
Pieter Ghysels
Increasing the Arithmetic Intensity of Multigrid on

Many-Core Chips

Middelheimcampus M G 320b
Middelheimlaan 1
2020 Antwerpen

pieter.ghysels@ua.ac.be

Wim I. Vanroose

The basic building blocks of a classic multigrid algorithm, which are essentially
stencil computations, all have a low ratio of executed floating point operations
per byte fetched from memory. This important ratio can be identified as the
arithmetic intensity. According to the roofline model [1], applications with
a low arithmetic intensity are typically bounded by memory traffic, whereas
applications with higher arithmetic intensity are bounded by the floating point
unit throughput. It is well known that many bandwidth limited algorithms
typically perform at a small percentage of the theoretical peak performance of
the underlying hardware.

In this work we look at changes to both the multigrid algorithm and its imple-
mentation in order to increase the arithmetic intensity.

We present a theoretical model for the cost of a multigrid cycle (V-cycle or
full multigrid) that includes the cost of communication, based on the roofline
model. Our multigrid model predicts performance benefits for code optimiza-
tion strategies such as: fusion of operations, tiling, parallelization, vectorization
(SIMDization) and cache prefetching. The multigrid convergence rate is taken
into account in the model for different smoothers, different coarsening and in-
terpolation strategies, different cycles and different coarsest grid solvers.

Our theoretical model is validated using numerical experiments on modern multi
and many-core hardware. Instead of resorting to manual and tedious low level
code optimizations, we piggyback on recent compiler improvements, such as
stencil compilers, automatic parallelizers and automatic loop transformers for
cache locality optimization [2,3]. An important observation is that the under-
lying hardware can only be used efficiently when the number of consecutive
smoothing steps is large enough. In that case, the arithmetic intensity can
be increased sufficiently such that SIMD vector units can be kept busy and
the extra smoothing steps pay off in the overall performance of the algorithm.
It is thus important to look for algorithmic changes that can put these extra
smoothing steps to effective use.

[1] Williams S, Waterman A and Patterson DA. Roofline: an insightful Visual

1



Performance model for multicore architectures. Communications of the ACM
2009; 52(4):6576

[2] Christen M, Schenk O, and Burkhart H. Patus: A code generation and
autotuning framework for parallel iterative stencil computations on modern mi-
croarchitectures. In Parallel & Distributed Processing Symposium (IPDPS),
2011 IEEE International, pages 676687. IEEE, 2011.

[3] Bondhugula U, Baskaran M, Krishnamoorthy S, Ramanujam J, Rountev A,
and Sadayappan P. Automatic Transformations for Communication-Minimized
Parallelization and Locality Optimization in the Polyhedral Model. Interna-
tional Conference on Compiler Construction (ETAPS CC), Apr 2008, Budapest,
Hungary.

2


