next up previous
Next: About this document ... Up: lagor093585 Previous: lagor093585

Bibliography

1
H. Calandra, J. Langou, S. Gratton, X. Pinel, and X. Vasseur.
Flexible variants of block restarted GMRES methods with application to geophysics.
Technical Report TR/PA/11/14, CERFACS, Toulouse, France, 2011.

2
T. A. Davis and Y. Hu.
The University of Florida sparse matrix collection.
ACM Trans. Math. Softw., 38:1:1-1:25, 2011.

3
J. v. Eshof and G. L. G. Sleijpen.
Inexact Krylov subspace methods for linear systems.
SIAM J. Matrix Anal. Appl., 26:125-153, January 2005.

4
L. Giraud, S. Gratton, and J. Langou.
Convergence in backward error of relaxed GMRES.
SIAM J. Sci. Comput., 29:710-728, March 2007.

5
M. H. Gutknecht.
Block Krylov space methods for linear systems with multiple right-hand sides: An introduction.
Modern Mathematical Models, Methods and Algorithms for Real World Systems, page 420–447, 2007.

6
M. Robbé and M. Sadkane.
Exact and inexact breakdowns in the block GMRES method.
Linear Algebra and its Applications, 419(1):265–285, 2006.

7
Y. Saad and M. H. Schultz.
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems.
SIAM J. Scientific and Statistical Computing, 7(3):856–869, 1986.

8
V. Simoncini and D. B. Szyld.
Theory of inexact Krylov subspace methods and applications to scientific computing.
SIAM J. Sci. Comput., 25:454-477, February 2003.

9
B. Vital.
Étude de Quelques Méthodes de Résolution de Problèmes Linéaires de Grande Taille Sur Multiprocesseur.
PhD thesis, Université de Rennes,, November 1990.



root 2012-02-20