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Abstract. Convergence analysis of two-grids methods based on coarsening by (unsmoothed) aggregation is presented. For
diagonally dominant symmetric (M-)matrices, it is shown that the analysis can be conducted locally; that is, the convergence
factor can be bounded above by computing separately for each aggregate a parameter which in some sense measures its quality.
The procedure is purely algebraic and can be used to control a posteriori the quality of automatic coarsening algorithms.
Assuming the aggregation pattern sufficiently regular, it is further shown that the resulting bound is asymptotically sharp for a
large class of elliptic boundary value problems, including problems with variable and discontinuous coefficients. In particular, the
analysis of typical examples shows that the convergence rate is insensitive to discontinuities under some reasonable assumptions
on the aggregation scheme.
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1. Introduction. We consider multigrid methods [15, 5, 16] for solving large sparse n×n linear systems

Ax = b (1.1)

with symmetric positive definite (SPD) system matrix A. Multigrid methods are based on the recursive use
of a two-grid scheme. A basic two-grid method combines the action of a smoother, often a simple iterative
method, and a coarse grid correction, which corresponds to the solution of the residual equations on a coarser
grid. The convergence depends on the interplay between this two components and, when simple smoothers
are used, it relies essentially on the coarsening ; that is, on the way the fine grid equations are approximated
by the coarse system.

Here we consider coarsening by aggregation. In such schemes, the fine grid unknowns are grouped into
disjoint sets, and each set is associated with a unique coarse grid unknown. Piecewise constant prolongation
is then a common choice, which means that the solution of the residual equation computed on the coarse grid
is transferred back to the fine grid by assigning the value of a given coarse variable to all fine grid variables
associated with it. This makes the coarse grid matrix easy to compute and usually as sparse as the original
fine grid matrix.

Aggregation schemes are not new and trace back to [1, 3]. They did not receive much attention till
recently because of the difficulty to obtain optimal solvers on their basis with V- or W-cycle [14, p.p. 522-
524]. However, in two-grid setting, its application to model constant coefficient discrete PDE problems can
lead to a level-independent convergence [6]. Moreover, the level-dependent convergence in multi-level setting
may be cured by using more sophisticated K-cycles, in which Krylov subspace acceleration is used at each
level [11].

Now, the (Fourier) analysis developed in [6] only addresses constant coefficient problems with artificial
(periodic) boundary conditions. Although there are numerical evidences that aggregation based methods can
be robust in presence of varying or discontinuous coefficients [10], this yet remains to be proved. On the
other hand, it is also lacking an analysis which would not only allow to assess a given aggregation scheme for
a problem at hand, but could also serve as a guideline in the development of aggregation algorithms, in much
the same way the coarsening strategies used in classical AMG methods may be derived from the objective to
keep reasonably bounded some convergence measure of the resulting two-grid scheme [2, 12, 13, 14].

This paper is a short version of [8], where these gaps are filled by developing a convergence analysis which
relates the global convergence to “local” quantities associated with each aggregate. This analysis is based on
a general algebraic result which requires only an appropriate splitting of the system matrix A, and we show
how this splitting can be constructed in a systematic way when the matrix is diagonally dominant. Further,
the needed local quantities are easy to compute solving an eigenvalue problem of the size of the aggregate.
They can also be assessed analytically in a number of cases. This assessment reveals that the convergence
is to a large extent insensitive to variations or discontinuities in PDE coefficients if aggregation satisfy some
reasonable requirements.

Moreover, the bounds deduced in this way can often be shown asymptotically sharp provided that one
assumes a simplified smoothing scheme with only one damped Jacobi pre- or post-smoothing step. Hence, we
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do not only develop a qualitative analysis, but also a quantitative one, complementary to Fourier analysis:
this latter allows to assess the benefit of more smoothing steps or increasing smoother quality, but is restricted
to constant coefficient problems on rectangular grids.

The remainder of this paper is organized as follows. The general framework of aggregation-based two-
grid methods is introduced in Section 2. The algebraic analysis is developed in Section 3, and illustrated in
Sections 4 and 5 on PDE problems with, respectively, continuous and discontinuous coefficients.

2. Aggregation-based two-grid schemes. The coarsening procedure is based on the agglomeration
of the unknowns of the system (1.1) into nc non-empty disjoint sets called aggregates. The size of k-th
aggregate is denoted by n(k) > 0. For the sake of simplicity, we assume that every node belongs to an
aggregate; a more general situation where some nodes remain outside an aggregation procedure is discussed
in [8]. We also assume, without loss of generality, that the ordering of the unknowns is such that those
belonging to (k+1)-th aggregate have higher indices that those belonging to k-th aggregate, k = 1, ..., nc−1.

The aggregates are the variables of the next (coarse) level in the multigrid hierarchy. Once they are
defined, the n× nc prolongation matrix is given by

(P )ij =
{

1 if i belongs to j-th aggregate , j = 1, ..., nc
0 otherwise .

Hence, setting 1m = (1 1 · · · 1)T , with m being the vector size, we have

P =

 1n(1)

. . .
1n(nc)

 . (2.1)

In what follows, we assume a slightly more general form of (2.1)

P =

 p(1)

. . .
p(nc)

 (2.2)

with p(k) being a vector of size n(k). We shall see, however, that for the considered examples the choice
p(k) = 1n(k) is often the best (or even the only reasonable) choice.

Once the prolongation P is known, the nc × n restriction matrix is set to its transpose and the nc × nc
coarse grid matrix is given by the Galerkin formula Ac = PTAP . In order to complete the definition of
a two-grid scheme, one also needs to specify the pre- and post-smoother matrices M1, M2, as well as the
number ν1 and ν2 of pre- and post-smoothing steps, respectively. The iteration matrix ETG of the two-grid
cycle is then given by

ETG = (I −M−1
2 A)ν2(I − PTA−1

c PA)(I −M−1
1 A)ν1 , (2.3)

where I stands for identity matrix. The main objective of this paper is the analysis of its spectral radius
ρ (ETG) (that is, its largest eigenvalue in modulus), which governs the convergence of the two-grid scheme.

It is often convenient to define a “global” smoother X via the relation

I −X−1A = (I −M−1
1 A)ν1(I −M−1

2 A)ν2 . (2.4)

X has the same effect in one iteration as ν2 steps of post-smoothing followed by ν1 steps of pre-smoothing.
In what follows, we assume that X is SPD, which does not necessarily requires the symmetry of M1 and M2.

3. Algebraic analysis. The starting point of our analysis is a notorious identity for the two-grid
convergence rate introduced in [4, Theorem 4.3]. We recall it up to a slight generalization in Theorem 3.1
below. The generalization, that is based on the results in [9], allows for nonsymmetric smoothing scheme,
e.g., ν1 = 1 and ν2 = 0. It is somehow important because the parameter µD for D = diag(A), which is
investigated in the remainder of this paper, appears then directly connected to the convergence factor of a
simplified two-grid scheme with only 1 pre- or post-smoothing step.

Theorem 3.1. Let A be a n× n SPD matrix and let P be a n× nc matrix of rank nc < n. Let M1, ν1
and M2, ν2 be such that X, defined by (2.4), is a n × n SPD matrix and let ETG be the two-grid iteration
matrix defined by (2.3).

Then, setting πX = P (PTXP )−1PTX, we have

ρ(ETG) = max
(
λmax(X−1A)− 1, 1− 1

µX

)
, (3.1)
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where

µX = max
v∈Rn\{0}

vTX(I − πX)v
vTAv

.

Moreover, for any n× n SPD matrix D, setting πD = P (PTDP )−1PTD and

µD = max
v∈Rn\{0}

vTD(I − πD)v
vTAv

, (3.2)

there holds

µX ≤
(

max
v∈Rn\{0}

vTXv
vTDv

)
µD . (3.3)

In particular, if M1 = M2 = ω−1D, ν1 + ν2 = 1 and ω−1 ≥ λmax(D−1A), one has

ρ(ETG) = 1− ω

µD
.

When D is chosen independently of P , the first factor in the right hand side of (3.3) depends only on
the smoothing scheme. If M1 = MT

2 = M and ν1 = ν2, setting S = I −M−1A, one has further

vTXv
vTDv

≤ σ−1 ∀v ∈ Rn\{0} ⇐⇒ ||Sv||2A ≤ ||v||2A − σ||v||AD−1A ∀v ∈ Rn .

Hence, when D = diag(A) (the choice that is privileged in the rest of this work) this quantity is nothing
but the inverse of the smoothing factor in Ruge-Stüben analysis [14]. On the other hand, the second factor
in the right hand side of (3.3) depends on P but not on X, and keeping it bounded amounts to satisfy an
approximation property.

Now, our analysis is based on the splitting of A as

A = Ab +Ar , (3.4)

where Ab and Ar are both symmetric nonnegative definite and Ab is block diagonal:

Ab =

 A(1)

. . .
A(nc)

 , (3.5)

where A(k), k = 1, ..., nc, is of size n(k) × n(k). In what follows, N (A(k)) stands for the (possibly nonempty)
null space of A(k) and R(A(k)) represents its range.

As an example, consider a symmetric diagonally dominant matrix A with positive diagonal entries (in
particular, if all off-diagonal entries are nonpositive, the matrix is an M -matrix). The matrices A(k), k =
1, ..., nc can be constructed by restricting the matrix A to the unknowns belonging to the k-th aggregate and
then by subtracting the corresponding contribution C(k) = diag(ci) from its diagonal, in order to keep

Ar =

 C(1) · · · ∗
...

. . .
...

∗ · · · C(nc)

 (3.6)

diagonally dominant, and, hence, nonnegative definite. Since A is diagonally dominant, the contribution
subtracted from the diagonal of each A(k) can be such that either each row of Ab is weakly diagonally
dominant; that is

(Ab)jj −
n∑

i=1, i 6=j

|(Ab)ij | = 0, j = 1, ..., n ; (3.7)

or such that each row of Ar is weakly diagonally dominant; that is

(Ar)jj −
n∑

i=1, i 6=j

|(Ar)ij | = 0, j = 1, ..., n ; (3.8)
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or something in between.
Once the splitting is known, the following theorem allows to estimate the “global” approximation property

constant µD by means of “local” quantities µ(k)
D , k = 1, ..., nc. Because each µ(k)

D corresponds to a particular
aggregate k, it may be seen as a measure of this aggregate’s quality.

Theorem 3.2. Let A = Ab+Ar be a n×n SPD matrix, with Ab and Ar symmetric nonnegative definite
and Ab having the block-diagonal form (3.5). Let P be a n×nc matrix of rank nc < n and of the form (2.2).
Let

D =

 D(1)

. . .
D(nc)


be a n× n SPD matrix and define µD as in (3.2). Letting

µ
(k)
D =


0 if n(k) = 1

sup
v(k)∈Rn(k)\N (A(k))

v(k) T D(k)(I − π(k)
D )v(k)

v(k) T A(k)v(k)
if n(k) > 1 , (3.9)

where k = 1, ..., nc and π(k)
D = p(k)(p(k) T D(k)p(k))−1 p(k) T D(k) , there holds

µD ≤ max
k=1,...,nc

µ
(k)
D . (3.10)

Moreover, for k = 1, ..., nc, µ
(k)
D <∞ if and only if N (A(k)) ⊂ span

{
p(k)

}
, with, in the latter case,

µ
(k)
D =


0 if n(k) = 1

max
v(k)∈R(A(k))\{0}

v(k) T D(k)(I − π(k)
D )v(k)

v(k) T A(k)v(k)
if n(k) > 1 .

(3.11)

Now, it is clear that the value of µ(k)
D strongly depends on p(k). In the theorem below we further indicate

the scope of variation of the aggregate’s quality if A(k) and D(k) are given, and determine the p(k) that leads
to the best quality.

Theorem 3.3. Let A(k) and D(k) be, respectively, a n(k)×n(k) non-zero symmetric nonnegative definite
matrix and a n(k) × n(k) SPD matrix, with n(k) > 1. Let p(k) be a non-zero vector of size n(k). Let

µ
(k)
D = sup

v∈Rn(k)\N (A(k))

vTD(k)(I − π(k)
D )v

vTA(k)v
, (3.12)

where π
(k)
D = p(k)(p(k) T D(k)p(k))−1 p(k) T D(k) and let λ1 ≤ λ2 ≤ · · · ≤ λn(k) be the eigenvalues of

D(k)−1
A(k). Then,

λ−1
2 ≤ µ(k)

D ≤ λ−1
1 . (3.13)

Moreover, if D(k)−1
A(k)p(k) = λ1 p(k) , then

µ
(k)
D =

1
λ2

, (3.14)

and, assuming µ(k)
D finite,

v ∈ R(A(k)) and vTD(k)(I − π(k)
D )v = µ

(k)
D vTA(k)v ⇐⇒

D(k)−1
A(k)v = λ2v and vTD(k)p(k) = 0 .

By way of illustration, consider a symmetric diagonally dominant M -matrix and assume that the splitting
A = Ab +Ar is based on the rule (3.7). Then, each A(k) is singular with its null space equal to span{1n(k)}.
Theorem 3.2 then shows that one has to use p(k) = 1n(k) to keep µ

(k)
D finite, in which case, by Theorem 3.3,

µ
(k)
D = λ2(D(k)−1

A(k))
−1

.
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4. Discrete PDEs with constant and smoothly varying coefficients.

4.1. Preliminaries. We start considering matrices associated with the 5-point stencil −αy
−αx αd −αx

−αy

 with αx, αy > 0 and αd ≥ 2(αx + αy) (4.1)

on a rectangular grid of arbitrary shape. For such matrices we want to assess boxwise aggregates with four
nodes per aggregate (as on Figure4.1(a)) and linewise aggregates with two, three and four nodes (as on
Figure4.1(b)). We select the splitting A = Ab +Ar satisfying (3.8). The prolongation vector is p(k) = 1n(k) ,
k = 1, ..., nc and, as can be checked from (4.2) and (4.4) below, it is an eigenvector of D(k)−1

A(k) associated
with the smallest eigenvalue δdα

−1
d , where δd = αd − 2(αx + αy) ≥ 0. Theorem 3.3 then implies that

µ
(k)
D = λ2(D(k)−1

A(k))−1 = αdλ2(A(k))−1.
Considering more specifically boxwise aggregates, we have

A(k) =


αx + αy −αx −αy 0
−αx αx + αy 0 −αy
−αy 0 αx + αy −αx

0 −αy −αx αx + αy

+ δd I , (4.2)

and, hence,

µ
(k)
D =

2αx + 2αy + δd
2 min(αx, αy) + δd

, (4.3)

whereas for linewise aggregation of size m in x direction

A(k) =


αx −αx

−αx 2αx
. . .

. . . . . . −αx
−αx αx

+ δd I (4.4)

and, hence, the following formula holds for m = 2, ..., 4 :

µ
(k)
D =

2αx + 2αy + δd

(2−
√
m− 2)αx + δd

. (4.5)

It follows that linewise aggregates of size 4 oriented in the direction of strong coupling become more
attractive than boxwise aggregates whenever max(αx, αy) > (2 +

√
2) min(αx, αy) . Always choosing the best

aggregate shape, we have then

µ
(k)
D ≤ 3 +

√
2 . (4.6)

Since linewise aggregates of size 3 and 2 have better quality than linewise aggregates of size 4, as can be
concluded from (4.5), this upper bound holds for them as well.

(a) (b) (c)

Figure 4.1. Examples of (a) boxwise, (b) linewise and (c) L-shaped aggregation patterns.

5



4.2. Constant coefficients. We now discuss more specifically the five point finite difference approxi-
mation of

∂

∂x

(
αx
∂u

∂x

)
+

∂

∂y

(
αy
∂u

∂y

)
+ βu = f on Ω , (4.7)

with uniform mesh size h in both directions, where the boundary ∂Ω of the domain Ω ∈ R2 is the union of
segments parallel to the x or y axis and connecting the grid nodes. Note that Ω is possibly not convex and
may contain holes.

If the PDE coefficients αx, αy and β are constant, the above results allow to assess aggregate’s quality
for some typical aggregate shapes. It is also easy to extend the reasoning to further aggregation schemes,
leading to bound above (4.6) by a modest constant if either coefficients are isotropic (αx = αy) or if one uses
linewise aggregation along the strong coupling direction. For instance, if αx = αy, (4.5) with m = 3 also
applies to L-shaped aggregates as illustrated on Figure 4.1(c).

Regarding Neumann boundary conditions, only the quality of aggregates that contain boundary nodes
is not covered by the above analysis. Again, however, isotropic coefficients and linewise aggregates aligned
with strong coupling yield bounds similar to (4.3) and (4.5). For instance, if αx = αy and β = 0, boxwise
aggregation near a Neumann boundary result in matrices A(k) and D(k) that have the form analyzed in
Lemma 5.1 below, with α1 = α2 and α3 = α4 = 0 (boundary aligned with grid lines), α2 = α3 = α4 = 0
(resorting corners), or α1 = α2 = α3 and α4 = 0 (re-entering corners). As shown in this lemma, one has then
µ

(k)
D ≤ 2 in the two former cases and µ(k)

D ≤ 2.23 in the latter, compared to µ(k)
D = 2 away from the boundary.

Note that our analysis does not require all aggregates having the same shape, which in fact seldom occurs
with practical aggregation algorithms (see [10] for an example). One should just take care that the global
µD is not larger than desired because of a few irregular aggregates, which in practice can be prevented by
breaking them into smaller pieces.

When the discrete PDE (4.7) has smoothly varying coefficients, it can be shown (see [8] for details)
that vanishing deviation of A(k) and D(k) from constant coefficient case leads to a vanishing perturbation in
quality µ(k)

D . Therefore, the results of the this subsection carry over the smoothly variable coefficient case, at
least when the mesh size h is small enough.

4.3. Numerical example. We consider the linear system resulting from the 5-point finite difference
discretization of (4.7) on Ω = [0, 1] × [0, 1] with Dirichlet boundary conditions and constant coefficients αx,
αy and β = 0. The discretization is performed on a uniform rectangular grid of mesh size h = (N + 1)−1 in
both directions.

For the sake of simplicity, we let N be a multiple of 12, which allows that the whole domain is covered
with aggregates of the same shape. Using the rule (3.7), the matrices A(k) and D(k) are the same for all
aggregates. As a consequence, the quality estimate µ(k)

D is the same as well.
We consider first an isotropic situation (αx = αy). The columns from 2 to 7 of Table 4.1 then give the

values of µD and of its upper bound µ
(k)
D for three types of aggregation pattern, presented on Figure 4.1.

Observe that when nodes are added to an aggregate, its quality is not necessarily deteriorated, as can be
seen comparing L-shaped and box aggregates. We next consider in columns 8 to 13 an anisotropic situation
(αx = 10αy). One sees that boxwise aggregation is not recommended in this case.

Table 4.1
The value of µD and of its upper bound (3.10) for different grid sizes.

αx = αy , δd = 0 αx = 10αy , δd = 0
pairwise L-shaped boxwise linewise linewise boxwise

(size=3) (size=4)

N µ
(k)
D µD µ

(k)
D µD µ

(k)
D µD µ

(k)
D µD µ

(k)
D µD µ

(k)
D µD

12 2 1.940 4 2.315 2 1.959 2.2 2.184 3.756 3.638 11 8.431
24 2 1.984 4 2.377 2 1.989 2.2 2.196 3.756 3.744 11 10.185
48 2 1.996 4 2.394 2 1.997 2.2 2.199 3.756 3.753 11 10.778
96 2 1.999 4 2.399 2 1.999 2.2 2.200 3.756 3.755 11 10.943

4.4. Sharpness of the estimate. Numerical results in Table 4.1 indicate that the bound (3.10) on
µD can be asymptotically sharp for N large enough. Moreover, as shown in Theorem 3.1, if only one Jacobi
smoothing iteration is performed, we further have ρ(ETG) = 1 − ωµ−1

D . Hence, a sharp estimate of µD
further leads to a sharp estimate of the two-grid convergence rate. The reader can wonder why and when
this happens. This is what we look into in the present subsection, starting with the first question for the
particular case of boxwise aggregates.
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Consider that the setting of the above example holds. Without loss of generality, we assume in addition
that αx ≥ αy. First, we recall that D(k)−1

A(k)p(k) = λ1(D(k)−1
A(k)) p(k), and, hence, the vector vb =

(1 1−1−1)T ∈ R(A(k)) that can be checked to satisfy D(k)−1
A(k)vb = λ2(D(k)−1

A(k)) vb reaches, according
to Theorem 3.3, the supremum in definition (3.9) of µ(k)

D . Therefore, setting

ṽ = (γ1 vb T γ2 vb T · · · γnc vb T )T ,

we locally reproduces the maximizing vectors for every aggregate. Moreover, setting γ1 = γ2 = · · · = γN =
−γN+1 = · · · = −γ2N = γ2N+1 = · · · = 1 we further make ṽ take the same value at every two connected
nodes that belong to different aggregates. Hence, since Ar have the form (3.6) with diagonal blocks being
diagonal matrices, there holds (Ar)ij ((ṽ)i − (ṽ)j) = 0 for all i and j. Therefore, setting σi =

∑n
j=1(Ar)ij

and using

ṽArṽ = −
n∑

i,j=1

1
2

(Ar)ij ((ṽ)i − (ṽ)j)2 +
n∑
i=1

σi (ṽ)i
2 (4.8)

there holds, since σi > 0 only for the unknowns near the boundary,

ṽArṽ =
n∑
i=1

σi (ṽ)i
2 = 2N(αx + αy) = 2N−1(αx + αy)α−1

d ṽTDṽ . (4.9)

On the other hand, note that p(k) T D(k)vb = 0 implies πDṽ = 0, and, hence,

µD ≥
ṽTD(I − πD)ṽ

ṽTAbṽ + ṽTArṽ
=

ṽTDṽ
ṽTAbṽ + ṽTArṽ

=
ṽTDṽ

µ
(k)
D

−1
ṽTDṽ + ṽTArṽ

=
µ

(k)
D

1 + µ
(k)
D

ṽTArṽ
ṽTDṽ

. (4.10)

It then follows from (4.9) that µD → µ
(k)
D for N → ∞. Essentially the same results can be proven for the

linewise aggregates of size m ≤ 4, see [8] for details.
A more general analysis of the sharpness (“when this happens?” part of the above question) is also

possible and is performed in [8]. In particular, it is shown there that the lower bound on µD (like the one
given by (4.10)) can be computed using only aggregates belonging to a given subset Ω̄h of unknowns. The
main contribution to the left hand side of (4.8) then comes from the set ∂Ω̄h of “boundary” unknowns of Ω̄h.
One than often has, denoting by |Ω̄h| (resp. |∂Ω̄h|) the size of the set Ω̄h (resp. ∂Ω̄h),

ṽTArṽ =
n∑
i=0

σi(ṽ)2i = O(|∂Ω̄h|) ,

and

ṽTDṽ = O(|Ω̄h|) .

Therefore, if the subset Ω̄h corresponds to a subdomain covered with boxwise (as on Figure 4.1(a)) or linewise
(as on Figure 4.1(b)) aggregation pattern and associated to constant coefficients αx, αy and β, the bound
(4.10) can be shown to hold for µ(k)

D associated to aggregates in Ω̄h. Hence, one proves that the asymptotical
(h→ 0) value of µD satisfies

µD ≥ µ(k)
D , aggregate k ⊂ Ω̄h , (4.11)

if the quotient |∂Ω̄h|/|Ω̄h| vanishes for h small enough. Moreover, if Ω̄h contains the aggregates of the
worst quality; that is, if max`=1,...,nc

µ
(`)
D = µ

(k)
D for aggregates k ⊂ Ω̄h, then (4.11) proves the asymptotical

sharpness.

5. Discrete PDEs with discontinuous coefficients.

5.1. Preliminaries. As in the previous section, our analysis is based on the aggregates’ quality, which
in turn involves the computation of the second smallest eigenvalue of small matrices. The following lemma
is helpful in this respect.

Lemma 5.1. Let

Ad =
1
2


4α1 −2α1 −2α1

−2α1 3α1+α2 −α1−α2

−2α1 3α1+α3 −α1−α3

−α1−α2 −α1−α3 2α1+α2+α3

 (5.1)
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and

Dd = diag (4α1 2(α1+α2) 2(α1+α3) (α1+α2+α3+α4)) , (5.2)

where α1 > 0 and α2, α3, α4 > 0. Ad is positive semi-definite, and let λ2(D−1
d Ad) be the smallest nonzero

eigenvalue of D−1
d Ad.

Then,

λ2(D−1
d Ad) ≥

5−
√

17
8

, (5.3)

and, if α1 = α2 and α3 = α4, there holds

λ2(D−1
d Ad) = min

(
1
2
,

3α1 + α3

4(α1 + α3)

)
. (5.4)

Moreover, if α1 ≥ α2, α3, α4, one has

λ2(D−1
d Ad) ≥ β (5.5)

with β = λ2(D−1
d Ad) (≈ 0.449) being evaluated for α1 = α2 = α4 = 1 and α3 = 0.

Furthermore,

λ2(D−1
d Ad) ≥

1
2

if

 α1 ≥ α2 = α3 = α4

or α1 = α2 ≥ α3 = α4

or α1 = α2 = α3 ≥ α4

(5.6)

5.2. Analysis. We consider the PDE (4.7) with piecewise constant isotropic coefficients (αx(x, y) =
αy(x, y)) and β = 0, and assume Dirichlet boundary conditions. As in the previous section, we consider the
five point finite difference approximation with uniform mesh size h in both directions (mesh box integration
scheme [7]), and assume that the boundary ∂Ω of Ω ⊂ R2 is the union of segments parallel to the x or y
axis and connecting the grid nodes. We aim at assessing boxwise aggregation as illustrated on Figure 4.1(a),
which was shown relevant for isotropic coefficients in the previous section.

Here we assume that the possible discontinuities match the grid lines. Hence, Ω is a union of non
overlapping subdomains Ωi in which the coefficients are constant, and the boundary ∂Ωi of each Ωi is formed
by segments aligned with grid lines and having grid nodes as end points. To exclude some uncommon
situations, we assume that every two such end points are separated by a distance not less than 2h and
that each box aggregate contains at least one point which is interior to one subdomains. In practice, this
assumption is automatically met if the mesh size is small enough; in fact, it has to be not larger than h0/2,
where h0 is the size of the coarsest mesh that still correctly reproduce the geometry of the problem.

The most general situation corresponding to this setting is then schematized on Figure 5.1(a) where the
central aggregate has one node interior to Ω1 and the opposite node at the intersection of four subdomains:
Ω1, Ω2, Ω3 and Ω4. With the splitting satisfying (3.7), the corresponding aggregate’s matrices A(k) and D(k)

are given by (5.1) and (5.2), respectively, with αi, i = 1, ..., 4, being the PDE coefficient in the subdomain
Ωi.

Because of the assumption (3.7) and of Theorem 3.3, aggregate’s quality µ(k)
D is the inverse of the second

smallest eigenvalue of D(k)−1
A(k). Lemma 5.1 then shows us the following.

(a) (b) (c) (d)

1 2

3 4

2

1

Figure 5.1. (a) general box aggregate situation with respect to discontinuities and (b) discontinuity nodes aggregated with
white point nodes; (c) and (d) schematize potential aggregation strategies for the numerical example.

8



• The approach is robust in all cases, since, by (5.3), µ(k)
D is always bounded above independently of

the relation between the coefficients αi.
• Nevertheless, from a practical viewpoint, (5.3) allows a significant decrease of aggregate’s quality

compared with the constant coefficient case. However, according to (5.5), which implies µ(k)
D ≤ 2.23

(compared with 2 in constant coefficient case), a major deterioration is avoided when α1 ≥ α2, α3, α4.
The latter condition is satisfied if nodes belonging to several subdomains Ωi are always aggregated
only with nodes that belong to Ωi with largest PDE coefficient αi. Roughly speaking, the rule may
be summarized as “aggregate discontinuity nodes with those of the strong coefficient region”.

• In many practical cases, no more than two subdomains are involved at a time for a single aggregate,
and either α1 = α2 = α3, or α1 = α2 and α3 = α4, or α2 = α3 = α4 hold, as illustrated on Figure
(5.1)(b). Then, if the rule above is applied; that is, if α1 is in addition the largest coefficient, (5.6)
applies and shows that there is no deterioration at all compared with the constant coefficient case.

5.3. Numerical example. Consider the PDE (4.7) on a square domain Ω=[0, 1]× [0, 1] with β = 0,

αx(x, y) = αy(x, y) =
{

1 if x ≤ 1/2
d(> 1) if x > 1/2 .

and with Dirichlet boundary conditions. Consider the linear system (1.1) resulting from its five point finite
difference discretization (mesh box integration scheme [7]) on the regular grid of mesh size h = N−1. Since
discontinuities needs to be aligned with grid lines, N has to be even. For simplicity of presentation, we further
assume that it is a multiple of 4. The number of unknowns being (N − 1) × (N − 1) (there is no unknown
for Dirichlet nodes), the grid cannot be covered with box aggregates only and the coarsening is completed
by pair and singleton aggregates. Then, the domain may be covered with box aggregates starting from the
left bottom corner (as on Figure 5.1(c)) or from the right bottom corner (as on Figure 5.1(d)).

Table 5.1
The value of µD and of its upper bound (3.10) for different aggregation strategies and for d = 10.

strategy (a) strategy (b)

N max
k=1,...,nc

µ
(k)
D µD max

k=1,...,nc

µ
(k)
D µD

32 3.385 3.181 2 1.993
64 3.385 3.286 2 1.998
128 3.385 3.336 2 2.000
256 3.385 3.361 2 2.000

Note that the quality of aggregates outside discontinuity is at most 2, as can be concluded in the isotropic
case (αx = αy) from (4.3) (for box aggregates) or from (4.5) with m = 2 (for pair aggregates). The bound is
therefore determined by the quality of aggregates containing nodes on the discontinuity, which are given for
d = 10 in Table 5.1. Observe that for the second strategy the convergence estimate is exactly the same as in
the constant coefficient case. For box aggregate, this follows from the analysis in the previous subsection: the
aggregates then obeys the “strong coefficient” rule stated above. Regarding the first aggregation strategy,
note that for box aggregates one has

µ
(k)
D = λ2(D(k)−1

A(k))−1 =
4(1 + d)

3 + d
, (5.7)

using (5.4) with α1 = α2 = 1 and α3 = α4 = d. This is also true in the pairwise case, since then

A(k) =
(

1 −1
−1 1

)
, D(k) =

(
4

2(d+ 1)

)
.

Note that (5.7) implies µ(k)
D = 3.38 for d = 10 and µ

(k)
D → 4 for d→∞.

5.4. Sharpness of the estimate. Table 5.1 indicates that, once again, the upper bound (3.10) is
seemingly asymptotically exact. In fact, the analysis summarized at the end of Section 4 allows to show that,
asymptotically, µD can not be smaller than 2 for an isotropic (αx = αy) PDE (4.7) with β = 0 and a regular
covering by box aggregates in at least one subdomain in which the PDE coefficients are constant. Hence, our
analysis is accurate when discontinuity nodes are aggregated with nodes in strong coefficient region, since
then µ

(k)
D ≤ 2.23. If, in addition, µ(k)

D ≤ 2, like for the second strategy in the numerical example above, then
the bound is asymptotically sharp.
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It is more challenging to show the sharpness when µ(k)
D is significantly larger than 2 for some aggregates

along discontinuity, essentially because the proportion of such aggregates is O(h) or less. In particular, if
Ω̄h is chosen to be a set of nodes belonging to the (worst quality) discontinuity aggregates, the quotient
|∂Ω̄h|/|Ω̄h| then does not vanishes for h→ 0. Nevertheless, it is interesting to confirm that, as seen in Table
5.1, such a limited amount of low quality aggregates is sufficient to affect the global convergence, and hence
that the rule “aggregate discontinuity nodes with those of the strong coefficient region” has some practical
relevance. In this view, we prove in [8] the sharpness of our estimate for the numerical example above with
the first aggregation strategy (depicted on Figure 5.1(c)), which does not follow the “strong coefficient” rule.
It is further explained in [8] how the proof can be extended to more general situations.

6. Closing remarks. We have developed an analysis of aggregation-based two-grid method for SPD
linear systems. When the system matrix is diagonally dominant, an upper bound on the convergence factor
can be obtained in a purely algebraic way, assessing locally and independently the quality of each aggregate
by solving an eigenvalue problem of the size of the aggregate.

We have applied our bound to scalar elliptic PDE problems in two dimensions, showing that aggregation-
based two-grid methods are robust if

• in presence of anisotropy, one uses linewise aggregates aligned with the direction of strong coupling;
• in presence of discontinuities, one avoids mixing inside an aggregate nodes belonging to a strong

coefficient region or its boundary with nodes interior to a weak coefficient region.
Furthermore, we have shown that the bound is asymptotically sharp when a significant part of the domain
is regularly covered by box or line aggregates of the same shape.

Note that we have conducted the analysis in two dimensions for the sake of simplicity. The same type of
analysis can be developed for three dimensional problems, leading to similar conclusions.

Our results may also have an impact on practical aggregation schemes. Because of the above mentioned
sharpness, it is indeed sensible to expect that aggregation methods can be improved by improving aggregates’
quality. And because aggregates’ quality is cheap to assess, this parameter can effectively be taken into
account in the design of aggregation algorithms. For instance, one may a posteriori check aggregates’ quality
and break low quality aggregates into smaller pieces. It is also possible, in a greedy-like approach, to decide
wether a node (or a group of nodes) should be added to an aggregate according its impact on the aggregate’s
quality and/or select the neighboring (sets of) nodes that are the most favorable in this respect. These
practical aspects are subject to further research.
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