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Abstract. Solving problems regarding the optimal control of partial differential equations
(PDEs) – also known as PDE-constrained optimization – is a frontier area of numerical analysis.
Of particular interest is the problem of flow control, where one would like to effect some desired
flow by exerting, for example, an external force. The bottleneck in many current algorithms is the
solution of the optimality system – a system of equations in saddle point form that is usually very
large and ill-conditioned. In this paper we describe a block-diagonal preconditioner for the minimal
residual method which can be applied to such problems where the PDEs are the Stokes equations.
We consider only distributed control here, although other problems – for example boundary control
– can be treated in the same way. We give numerical results, and compare these with those obtained
by solving the equivalent forward problem using similar techniques.

1. Introduction. Suppose that we have a flow that satisfies the Stokes equations
in some domain Ω with some given boundary condition, and that we have some
mechanism – for example, the application of a magnetic field – to change the forcing

term on the right hand side of the PDE. Let ~̂v and p̂ be given functions which are
called the ‘desired states’. Then the question is how do we choose the right hand side

vector such that the velocity ~v and pressure p are as close as possible to ~̂v and p̂, in
some sense, while still satisfying the Stokes equations.

One way of formulating this problem is by minimizing a cost functional of tracking-
type with the Stokes equations as a constraint, as follows:

min
v,p,u

1

2
‖~v − ~̂v‖2

L2(Ω) +
1

2
‖p− p̂‖2

L2(Ω) +
β

2
‖~u‖2

L2(Ω) (1.1)

s.t.−∇2~v + ∇p = ~u in Ω

∇ · ~v = 0 in Ω,

~v = ~w on ∂Ω.

Here ~u denotes the forcing term on the right hand side, which is known as the control.
In order for the problem to be well-posed we also include the control in the cost
functional, together with a Tikhonov regularization parameter β, which is usually
chosen a priori.

There are two methods with which one can discretize this problem – we can either
discretize the equations first and then optimize that system, or alternatively carry
out the optimization first and then discretize the resulting optimality system. Since
the Stokes equations are self-adjoint we will get the same discrete optimality system
either way, provided the discretization methods are consistent between equations in
the optimize-then-discretize technique. We will therefore only consider the discretize-
then-optimize approach here.

Let {~φj}, j = 1, . . . , nv+n∂ and {ψk}, k = 1, . . . , np be sets of finite element basis
functions that form a stable discretization for the Stokes equations – see, for example,
[5, Chapter 5] for further details – and define ~vh =

∑nv+n∂

i=1 Vi
~φi and ph =

∑np

i=1 be
finite-dimensional approximations to ~v and p. Furthermore, let us also approximate
the control from the velocity space, so ~uh =

∑nv

i=1 Ui
~φi. The discrete Stokes equation
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is of the form
[
K BT

B 0

] [
v

p

]
= Q~vu +

[
f

g

]
,

where v, p and u are the coefficient vectors in the expansions of ~vh, ph and ~uh

respectively, K = [
∫
Ω
∇~φi : ∇~φj ], B = [−

∫
Ω
ψk∇ · ~φj ], Q~v = [

∫
Ω
~φi · ~φj ], f =

[−∑nu+n∂

j=nu+1 Uj

∫
Ω
∇~φi : ∇~φj ] and g = [

∑nu+n∂

j=nu+1 Uj

∫
Ω
ψi∇ · ~φj ].

On discretizing, the cost functional becomes

min
1

2
vTQ~vv − vTb +

1

2
pTQpp − pT d +

β

2
uTQ~vu

where Qp = [
∫
Ω
ψiψj ], b = [

∫
Ω
~̂v~φi] and d = [

∫
Ω
p̂ψi].

Let us introduce two vectors of Lagrange multipliers, λ and µ. Then minimizing
the Lagrangian function gives the discrete optimality system of the form




Q~v 0 0 K BT

0 Qp 0 B 0
0 0 βQ~v −QT

~v 0
K BT −Q~v 0 0
B 0 0 0 0







v

p

u

λ

µ




=




b

d

0

f

g



. (1.2)

It will be useful to relabel this system so that it becomes




Q 0 K
0 βQ~v −Q̂T

K −Q̂ 0







y

u

ξ


 =




c

0

h


 , (1.3)

where Q = blkdiag(Q~v, Qp), K =

[
K BT

B 0

]
, Q̂ = [Q~v 0]T and the vectors y, ξ, c

and h take their obvious definitions. For more detail on the practicalities of discretiz-
ing control problems of this type, see Rees, Stoll and Wathen [13]. Finding an efficient
method to solve this system will be the topic of the remainder of the paper.

The matrix in (1.3) is of saddle point form, that is

A =

[
A CT

C 0

]
,

where A = blkdiag(Q, βQ~v) and C = [K − Q̂]. The matrix A is, in general, very
large – just one component of it is the discrete Stokes equations – yet is sparse. A
good choice for solving such systems are iterative methods – in particular Krylov
subspace methods. It is well known that matrices of the form A are indefinite, and
the method of choice for such systems is the minimal residual method (MINRES) of
Paige and Saunders [10].

For MINRES to be efficient for such a matrix we need to combine the method
with a good preconditioner – i.e. a matrix P which is cheap to invert and which
clusters the eigenvalues of P−1A. One method that is often used is to look for a block
diagonal preconditioner of the form

P =

[
A0 0
0 S0

]
.
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It is well known (see, for example, [5, Theorem 6.6]) that if A, A0, CA
−1CT and

S0 are positive definite matrices such that there exist constants δ, ∆, φ and Φ such
that the generalized Rayleigh quotients satisfy

δ ≤ xTAx

xTA0x
≤ ∆, φ ≤ yTCA−1CTy

yTS0y
≤ Φ

for all vectors x ∈ R
2nv+np and y ∈ R

nv+np , x, y 6= 0, then the eigenvalues λ of
P−1A are real, and satisfy

δ −
√
δ2 + 4∆Φ

2
≤ λ ≤ ∆ −

√
∆2 + 4φδ

2
,

δ ≤ λ ≤ ∆,

or
δ +

√
δ2 + 4δφ

2
≤ λ ≤ ∆ +

√
∆2 + 4Φ∆

2
.

Therefore, if we can find matrices A0 and S0 that are cheap to invert and are
good approximations to A and the Schur complement CA−1CT in the sense defined
above, then we will have a good preconditioner, since the eigenvalues of P−1A will
be in three distinct clusters bounded away from 0. In the ideal case where A0 = A
and S0 = CA−1CT we have δ = ∆ = φ = Φ = 1. Then the preconditioned system

will have precisely three eigenvalues, 1, 1+
√

5
2 and 1−

√

5
2 , so MINRES would converge

in three iterations [9].

2. Choosing A0. Suppose, for simplicity, that our domain Ω ⊂ R
2. If, as is

usual, we use the same element space for all components in the velocity vector, and
this has basis {φi}. Then Q~v = blkdiag(Qv, Qv), where Qv = [

∫
Ω
φiφj ]. Then the

matrix A is just a block diagonal matrix composed of the mass matrices in the bases
{φi} or {ψi}. Wathen [16] showed that for a general mass matrix, Q, if D := diag(Q),
then it is possible to calculate constants ξ and Ξ such that

ξ ≤ λ(D−1Q) ≤ Ξ.

The constants depend on the elements used – for example, for Q1 elements ξ =
1/4, Ξ = 9/4 and for Q2 elements ξ = 0.3103, Ξ = 1.5625. The diagonal would
therefore be a good approximation to A.

However, as A is in a sense ‘easy’ to invert, it would help to have as good an
approximation here as we can. Using the bounds described above we have all the
information we need to use the relaxed Jacobi method accelerated by the Chebyshev-
semi iteration. This is a method that is very cheap to use and, as demonstrated by
Wathen and Rees in [17], is particularly effective in this case. In particular, since the
eigenvalues of D−1M are evenly distributed, there is very little difference between
the convergence of this method and the non-linear conjugate gradient method [7]
preconditioned with D. Note that since the conjugate gradient algorithm is non-
linear, we cannot use it as a preconditioner for a stationary Krylov subspace method
such as MINRES, unless run to convergence. The Chebyshev semi-iteration, on the
other hand, is a linear method. Suppose we use it to solve Qx = b for some right
hand side b. Then we can write every iteration as x(m) = T−1

m b, for some matrix Tm

implicitly defined by the method which is independent of b.
By choosing a larger m, Tm gets to be a better approximation to Q. Table I in

Rees and Stoll [12] gives the upper and lower bounds for each m from 1 to 20 for a Q1
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discretization. Therefore, if δv
m ≤ λ

(
(T v

m)−1Qv

)
≤ ∆v

m and δp
m ≤ λ

(
(T p

m)−1Qv

)
≤

∆p
m, then

δm ≤ xTAx

xTA0x
≤ ∆m, (2.1)

where A0 = blkdiag(T v
m, T

v
m, T

p
m, βT

v
m, βT

v
m) and δm = min(δv

m, δ
p
m) and ∆m =

max(∆v
m,∆

p
m), both independent of the mesh size, h. We therefore have an inex-

pensive way to make the bounds on λ(A−1
0 A) as close to unity as needed.

3. Choosing S0. Now consider the Schur complement, S := 1
β
Q̂Q−1

~v Q̂T +

KQ−1K. The dominant term in this sum is, for all but the smallest values of β,
KQ−1K – the term that contains the PDE. Figure 3.1 shows the eigenvalue distribu-
tion for this approximation of S for a relatively coarse Q2 − Q1 discretization with
β = 0.01. As we can see from the figure, this clusters the eigenvalues nicely, and so
we can expect good convergence of MINRES if we used this as S0.

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

Fig. 3.1. Eigenvalues of (KQ−1K)−1S

However, a preconditioner must be easy to invert, and solving a system with
KQ−1K requires two solves with the discrete Stokes matrix, which is not cheap. We
therefore would like some matrix, K̃, such that K̃Q−1K̃ approximates KQ−1K. Note
that the mass matrices are not important here and it is sufficient that K̃K̃T approxi-
mates K2.

Braess and Peisker [2] show that it is not sufficient that K̃ approximates K. Indeed,
for the Stokes equation Silvester and Wathen [14] showed that an ideal preconditioner

is blkdiag(K,Mp), where K is a multigrid cycle, but the eigenvalues of (K̂K̂T )−1K2

are not at all clustered, and the approximation is a poor one in this case. Suppose
we wish to solve the equation Kx = b, for some right hand side vector b. Braess
and Peisker go on to show that if we take an approximation Km which is implicitly
defined by an iteration such that x(m) = K−1

m b, say, which converges to the solution
x in the sense that

‖x(m) − x‖ ≤ ηm‖x‖,

then ηm = ‖K−1
m K − I‖, and one can show

(1 − η)2 ≤ xTK2x

xTKT
mKmx

≤ (1 + η)2.
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Hence, such an approximation is suitable for use in this case.
Note that MINRES cannot be used to approximate K, unless run until conver-

gence, since – like CG – MINRES is a Krylov subspace method, and hence nonlinear.
We would therefore have to use a flexible outer method if we were to make this
approximation. As before, consider a simple iteration of the form

x(m+1) = x(m) +M−1Kr(m),

where r(m) is the residual at the mth step, and with a block lower-triangular splitting
matrix

M :=

[
K0 0
B −Q0

]
,

where K0 approximates K and Q0 approximates Qp, which is itself spectrally equiv-
alent to the Schur complement [5, Section 6.2]. By the result of Braess and Peisker,
we just need to show that this iteration converges – i.e. that ρ(I − M−1K) < 1,
where ρ denotes the spectral radius – to get that this defines a good approximation
to the square. We ignore the one zero eigenvalue of K which is due to the hydrostatic
pressure here, and in what follows, since if we start an iteration orthogonal to this
kernel, we will remain orthogonal to the kernel [5, Section 2.3].

Consider two cases – K−K0 positive definite, and K−K0 indefinite. In the first
case, Theorem 3.1 in Rees and Stoll [12] shows that if K0 and Q0 are positive definite
matrices such that

υ ≤ xTKx

xTK0x
≤ Υ, ψ ≤ yTBK−1BT y

yTQ0y
≤ Ψ,

then λ is real and positive, and moreover satisfies

(1 + ψ)Υ −
√

(1 + ψ)2Υ2 − 4ψΥ

2
≤λ ≤ (1 + Ψ)υ −

√
(1 + Ψ)2υ2 − 4Ψυ

2
υ ≤λ ≤ Υ or

(1 + ψ)υ +
√

(1 + ψ)2υ2 − 4ψυ

2
≤λ ≤ (1 + Ψ)Υ +

√
(1 + Ψ)2Υ2 − 4ΨΥ

2
.

We would like to put some numbers to these bounds in order to see what this
means for a simple iteration based on a splitting with the block lower triangular matrix
above. It is well known that a multigrid iteration is a good approximation to K, and
we can scale such an iteration so that

1 ≤ xTKx

xK0x
≤ 1 + ρm

1 − ρm
,

where m is the number of V-cycles. A realistic value for ρ is 0.15 (see [5, pp. 294-
295]), and experimentation shows m = 2 gives reasonable performance. Using Qp for
the Schur complement approximation we have

γ2 ≤ xTBK−1BT x

xTQpx
≤ Γ2,

x 6= 1, where for 2D Q1 elements, γ2 = 0.2, Γ2 = 1. Approximating this by 10
steps of the Chebyshev semi-iteration will weaken these bounds by a factor of 0.96
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in the lower bound and Θ = 1.04 in the upper. With these numbers, we have that
λ(P−1

BLTA) ∈ [0.19, 1.29], and hence ρ(I − P−1
BLTA) = 0.81 < 1. Therefore a simple

iteration with this splitting will converge.

Although we’ve assumed K − K0 ≥ 0 in the analysis above, experiments show
we still have good convergence properties even if this isn’t true. Extending the result
above to the case where K−K0 is indefinite, it can be shown that the real eigenvalues
of M−1K satisfy

(1 + ψ)Υ −
√

(1 + ψ)2Υ2 − 4ψΥ

2
≤λ ≤ (1 + Ψ)Υ +

√
(1 + Ψ)2Υ2 − 4ΨΥ

2
or υ ≤λ ≤ Υ,

and the complex eigenvalues can be written as λ = reiθ, where r and θ satisfy

√
υψ ≤ r ≤

√
Ψ, − tan−1(

√
υ−1 − 1) ≤ θ ≤ tan−1(

√
υ−1 − 1).

A simple geometrical argument will show that if we define

σ := max

{
1 − υ,Υ − 1, 1 − (1 + ψ)Υ −

√
(1 + ψ)2Υ2 − 4ψΥ

2
,

(1 + Ψ)Υ +
√

(1 + Ψ)2Υ2 − 4ΨΥ

2
− 1,

√
1 + Ψ − 2

√
Ψ cos θ,

√
1 + ψυ − 2

√
ψυ cos θ

}
,

then the simple iteration based on the splitting matrix M will converge if σ < 1,
with the asymptotic convergence rate being σ. Figure 3.2 shows the bounds predicted
above and the actual eigenvalues for a number of approximations to the matrix K.

These show asymptotic convergence, but in practice we see good results from the
first iteration. In fact, experimentation shows that if you want to spend m multigrid
cycles, say, per iteration, then it is most beneficial to use approximate K with all m
cycles, and only do one iteration. Such good convergence may be explained, at least
in the case where K − K0 > 0, by the fact that M−1K is self-adjoint in the inner
product defined by blkdiag(K −K0, Q0) (see, for example, Bramble and Pasciak [1]
for more details). This means that the M−1K is normal, and so convergence, when
measured in the relevant norm, will be monotonic.

We therefore advocate using S0 = MQ−1MT as an approximation to the Schur
complement, where K is a good approximation to K – say four V-cycles – and Q0 is
given by a number of steps of the Chebyshev semi-iteration. A matrix of the form

P :=

[
A0 0
0 MQ−1MT

]
,

where A0 is composed of Chebyshev approximations, should therefore be an effective
preconditioner for the matrix A.
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(a) h = 0.25, K0 given by 1 AMG V-cycle with
1 pre- and 1 post-smoothing step
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(b) h = 0.25, K0 given by 1 AMG V-cycle with
2 pre- and 2 post-smoothing steps
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(c) h = 0.25, K0 given by 2 AMG V-cycles with
2 pre- and 2 post-smoothing steps
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(d) h = 0.125, K0 given by 1 AMG V-cycle
with 1 pre- and 1 post-smoothing step

Fig. 3.2. *’s denote computed eigenvalues. Lines, from left to right, are at 0,
(ψ+1)Υ−

√
(ψ+1)2Υ2

−4ψΥ

2
, υ, Υ and

(Ψ+1)Υ+
√

(Ψ+1)2Υ2
−4ΨΥ

2
. (the last two virtually coincide

here). Dashed region is the bounds for the complex eigenvalues. Also shown is the unit circle
centred at z = 1.

.

4. Numerical Results. First, consider the following forward problem, which
sets the boundary conditions that we will use for the control problem. This is a
classic test problem in fluid dynamics called leaky cavity flow, and a discussion is
given by Elman, Silvester and Wathen [5, Example 5.1.3].

Example 4.1. Let Ω = [0, 1]2, and let i and j denote unit vectors in the direction
of the x and y axis respectively. Let ~v and p satisfy the Stokes equations

−∇2~v + ∇p = ~0 in Ω

∇ · ~v = 0 in Ω,

and let ~v = ~0 on the boundary, except for on x = 1, where ~u = −j.
We discretize this using Q2 − Q1 elements and solve the resulting system using

MINRES. As a preconditioner we use the block diagonal matrix blkdiag(K̂, T20),

following Silvester and Wathen [14], where K̂ denotes one AMG V-cycle (using HSL
MI20 [3] applied via a MATLAB interface) and T−1

20 is twenty steps of the Chebyshev
semi-iteration applied with the pressure mass matrix. The problem was solved using
MATLAB R2009b, and the number of iterations and the time taken for different mesh
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sizes is given in Table 4.1.

h Iterations CPU time (s)

2−2 (187) 19 0.015
2−3 (659) 24 0.073
2−4 (2,467) 26 0.082
2−5 (9,539) 28 0.21
2−6 (37,507) 29 3.80
2−7 (148,739) 29 15.5

Table 4.1

Number of MINRES iterations and time taken to solve the forward problem in Example 4.1

Figure 4.1 shows the streamlines and the pressure of the solution obtained. Note
the small recirculations present in the lower corners – called Moffatt eddies. Adding
a forcing term that reduces these eddies will be the object of our control problem,
Example 4.2.

0
0.5

1

0

0.5

1
−500

0

500

Pressure
Streamlines

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Fig. 4.1. Solution of Example 4.1

Example 4.2. Let Ω = [0, 1]2 and consider an optimal control problem of the
form (1.1), with Dirichlet boundary conditions as given in Example 4.1. Take the

desired pressure as p̂ = 0 and let ~̂v be as in Figure 4.2.
We took the regularization parameter as β = 0.01 – a value regularly used in the

literature [4, 6, 8]. As above, we discretize this using Q2 − Q1 elements – and hence
use Q2 elements for the control – and solve the resulting system using MINRES. As
a preconditioner we use the block diagonal matrix P. We take four AMG V-cycles
(again using HSL MI20) for K0 and we use twenty steps of the Chebyshev semi-
iteration applied in place of a mass matrix. The problem was solved using MATLAB
R2009b, and the number of iterations and the time taken for different mesh sizes is
given in Table 4.1.

Comparing the results in Table 4.2 and Table 4.1, we see that in both cases the
iteration numbers do not increase significantly with the mesh size, and also that the
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Fig. 4.2. The desired velocity, b~v, in Example 4.2

h Iterations CPU time (s)

2−2 (344) 26 0.48
2−3 (1,512) 31 1.05
2−4 (6,344) 33 3.69
2−5 (25,992) 33 18.0
2−6 (105,224) 34 84.2
2−7 (423,432) 34 342

Table 4.2

Number of MINRES iterations and time taken to solve the control problem in Example 4.2

times scale linearly as the problem size increases. The control problem takes longer
to solve, as one might expect, but the number of iterations taken to solve this is only
a handful more than the number required to solve the forward problem. Looking at
the times taken to solve the problems on the same grid it appears that a solve of
the control problem is about 22 times more expensive than a solve of the forward
problem – a overhead that seems reasonable, given the increased complexity of the
control problem.

We have only presented a simple distributed control problem here. It is possible to
solve other types of control problem using the same method – see [11] for a discussion
in the simpler case of Poisson control. It is also possible to use this method together
with bound constraints on the control – Stoll and Wathen [15] discuss this approach
in consideration of the Poisson control problem.

5. Conclusions. In this paper we have presented a preconditioner that can be
used to solve problems in Stokes control. We have given some theoretical justification
for the effectiveness of such a preconditioner and have given some numerical results.
We compared these results with those for solving the equivalent forward problem,
and the iteration count is only marginally higher in the control case, and behaves in
broadly the same way as the iterations taken the solve the forward problem as the
mesh size decreases. This preconditioner therefore seems reasonable for problems of
this type. Furthermore, the ideas presented here have the potential to be extended
to develop preconditioners for a variety of problems, with the additional constraints
and features that real-world applications require.
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