Next: About this document ...
Up: lagor093585
Previous: lagor093585
-
- 1
-
H. Calandra, J. Langou, S. Gratton, X. Pinel, and X. Vasseur.
Flexible variants of block restarted GMRES methods with application
to geophysics.
Technical Report TR/PA/11/14, CERFACS, Toulouse, France, 2011.
- 2
-
T. A. Davis and Y. Hu.
The University of Florida sparse matrix collection.
ACM Trans. Math. Softw., 38:1:1-1:25, 2011.
- 3
-
J. v. Eshof and G. L. G. Sleijpen.
Inexact Krylov subspace methods for linear systems.
SIAM J. Matrix Anal. Appl., 26:125-153, January 2005.
- 4
-
L. Giraud, S. Gratton, and J. Langou.
Convergence in backward error of relaxed GMRES.
SIAM J. Sci. Comput., 29:710-728, March 2007.
- 5
-
M. H. Gutknecht.
Block Krylov space methods for linear systems with multiple
right-hand sides: An introduction.
Modern Mathematical Models, Methods and Algorithms for Real
World Systems, page 420–447, 2007.
- 6
-
M. Robbé and M. Sadkane.
Exact and inexact breakdowns in the block GMRES method.
Linear Algebra and its Applications, 419(1):265–285, 2006.
- 7
-
Y. Saad and M. H. Schultz.
GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems.
SIAM J. Scientific and Statistical Computing, 7(3):856–869,
1986.
- 8
-
V. Simoncini and D. B. Szyld.
Theory of inexact Krylov subspace methods and applications to
scientific computing.
SIAM J. Sci. Comput., 25:454-477, February 2003.
- 9
-
B. Vital.
Étude de Quelques Méthodes de Résolution de Problèmes
Linéaires de Grande Taille Sur Multiprocesseur.
PhD thesis, Université de Rennes,, November 1990.
root
2012-02-20