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Finite differences are well-established numerical methods for solving differential
equations, but they were limited to structured meshes. The generalized finite
differences (GFDs) extend the classical finite differences to unstructured meshes
with high-order accuracy. In this paper, we propose a GFD method for elliptic
PDEs, and tightly integrate it with a multigrid solver. We refer to this integrated
approach as multigrid GFD. Specifically, our method discretizes the PDE and
the boundary conditions using GFD to obtain a sparse linear system

Au =b, (1)

where A is in general asymmetric and may be singular for PDEs with Neumann
or periodic boundary conditions. We solve the resulting linear system using a
hybrid geometrict+algebraic method, or HyGA. The core of HyGA is a geomet-
ric multigrid method, which rediscretizes the PDE using GFD over a series of
hierarchical meshes, combined with an algebraic multigrid at the coarsest level.

We develop GFD methods based on a weighted least squares (WLS) formulation
locally over a weighted stencil at each point, which generalizes the classical
interpolation-based finite differences. We have shown recently that the WLS can
deliver the same order of accuracy as the interpolation-based approximations,
while delivering superior stability, flexibility, and robustness for multivariate
approximations over irregular unstructured meshes. The GFD method for PDEs
is formulated as follows. Consider a general form of linear, time-independent
partial differential equations

Pu(x) = f(z) (2)

with some Dirichlet or Neumman boundary conditions, where P is a linear
differential operator (such as the Laplacian operator) and x € R for d > 1.
Let ¥(x) = {¢;(x)} denote the set of Dirac delta functions at the vertices of a
mesh. We obtain a linear equation for each v; as
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and then the boundary conditions may modify the linear system. We then intro-
duce a set of basis functions ®(x) = {¢;(x)} to approximate Pu as P u(xg) =
uTP ®(xy) ~ uld, where d is obtained from weighted least squares over the
stencil around point xg. Suppose ® and ¥ are both stored in column vectors.
Then in (1)

A= / U(z) (P(x))" dx (4)
Q
and b= [, V(x)f(z)dx.

To construct the geometric multigrid GFD, which is the core of our multigrid
GFD approach, we derive the restriction and prolongation operators rigorously
for hierarchical meshes. Specifically, let ®*) denote the set of basis functions
on the kth finest mesh, and let ¥(*) denote the Dirac delta functions on the kth
finest mesh. Let A) denote the coefficient matrix at the kth level, i.e.,

Ak = / T () (Pq><k>(m))T da.
Q

In a two-level setting, let REI,l 2 denote a restriction matriz of the functional

space such that ®?) = R,(;’?)(I’(l), where R$’2) € R™*™ with ng = [®F)].
Similarly, U(?) = REI,LQ)\II(U for REI,LQ) € R™2*"1 We show that the restriction
matrix R and the prolongation matrix P in a two-grid method are

T
R=Ry? and P= (Ry?) (5)

so that A® = RAMP. In other words, R corresponds to an ng X n; permu-
tation matrix (i.e., an injection operator) that selects the entries in the residual
vector corresponding to the coarse-level nodes in the fine-level mesh. P is the
transpose of of the restriction operator from the basis functions ®) to ), and
it would correspond to the interpolation of nodal values if ®*) were composed
of Lagrange basis functions. Applying these operators to adjacent grids in a
multilevel method, we then obtain a geometric multigrid for GFD, where the
coefficient matrices at all levels are obtained directly from GFD discretizations
without performing sparse matrix-matrix multiplications. By coupling this ge-
ometric multigrid with algebraic multigrid at the coarsest level, our proposed
HyGA method then combines the rigor, high accuracy and runtime-and-memory
efficiency of geometric multigrid with the flexibility of algebraic multigrid, and
at the same time it is relatively easy to implement.

In this work, we also investigate the convergence properties of the multigrid
solver for the GFDs of elliptic PDEs. We show the multigrid solver may fail to
converge for high-order GFD discretizations when using Jacobi or Gauss-Seidel
iterations as smoothers. To overcome this issue, we propose new weighting
schemes for WLS to improve the diagonal dominance of the linear system from



the GFD, and also adopt a damped Gauss-Seidel iteration to enable more robust
convergence of multigrid methods. We present the derivations and the numerical
experimentations of our method for a number of test problems with various
boundary conditions.



