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We are interested in simulating high concentration suspensions of deformable
capsules suspended in a Stokesian fluid. Such capsules are typically modeled
as infinitesimally thin membranes filled with a viscous fluid. In particular, we
are interested in a specific type of capsule known as a wvesicle. Vesicles are
closed inextensible lipid membranes containing a viscous fluid. The membrane
mechanics are characterized by bending resistance (derived by a Helfrich energy,
or a minimization of the L? norm of the mean curvature), zero resistance to
shear, and inextensibility (infinite resistance to elongation). Although we focus
on vesicles, the resulting methodologies should be applicable in a broad range
of phenomena in complex fluids and suspensions.

Vesicle evolution dynamics are given by a quasi-static Stokes equation driven
by interface jump conditions derived by a balance of forces on the membrane.
Given the position of the vesicles, the jump conditions can be evaluated, a
Stokes problem with interface conditions can be solved, and the velocity at the
interface advances the vesicle to its new location. We use a boundary integral
formulation that results in a system of non-linear integro-differential equations
for the vesicles’s position and an auxiliary field that is a “tension” (it acts
as a Lagrange multiplier to enforce the inextensibility constraint). Below we
summarize the main equations.

Consider a single vesicle v € R? parameterized by the periodic function x. The
equations governing the motion of the vesicle are
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where o is the tension and S[f](x) = fv G(x — y)f(y)dsy, where G(x) =
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471“ (f log |x| + xx‘}‘%"), is the single-layer potential for Stokes flow. We intro-

duce the operators B (bending), 7 (tension), and D (divergence) so that the



governing equations are

dx dx

Discretizing in time and linearizing, the vesicle position and tension are updated
by solving
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This system is solved with a matrix-free fast-multipole accelerated GMRES for
the new position and tension. However, the number of iterations depends on IV
since the system is ill-conditioned. This motivates the use of multigrid. In this
talk we present the overall scheme and preliminary results that demonstrate the
effectiveness of the proposed scheme.

As a first step, we are looking for efficient solvers for the Schur complement
of the tension, £ := DST. L must be inverted for explicit schemes or it can
be used to form block preconditioners for implicit schemes when solving (1).
Standard smoothers applied to integral operators such as L generally reduce
low frequencies in the error. We propose using GMRES applied to the high
frequency components as a smoother. In more detail, the smoother for Lo = b
is oVt = PoN + oy, where oy solves (I — P)Loy = (I — P)b— (I — P)LPa™,
and P is the projection onto the low frequency space.

We use a V-cycle multigrid solver for £ and report results in Table 1. We see
that only a few GMRES iterations are required to apply the smoother. We set
the GMRES tolerance of the smoother to 10~%, the coarsest level to N = 8,
and stop the solver when the relative error is less than 1078, We are currently
experimenting with using multigrid to precondition a GMRES solver for L.

N p nV ~ GMRES

16 0.138 10 2
32 0365 19 4
64 0.448 23 8
128 0.573 35 13

Table 1: N is the problem size, p is the average convergence rate, nV is the
number of V-cycles, and GMRES is the number of GMRES iterations required
by the smoother at the finest level.



