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We are interested on asymptotically optimal—O(N)—complexity solvers for ap-
proximating the solution of elliptic partial differential equations (PDEs), where
N is the number of unknowns. Multigrid is such a solver. In practice how-
ever, multigrid performs best for low-order uniform discretizations with smooth
coefficients.

Our goal is to develop a parallel geometric multigrid for solving systems arising
from higher-order discretizations of variable-coefficient elliptic partial differen-
tial equations on arbitrary geometries using highly adapted meshes. High-order
discretizations offer several advantages. According to standard isoparametric
polynomial approximation theory, by using a finite element basis of at least de-
gree p, we can achieve very fast O(N−(p+1)) convergence for sufficiently smooth
problems while improving the locality and thus the CPU efficiency of the cal-
culations.

Our method is designed for meshes that are built from an unstructured hex-
ahedral macro mesh, in which each macro element is adaptively refined as an
octree. This forest-of-octrees approach enables us to generate meshes for com-
plex geometries with arbitrary levels of local refinement. We use geometric
multigrid (GMG) for each of the octrees and algebraic multigrid (AMG) as the
coarse grid solver. We designed our GMG sweeps to entirely avoid collectives,
thus minimizing communication cost. Recently, we presented weak and strong
scaling results for the 3D variable-coefficient Poisson problem using linear dis-
cretization that demonstrate high parallel scalability. Here we explore various
approaches for extending our geometric multigrid solver to support higher-order
discretizations.

For higher-order finite-element discretizations, the following approaches are
commonly used,
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Schwarz-based methods This is the most common approach for solving sys-
tems arising from higher-order discretizations, which consists of local block
solves and a coarse-grid solve. The main challenge with these approaches is
they require solving dense local blocks with direct methods. Additionally,
the coarse-grid solve can become fairly expensive and is not straightfor-
ward to achieve good parallel scalability.

p-multigrid These methods are a direct extension of multigrid concepts to
higher-order discretization. The usual approach has been to use coarse
grids based on lower-order polynomials. Starting from a fine grid with
order-p polynomial basis, the coarser grids correspond to polynomials of
order p/2, p/4, . . . , 1, followed by geometric coarsening of the p = 1 grid.
The main shortcoming of this approach has been the dependence of the
convergence factor on the order of the polynomial basis.

precondition using lower-order operator This approach preconditions the
higher-order operator using a lower-order operator obtained by overlaying
the higher-order nodes with a lower-order (typically linear) finite element
mesh. Multigrid is used to solve the lower-order operator. Although this
approach is nearly independent of p, and is relatively straightforward to
parallelize, it is not work optimal and the convergence factors are lower
than multigrid applied directly to the higher-order operator.

direct Directly apply multigrid to iteratively solve the linear systems that re-
sult from the higher-order discretizations. This approach is more difficult
to implement and the cost per iteration increases. However, our prelimi-
nary results suggest that such an approach is the most general.

In summary, the overall theme of existing work appears to use low-order ap-
proximations as preconditioners. The advantages of doing this are mainly in the
simplicity of the approach and the availability of parallel multigrid solvers capa-
ble of solving such lower-order operators. The sparsity of the lower-order opera-
tors also permits the use of AMG for solving the lower-order operators, possibly
obtained via discretizations on unstructured meshes. Although there are exam-
ples of using Algebraic Multigrid directly on operators resulting from higher-
order discretizations, limited work has been done on using geometric multigrid
with higher-order discretizations. To the best of our knowledge, no prior work
on using geometric multigrid for solving systems arising from higher-order dis-
cretizations on arbitrary geometries using highly adapted meshes. In this work,
we develop geometric multigrid methods to support higher-order discretizations
(1 ≤ p ≤ 8) and compare compare against preconditioning using the co-located
linear operator. We evaluate using variable-coefficient Poisson problems on 2D
and 3D domains. We demonstrate that by using appropriate inter-grid transfer
operators and smoothers, mesh-independent convergence is possible (1 ≤ p ≤ 8)
for the direct approach. For the direct approach, best results are obtained using
the symmetric successive over-relaxation (SSOR) smoother. We conclude with
thoughts on the parallelization of the proposed approach.
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