Strain hardening simulations within the Parallel Dislocation Simulator (ParaDiS) require integrating stiff systems of ordinary differential equations in time with expensive force calculations, discontinuous topological events and rapidly changing problem size. To reduce simulation run times we are incorporating new nonlinear solvers and higher order implicit integrators from the Suite of Nonlinear and Differential / Algebraic Equation Solvers (SUNDIALS). We compare performance of fixed point, Anderson accelerated fixed point, and Newton’s methods for parallel simulations looking at efficiency and algorithmic robustness. Preliminary results show significant speedup using the acceleration methods.
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.