly independent eigenvectors,
vk, and corresponding real eigenvalues, λk

Since vk span the space , any initial configuration of
the soldiers can be written as a linear combination:

.k k
kλ=S v v

() ∑
−

=

=
1

1

0
N

k

k
kc vx

with some coefficients, ck.

1−ℜN

33

Hence, we obtain after m iterations:

() () ()

() ∑∑ ===

=== −−

k

km
kk

k

k
k

mm

mmm

cc vvSxS
xSSxx

λ0

221

Conclusion:

The iteration converges if the spectral radius, ρ, of
the iteration matrix, S, is smaller than 1.

() 0 1, 1, , 1lim m
k

m

if k Nλ
→∞

→ < = −x

34

Observation: the eigenvectors and eigenvalues of the
matrix S are given by

with k = 1, …, N –1.

Proof: Using the trigonometric identity,

and the fact that , we obtain by
substitution, .

{ } sin , 1, , 1,

cos ,

k k
j

k

jk j N
N

k
N

π

πλ

 = = = −

 =

v v

() ()1 11 sin sin cos sin ,
2

j k j k k jk
N N N N

π π π π − +
+ =

0sin0sin == π
k

k
k vvS λ=

35

36

Note: since | λk | < 1, the method converges. But, for
some eigenvectors, | λk | is close to 1, so convergence is
slow. In particular, for kπ/N << 1, we have,

For k =1 we obtain

Conclusion: O(N 2) iterations are required to reduce such
an error by an order of magnitude.

21cos 1 .
2k

k k
N N
π πλ = ≈ −

22 1
2

1
11 .
2

m
m

m Ne
N

ππλ
 −

 ≈ − ≈

37

38

How much work do we save?

Jacobi’s method requires about N 2 iterations and N 2 *
N = N 3 operations to improve the accuracy by an order
of magnitude.

The multiscale approach solves the problem in about
Log2(N) iterations (whistle blows) and only about N
operations.

Example: for N = 1000 we require about:

10 iterations and 1000 operations

instead of about

1,000,000 iterations and 1,000,000,000 operations

39

How important is computational efficiency?

Suppose that we have three different algorithms for a
given problem, with different computational
complexities for input size N :

Algorithm 1: 106 N operations

Algorithm 2: 103 N 2 operations

Algorithm 3: N 3 operations

Suppose that the problem size, N, is such that
Algorithm 1 requires one second.

How long do the others require?

40

Algorithm 3

O(N3)

Algorithm 2

O(N2)

Algorithm 1

O(N)

N

Computer
Speed

(ops/sec)

0.000001 sec 0.001 sec 1 sec 1 1M (~106)
(1980’s)

1 sec 1 sec 1 sec 1K 1G (~109)
(1990’s)

12 days 17 min 1 sec 1M 1T (~1012)
(2000’s)

31,710 years 12 days 1 sec 1G 1P (~1015)
(2010’s)

Stronger Computers

Greater Advantage of Efficient Algorithms!
⇒

41

The catch: in less trivial problems, we cannot
construct appropriate equations on the large
scales without first propagating information
from the small scales.

Skill in developing efficient multilevel
algorithms is required for:

1. Choosing a good local iteration.

2. Choosing appropriate coarse-scale
 variables.

3. Choosing inter-scale transfer operators.

4. Constructing coarse-scale approximations
to the fine-scale problem.

42

Damping

Recall: the eigenvectors and eigenvalues of the
iteration matrix S are given by

with k = 1, …, N –1.

Note that convergence is also slow for

{ }

,cos

,1,,1,sin

=

−=

==

N
k

Nj
N
jkv

k

k
j

k

πλ

π
v

.1/ ≈Nk

43

This slow convergence can be overcome by damping:

where ω is a parameter.

Then, where

Note: vk are eigenvectors of Sω . The corresponding
eigenvalues are now

For we have convergence,

() () () ()(),
2
1)1(1

1
1
1

1 −
+

−
−

− ++−= i
j

i
j

i
j

i
j xxxx ωω

() ()1 ,i i
ω

−=x S x

() .1 SIS ωωω +−=

() ().111 kkk λωωλωλ ω −−=+−=

0 1,ω< ≤ () 1.k
ωλ <

44

Definition:

Eigenvectors vk with are called
smooth (low-frequency).

Those with are called rough or
oscillatory (high-frequency).

Recall that so for rough
eigenvectors,

2/1 Nk <≤

NkN <≤2/

0.kλ ≤

cos ,k
k
N
πλ =

45

Exercise: Find which yields optimal
convergence for the set of rough modes for
arbitrary N:

i.e.,

What is then the bound on the convergence
factor, , maximized over the rough modes?
(Clues in my introductory paper.)

10 << ω

()

2

: sup max min!,kNN k N

ωω λ
≤ <

=

()ωλk

(]1,0
: sup 1 min!,

λ
ω ω ωλ

∈ −
− + =

46

1D Model Problem

Find u which satisfies:

In the particular case where f = 0, the solution is a
straight line that connects u0 with u1.

() () ()
()
()

0

1

, 0, 1 ,

0 ,

1 .

Lu u x f x x

u u

u u

′′= = ∈

=

=

(1)

47

Discrete approximation: Since closed-form solutions
exist only for a small number of differential equations,
we solve such equations approximately by a discrete
approximation.

Define a grid: divide the domain (0,1) into N intervals.
Assume for simplicity a uniform grid of mesh-size
h=1/N.

48

Finite-difference discretization; examples:

Forward differences:

Backward differences:

Central differences:

Second derivative:

Derivation: by the Taylor theorem

() () ().hO
h

xuhxuu +
−+

=′

() () ().
2

2hO
h

hxuhxuu +
−−+

=′

() () ().hO
h

hxuxuu +
−−

=′

() () () () ().2 2
2 hO

h
hxuxuhxuxu +

++−−
=′′ (2)

49

1 1
2

0 0

1

2 ,

1, , 1,

,

.

h h h
h h hi i i

i

h

h
N

u u uL u f
h

i N

u u

u u

+ −− +
= =

= −

=

=

We can thus approximate the differential
equation by a set of algebraic difference
equations:

50

1

2

2

2

1

2
1 0

2

2
2

1 1

2 1
1 2 1

1

1 2 1
1 2

/

.

/

h

h

h
N
h
N

h h

h

h
N
h h

N

u
u

h
u
u

f u h
f

f
f u h

−

−

−

−

−
 −
 =
 −
 −

 −

 −

In matrix form:

This is a tridiagonal system of equations which
can be solved directly or iteratively.

51

2D Model Problem

Find u which satisfies:

This is the 2D Poisson equation, with Dirichlet boundary
conditions. It is an elliptic partial differential equation
which appears in many models.

() ()
() () .,,,

,,,,

Ω∂∈=

Ω∈=+=

yxyxgu
yxyxfuuLu yyxx (4)

52

hΩ

53

Discrete approximation

Define a grid: (assumed to be uniform for
simplicity, with mesh interval h).

Let uh, gh and f h denote discrete approximations to u, g
and f defined at the nodes of the grid.

Plug (2) for uxx, and the analogous approximation for uyy
into (4), obtaining:

Ω⊂Ωh

54

,

1, , 1, , 1 , , 1
,2 2

2 2
in

on

h h
i j

h h h h h h
i j i j i j i j i j i j h h

i j

h h h h

L u

u u u u u u
f

h h

u g

− + − +

=

− + − +
+ = Ω

= ∂ Ω

(5)

This yields a nonsingular linear system of equations for
 (the discrete operator satisfies a maximum
principle.)

We consider solving this system by the classical
approach of Gauss-Seidel relaxation.

h
jiu ,

55

Gauss-Seidel (GS) Relaxation:

1. Choose initial guess,

2. Repeat until some convergence criterion is satisfied
{

 Scan all variables in some prescribed order, and
change each variable in turn so as to satisfy
the (i,j)th equation.

 }

.~hu

h
jiu ,

~

56

Observation: GS is a local process, because only near
neighbors appear in each equation. Hence, it may be
efficient for eliminating errors which can be detected
locally. But large-scale (“smooth”) errors are
eliminated very slowly.

(The difference between GS and Jacobi is that old
neighboring values are used in Jacobi, while the most
updated values are used in GS.)

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

Key Observation re-worded: Relaxation cannot be
generally efficient for reducing the error (i.e., the
difference vector). But relaxation may be
extremely efficient for smoothing the error relative
to the grid.

Practical conclusion:

1. A smooth error can be approximated well on a
coarser grid.

2. A coarser grid implies less variables, hence less
computation.

3. On the coarser grid the error is no longer as
smooth relative to the grid, so relaxation may once
again be efficient.

hh uu −~

79

Grid-refinement algorithm

Define a sequence of progressively finer grids all
covering the full domain. Then,

1. Define and solve the problem on the coarsest grid,
say by relaxation.

2. Interpolate the solution to the next-finer grid.
Apply several iterations of relaxation.

3. Interpolate the solution to the next-finer grid and
continue in the same manner…

Does this method converge fast?

80

1D Model Problem Revisited

Fine-grid (h) difference equation:

The eigenvectors of Lh (like those of the Jacobi
relaxation operation) are Sine-function “waves”:

1 1
2

0 0

1

2 ,

1, 1,

,

.

h h h
h h hi i i

i

h

h
N

u u uL u f
h

i N

u u

u u

+ −− +
= =

= −

=

=

(sin / , sin / , sin(1) /)k Tk N jk n N k Nπ π π= −v

(6)

(7)

81

Aliasing

82

Smooth waves—with k << N—have wavelengths large
compared to h. Hence they can be approximated well
on the coarse grids. But non-smooth eigenvectors alias
with smooth components on the coarse grids.

Since the right-hand side, f h, will generally have some
non-smooth components, these will be “interpreted” as
smooth components by the coarse grids, resulting in a
smooth error.

Hence, when we interpolate a coarse-grid solution to
the fine grid, we still have smooth errors in this
solution. These cannot be corrected efficiently by
relaxation.

83

Errors:

There is an important distinction here between the
discretization error:

and the algebraic error:

Where is our current approximation to . hu~

,huu −

,~hh uu −

hu

84

Note: Neither the solution, uh, nor the discretization
error are smoothed by relaxation, only the algebraic
error. Hence, we formulate our problem in terms of
this error.

Denote

Recall

Subtract from both sides, and use the linearity
of Lh to obtain:

.~hhh uuv −=

.hhh fuL =

hhuL ~

hhhhhh ruLfvL ≡−= ~ (8)

85

As we have seen, we need to smooth the error vh on the
fine grid first, and only then solve the coarse-grid
problem. Hence, we need two types of integrid
transfer operations:

1. A Restriction (fine-to-coarse) operator:

2. A Prolongation (coarse-to-fine) operator:

For restriction we can often use simple injection, but
full-weighted transfers are preferable.

For prolongation linear interpolation (bi-linear in 2D) is
simple and usually effective.

.H
hI

.h
HI

86

Two-grid Algorithm

• Relax several times on grid h, obtaining with a
smooth corresponding error.

• Calculate the residual:

• Solve approximate error-equation on the coarse
grid:

• Interpolate and add correction:

• Relax again on grid h.

Multi-grid is obtained by recursion.

hu~

.~hhhh uLfr −=

.hH
h

HHH rIfvL ≡=

.~~ Hh
H

hh vIuu +←

87

Multi-grid Cycle

Let approximate , approximate the error on
grid 2h, etc.

()

()

()

timesonRelax
Correct

timesonRelax
Correct

timesonRelax
Correct

Solve

Set
timesonRelax

Set
timesonRelax

Set
timesonRelax

2

2
2

2
222

42
4

22
2

444

84
8

44

84448
4

8
1

444

42224
2

4
1

222

222
1

0,

0,

0,

vfuL
uIuu

vfuL
uIuu

vfuL
uIuu

fuL

uuLfIf
vfuL

uuLfIf
vfuL
uuLfIf

vfuL

hhh

hh
h

hh

hhh

hh
h

hh

hhh

hh
h

hh

MhMhMh

hhhhh
h

h

hhh

hhhhh
h

h

hhh

hhhhh
h

h

hhh

=

+←

=

+←

=

+←

=−

=−=

=

=−=

=

=−=

=

()21,ννV
hu2 hv2 hu4

88

89

Multigrid vs. Relaxation

90

Remarks:

1. Simple recursion yields a V cycle. More generally,
we can choose a cycle index γ, and define a γ–cycle
recursively as follows: Relax; transfer to next
coarser grid; perform γ γ–cycles; interpolate and
correct; Relax. (On the coarsest grid define the γ–
cycle as an exact solution).

2. The best number of pre-relaxation + post-
relaxation sweeps is normally 2 or 3.

3. The boundary conditions for all coarse-grid
problems is zero (because the coarse-grid variable
is the error). The initial guess for the coarse-grid
solution must be zero.

91

Algebrization of Multigrid

There are many problems for which multigrid is suitable
in principle but cannot be applied in a straightforward
way. For example,

1. Unstructured grids and complex geometries

2. Non-PDE applications

Such situations require algebraic multigrid methods.

The multigrid components can be expressed as matrices.
Consider, for example, the 1D model problem using
linear interpolation and full-weighted residual transfers.

92

()

==

−
−

−

−
−

−

=

1
2
11

2
11

11
2
11

2
1

2
12

21
121

121

121
121

12

1
2

TH
h

h
H

h

II

h
L

93

Given the fine-grid matrix, Lh, and the
prolongation and restriction matrices, , and ,
how should we define the coarse-grid matrix, LH ?

The coarse grid should be able to correct smooth
errors. We use the following (algebraic)
definition of smoothness: An error is
smooth if it is in the range of interpolation. That
is, if there exists some coarse-grid function, ,
such that

h
HI

h
beforev

Hw

.Hh
H

h
before wIv =

H
hI

94

The error after the coarse-grid correction is
given by

where

Plugging in our smooth error we obtain:

h
before

hh
after vCv =

() .1 hH
h

Hh
H

hh LILIIC −
−=

95

()[]

()[]

()[] .1

1

1

Hh
H

hH
h

HHh
H

Hh
H

hH
h

Hh
H

h
H

Hh
H

hH
h

Hh
H

h

h
before

hh
after

wILILII

wILILII

wILILII

vCv

−

−

−

−=

−=

−=

=

In order to annihilate the error we must choose the
Petrov-Galerkin coarse-grid operator:

.h
H

hH
h

H ILIL =

96

For symmetric problems especially, the preferred choice
for the restriction is the transpose of the prolongation.
Along with the Galerkin coarse-grid operator this yields
so-called variational coarsening, which arises naturally in
finite-element formulations.

It remains only to define the prolongation (and,
implicitly, the set of variables which defines the coarse
grid). The prolongation operator should produce good
approximate fine-grid values from given coarse-grid
values. Therefore, needs to be determined using Lh
When used with appropriate coarse grids, such methods
yield fast and robust algebraic solvers.

h
HI

97

For tridiagonal matrices in 1D the different algebraic
methods become the same: an exact multigrid solver
that is equivalent to cyclic reduction

If the fine-grid equations are

I = 1,…, n – 1, with , we choose the
prolongation matrix to be

,11 iiiiiii fucubua =++ +−

011 ≡= −nca

98

1

1

3 3

3 3

5

5

5

5

3 3

3 3

1

1

1

1

...

1

1

n

n

n n

n n

n

n

c
b

a c
b b

a
b

h
H

c
b

a c
b b

a
b

I
−

−

− −

− −

−

−

 −

 − −

 −

=

−

 − −

−

99

Furthermore, we let and employ Galerkin
coarsening. For smoothing we use half-Red-Black
relaxation. That is, before restricting residuals we
relax only on odd-indexed gridpoints, and after the
coarse-grid correction only on even-indexed points.

Theorem: the two-level cycle is an exact solver.
Furthermore, the coarse-grid equations are
tridiagonal. Hence, the multigrid cycle is an exact
solver.

()Th
H

H
h II =

100

Algebraic Multigrid (AMG)

Introduced by Brandt et al. (1983) and developed by Ruge
and Stueben.

AMG takes the algebrization of multigrid to the limit.
Here, a relaxation method is chosen (usually, point Gauss-
Seidel), and then the coarse-grid variables are chosen by
a heuristic graph algorithm such that each fine-grid
variable depends strongly on one or more coarse-grid
variable (i.e., with relatively large coefficient).

AMG enables us to handle unstructured and non-PDE
problems.

101

An Abstract View of Algeraic Multigrid Methods

Consider the linear system

Suppose we partition the variables, ui , into F variables
and C variables, and permute the equations and variables
to produce the following partitioning of the system:

.Au f=

.FF FC F F

CF CC C C

A A u f
Au

A A u f

= =

102

An Abstract View of AMG

Given an approximate solution, , define the error as

Then, the partitioned equation for the error is

where

.v u u= −

,FF FC F F

CF CC C C

A A v r
Av

A A v r

= =

u

,

.

F F FF F FC C

C C CF F CC C

r f A u A u
r f A u A u

= − −

= − −

103

The upper block yields

Plugging this into the lower block yields

()1

,

.
FF F F FC C

F FF F FC C

A v r A v

v A r A v−

= −

⇒ = −

()
()

1

1 1

,

.
CF FF F FC C CC C C

CC CF FF FC C C CF FF F

A A r A v A v r

A A A A v r A A r

−

− −

− + =

⇒ − = −

An Abstract View of AMG

104

Conclusion: the “ideal” prolongation and restriction are

with the coarse-grid operator given by

()
1

1, ,FF FC
CF FF

A A
P R A A I

I

−
− −

= = −

1 .C CC CF FF FCA RAP A A A A−= = −

An Abstract View of AMG

105

In particular, it is straightforward to verify that the two-
level solution is exact in this case, provided that either a
pre-relaxation or a post-relaxation eliminates rF .

(If this is done by post-relaxation, only uF should be
relaxed.)

The problem: AFF
-1 is not sparse, and therefore, neither are

P and R. Therefore, we generally look for good sparse
approximations.

One exception is tri-diagonal systems, where AFF is diagonal.
In this case the multigrid V-cycle with the appropriate
prolongation and restriction, and with relaxation only on uF
is an exact solver, equivalent to total reduction.

An Abstract View of AMG

	A Multigrid Tutorial
	Slide Number 2
	What’s it about?
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105

