
Iterative Parameter-choice and Algebraic Multigrid for Anisotropic

Diffusion Denoising

Donghui Chen, Misha Kilmer, Scott MacLachlan

January 18, 2010

Abstract

Anisotropic diffusion methods have shown good qualitative results for image denoising. This paper gives
a review of the anisotropic diffusion methodology and its application to image restoration. We investigate an
AMG algorithm to solve a regularized anisotropic diffusion equation, which is not only well-posed, but also has
a nontrivial steady-state solution. A new regularization parameter-choice method, the Brent-NCP algorithm is
introduced, combining Brent’s method and the normalized cumulative periodogram (NCP) information about
the residual. We test our algorithm on three standard test images. The experimental results demonstrate the
effectiveness of the AMG approach and the broad applications of the Brent-NCP parameter-choice algorithm.

1 Introduction

It is well known that during the formation, transmission, and recording processes, images deteriorate with various
types of noise. Therefore, it is important to eliminate the noise automatically and efficiently. Many image denoising
techniques have been proposed over the years, and a good review of them can be found in [5]. In particular, with
developments in computer technology, methods based on partial differential equations (PDEs) have been extensively
studied as approaches to image denoising.

Anisotropic diffusion, first introduced by Perona and Malik [17], has been widely accepted as a method for
reducing noise while preserving and enhancing edges [2]. Many papers have proposed different techniques for
solving the diffusion equations. However, most of these techniques are based on simple relaxation methods. As
with any diffusion process, they are slow to resolve low-frequency artifacts, and the rate of convergence decreases
sharply with increasing image size.

On the other hand, multigrid approaches eliminate both the high and low frequency errors rapidly [3, 4, 23]. The
optimality of multigrid methods suggests that they are potentially good solvers for anisotropic diffusion problems.
Previous research has shown this; geometric multigrid (GMG) methods are used to solve the anisotropic diffusion
equations at each step in a fixed point iteration in [1, 22, 24]. Unfortunately, these results show that the GMG
method converges slowly and is not robust with respect to discontinuous diffusivities, which is the case in image
denoising applications.

One way to improve on the performance of GMG is to use algebraic multigrid (AMG) methods. AMG, first
proposed in [3], is designed to utilize classical multigrid principles to obtain a fast solution algorithm for a wide
range of problems. It has many improvements over GMG in its robustness and ease of use, especially when the
coefficients of the PDE are discontinuous and vary widely [19, 23]. The concept of using AMG to solve anisotropic
diffusion equations is not new. In [10], Sapiro et al. use AMG to denoise and segment hyperspectral images. In [9],
Chen and Savage try to accelerate a standard AMG approach by repeatedly using the setup phase information
within the AMG algorithm.

Besides finding a fast algorithm used to solve the linearized anisotropic diffusion equation, choosing an optimal
regularization parameter is also critical in anisotropic diffusion denoising. Traditionally, these parameters are
chosen based on either experience or the norm of the residual vector, with techniques such as Generalized Cross-
Validation (GCV), L-curve fitting, etc. [14]. Generally, these methods require solving the problem many times
in order to find the optimal regularization parameter, which is inefficient for a large problem. In this paper, we
propose a new inexpensive parameter-choice method based on Brent’s method and the normalized cumulative
periodogram (NCP) information about the residual [13, 20]. Together with AMG using standard (Ruge-Stüben)
coarsening [19], the proposed algorithm can find the optimal regularization parameter for the anisotropic diffusion
equation quickly and efficiently. Our approach differs from previous work in the following two aspects:

1. We consider a different objective diffusion equation, which is not only well-posed, but also has a nontrivial
steady-state solution. In practice, by searching for the steady-state solution directly, the proposed AMG solver
does not require as many AMG iterations as in previous work [9].
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2. By introducing the new Brent-NCP parameter-choice method, the proposed AMG denoising algorithm chooses
the regularization parameters automatically. This makes our algorithm more adaptive and efficient. Further-
more, the application of the parameter-choice algorithm is not limited to anisotropic-diffusion based denoising.
It can be applied to a very broad range of parameter-dependent denoising algorithms.

The remainder of this paper is organized as follows. Section 2 presents a review of the anisotropic diffusion
equation in image restoration and introduces our cost functional. A semi-implicit discretization technique and fixed-
point AMG algorithm are also discussed here. Section 3 introduces the new Brent-NCP regularization parameter-
choice algorithm. Section 4 presents the experimental results. The conclusions of this paper are presented in
Section 5.

2 Anisotropic Diffusion Review

Given a typical noisy image (where the noise is known to be white noise), the noise dominates the high-frequency
components of the image [12]. Intuitively, we can smooth out the noise by convolving the image with a Gaussian
kernel. This is equivalent to solving the heat equation. By forming the physical phenomena in terms of mathemat-
ical language, PDEs, we can understand the denoising problem more clearly and deeply. However, linear Gaussian
smoothing not only removes high-frequency noise but also blurs edges and destroys finer textures. Anisotropic
diffusion denoising is based on the idea of applying a smoothing process that depends on local properties of the
image [2, 26].

2.1 Perona-Malik Diffusion Model

In [17], Perona and Malik introduced the anisotropic diffusion approach to replace classical isotropic diffusion.
This approach can avoid the excessive smoothing effect that occurs with isotropic diffusion procedures, such as
Gaussian filters. On the continuous domain, the anisotropic diffusion equation for an image, I, is given by

It = div(c(|∇I|2)∇I) in Ω× (0, T )
∂I
∂N = 0 on ∂Ω× (0, T )
I(0, x) = I0(x) in Ω

(1)

where ∇ is the gradient operator, div is the divergence operator, and

c(s2) : [0,∞]→ [0,∞]

describes the diffusivity. The differential equation has initial condition I0(x), which is the noisy image.
Defining the flux function

Φ(s) := c(s2)s,

it is shown in [2] that the blurring-enhancing process depends on the sign of derivative of flux function, b(s2) :=
Φ′(s) = c(s2)+2s2c′(s2). If b(s2) > 0, edges are blurred when the Perona-Malik (PM) model is a forward parabolic
equation, while if b(s2) < 0, edges are sharpened when the PM model is a backward parabolic equation. Given the
threshold K, PM model shows the desirable result of blurring small discontinuities in image I where |∇I| < K,
and sharpening edges in image I where |∇I| > K. This gives rise to the following assumptions on c(s2). c(s2) : [0,∞]→ [0,∞] decreasing,

c(0) = 1,
b(s2) = c(s2) + 2s2c′(s2) < 0 for s ≥ K,

(2)

In their original paper, Perona and Malik choose the diffusivity to be c(s2) = 1
1+s2/K2 , where K is a threshold

determined by the noise level [6].
It is interesting to note that (1) can be regarded as a gradient descent method for the energy functional

E(I) :=
1
2

∫
Ω

Ψ(∇I)dx,

where Ψ(∇I) is a potential function whose gradient is the flux function Φ(∇I). The gradient descent method for
the above energy functional results in the PM model (1).

While numerical results with the PM model (1) are quite impressive, the forward-backward diffusion process
itself is not well-posed. This is the so-called Perona-Malik paradox. In [15], Kichenassamy proves that if the
initial image, I0(x), is not infinitely differentiable, there is no weak solution of (1). Consequently, the notion of a
“generalized solution”, which is piecewise linear and contains jumps, is introduced. However, one should neither
expect uniqueness nor stability with respect to the initial image. Examples of significantly differing solutions with
nearly identical initial data have been reported [15].
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2.2 Regularization

Although the ill-posedness of the PM model can be handled by applying an implicit spatial discretization [28], in
order to make the numerical implementation more predictable, it is more natural to introduce regularization into
the continuous PM equation. Catt et al. [7] introduce a spatial regularization that makes the forward-backward
diffusion process become well posed. The idea is to use smoothed version, Gσ ∗∇I, of the image gradient ∇I in the
diffusivity c(|∇I|2). Here, Gσ can be any “low-pass filter”. In this paper, we assume that Gσ is a 5× 5 Gaussian
kernel with the standard deviation σ = 1.5. Since Gσ ∗ ∇I = ∇Gσ ∗ I, the spatial regularized PM model becomes

It = div(c(|(∇Gσ ∗ I)|2)∇I) (3)

Catt et al. [7] prove that there exists a unique solution for the regularized PM equation (3) with corresponding
initial and boundary values. Furthermore, this spatial regularization makes the filter insensitive to noise at scales
smaller than σ. This avoids the shortcoming of the original PM model, which cannot distinguish between “true”
edges and “false” edges created by the noise.

While the regularized (3) becomes well-posed, it still leads to a process where the solution converges to a
constant steady-state solution [27] (just as in the PM model (1)). In order to get nontrivial results, it is required to
specify a stopping time, T0. Sometimes, it is attempted to circumvent this task by adding an additional reaction
term, which keeps the steady-state solution close to the original image [16]

It = div(c(|(∇I)|2)∇I) + λ(I0 − I). (4)

The reaction term, (I0 − I), has the effect of locally moderating the diffusion, as the diffused image, I, diffuses
further away from the original image, I0. In practice, such a modification shifts the problem of specifying a
stopping time, T0, to the problem of determining regularization parameter λ.

Combining the spatial regularization (3) and reaction anisotropic diffusion (4), we get the anisotropic diffusion
equation, It = div(c(|(∇Gσ ∗ I)|2)∇I) + λ(I0 − I). As discussed above, this PDE is not only well-posed, but also
has a non-trivial steady-state solution satisfying

0 = div(c(|(∇Gσ ∗ I)|2)∇I) + λ(I0 − I). (5)

In this paper, we solve the above nonlinear equation (5) to get the denoised image. Given a fixed Gσ, finding
the optimal regularization parameter λopt is critical to solving (5), which is discussed in Section 3.

2.3 Discretization

Assuming regularization parameter λ is known, because semi-implicit discretization has numerical stability prop-
erty [21], we use this scheme to find the solution of (5),

λ(In+1 − I0) = div(c(|(∇Gσ ∗ In)|2)∇In+1), (6)

where the superscript, n, denotes a numerical approximation taken at the nth iteration. Writing the divergence
term as

div(c∇I) =
∂

∂x

(
c
∂I

∂x

)
+

∂

∂y

(
c
∂I

∂y

)
, (7)

we use forward and central differences to approximate the derivatives of the image, I. In digital images, we take
the distance between adjacent grid points, h, to be 1. Therefore, for simplicity, we omit the distance h in the
following discretization formulas. The value of the divergence operator at grid point (i, j) can then be written as

div(c∇I) |i,j = ci+ 1
2 ,j

(Ii+1,j − Ii,j)− ci− 1
2 ,j

(Ii,j − Ii−1,j) + ci,j+ 1
2
(Ii,j+1 − Ii,j)− ci,j− 1

2
(Ii,j − Ii,j−1)

= ci+ 1
2 ,j
Ii+1,j + ci− 1

2 ,j
Ii−1,j + ci,j+ 1

2
Ii,j+1 + ci,j− 1

2
Ii,j−1 − (ci+ 1

2 ,j
+ ci− 1

2 ,j
+ ci,j+ 1

2
+ ci,j− 1

2
)Ii,j

Notice that interpolation is needed to evaluate the diffusivity, c, at locations (i± 1
2 , j) and (i, j ± 1

2 ). This can
be done as follows, see also Figure 1. Denoting Î = ∇Gσ ∗ In, we use central differences and linear interpolation
to compute

ci,j+ 1
2

:= c

 
(Îi,j+1 − Îi,j)2 +

 
Îi+1,j+1 − Îi−1,j+1 + Îi+1,j − Îi−1,j

4

!2!
,

and

ci+ 1
2 ,j := c

  
Îi+1,j+1 − Îi+1,j−1 + Îi,j+1 − Îi,j−1

4

!2

+ (Îi+1,j − Îi,j)2
!

.
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(b) ci+ 1
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Figure 1: Vertices involved in the approximation of the diffusivities ci,j+ 1
2

and ci+ 1
2 ,j

(marked by hexagons). The
grid points represented by dots are used to compute derivatives in the y-direction, while the grid points represented
by squares are used to compute derivatives in the x-direction.

The advantage of the above discretization is that it is good for rotation-invariance properties, and, practically,
the result is also less sensitive to noise [2].

The discretization of (6) is then

ai,jI
n+1
i,j −

(
ci+ 1

2 ,j
In+1
i+1,j + ci− 1

2 ,j
In+1
i−1,j + ci,j+ 1

2
In+1
i,j+1 + ci,j− 1

2
In+1
i,j−1

)
= λI0

i,j ,

where ai,j =
(
λ+

(
ci+ 1

2 ,j
+ ci− 1

2 ,j
+ ci,j+ 1

2
+ ci,j− 1

2

))
. In matrix-vector notation, the above discrete form can be

written as
A(In, λ, σ)vec(In+1) = λvec(I0), (8)

where vec(I) denotes the vector obtained by stacking all of the columns of image I into a vector. The matrix
A(In, λ, σ) is a symmetric, positive-definite, and banded sparse matrix with positive diagonal entries and negative
off-diagonal entries. The sum of each row is λ.

For fixed λ, σ, (8) represents a fixed-point linearization of the nonlinear PDE described by (5). This leads to
the fixed-point AMG algorithm given as Algorithm 1. For each iteration, In+1 in (8) is computed by standard
Ruge-Stüben AMG approach, see detail in [4, 19, 23]. In the third step of Algorithm 1, instead of recomputing
the AMG setup phase information [19], we recycle the old AMG setup data but change the fine-scale matrix
An = A(In, λ, σ). This appears to lead to speedup of Algorithm 1, however further study of the optimal setup
strategy is still needed.

Algorithm 1 Fixed-Point AMG Algorithm for fixed λ and σ

1: Initialize the matrix A0 = A(I0, λ, σ) in (8) with initial guess I0, compute the the AMG setup data [19]
2: while norm(In+1 − In) > tol do
3: Compute the solution In+1 of Anvec(In+1) = λvec(I0) by AMG method using the setup data computed in

Step 1.
4: Initialize the matrix An+1 = A(In+1, λ, σ) in (8) with initial guess In+1

5: end while
6: return Ii

3 The Brent-NCP parameter choice method

The remaining outstanding issue in solving (5) is the choice of the optimal regularization parameter, λ. Most algo-
rithms for choosing the regularization parameter are based on the norm of the residual vector, such as Generalized
Cross-Validation (GCV), L-curve, etc. [14]. In [13], Hansen, Kilmer and Kjeldsen propose a different rule that
seeks to use all of the information available in the residual vector. Assuming the noise is white noise, the key idea
of this method is to choose the regularization parameter for which the residual vector changes from being domi-
nated by the remaining signal to being white-noise like. By employing statistical tools and fast Fourier transforms,
this method leads to a parameter-choice rule based on the normalized cumulative periodogram (NCP), which is
particularly well-suited for large-scale problems. For more on using the cumulative periodograms for regularization
parameter selection, see [20] and the references therein.
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3.1 Normalized cumulative periodogram

Given a n×n 2D signal X, denote q = bn/2c+ 1, and let the q× q matrix P = |F(X)|2 be the power spectrum of
X, where F(X) denotes the 2D Fourier transform of X. After reordering these elements in the order of increasing
spatial frequency, p̂ = perm(vec(P )), the NCP for X is defined as a vector ncp(X) of length q2 − 1 with elements

ncp(X)k =
||p̂(2 : k + 1)||1
||p̂(2 : q2)||1

, k = 1, · · · , q2 − 1. (9)

If the residual is white noise, the expected values of the elements in the NCP lie on a straight line between
(0, 0) and (q2, 1). Therefore, the theoretical NCP is denoted by the vector v s.t. vk = k

q2−1 . Given the computed
residual, r, if ncp(r) lies within the Kolmogorov-Smirnov limits of the line v, the conclusion is the acceptance of
the hypothesis that the residual is white noise [11].

In practice, there is often more than one regularization parameter satisfying the Kolmogorov-Smirnov test. In
order to find a unique optimal regularization parameter, Hansen et al. suggest to compute the largest difference
in absolute value between the estimated and the theoretical NCP, and choose the regularization parameter that
minimizes this difference:

argmin
λ

N (λ) := ||v − ncp(rλ)||1, (10)

where rλ is denoted as the computed residual given regularization parameter λ.

3.2 Brent-NCP algorithm

Efficiently solving the minimization problem (10) is essential to the parameter-choice algorithm. In general, solving
minimization problem (10) requires computing multiple solutions of (5) for different values of λ, which is time-
consuming part. The proposed Brent-NCP method is designed to minimize the number of solves, which makes it
more efficient.

Brent’s method combines some parts of a golden section search method and some of a parabolic interpolation
method [18]. This method is characterized by quadratic convergence in case of smooth functions and guaranteed
linear convergence in case of nonsmooth or oscillatory functions. For convenience, we summarize Brent’s method
applied to minimize N (λ) in (10) below.

Algorithm 2 Brent-NCP Algorithm
1: Set ax < cx
2: bx← ax+ 3−

√
5

2 × (cx− ax)
3: λopt ← (ax+ cx)/2
4: Compute the residual rλopt

:= I(λopt)− I0, where I(λopt) is the solution image computed by fixed-point AMG
Algorithm 1 applied to (5) given regularization parameter λopt

5: Compute N (λopt) = ||v − ncp(rλopt
)||1

6: while |λopt − bx| > tol do
7: Construct a trial parabolic fit [18]
8: if parabolic fit is acceptable then
9: Take the parabolic step

10: else
11: Take a golden section step
12: end if
13: Update the values ax, bx, cx, λopt [18], compute N (λopt) = ||v − ncp(rλopt)||1, where rλopt := I(λopt) − I0

is the residual, I(λopt) is computed by Algorithm 1 applied to (5) given the updated regularization paramter
λopt

14: end while
15: return λopt

In practice, the above Brent-NCP algorithm converges very quickly, see Table 2 in Section 4. In addition, it
has very broad application areas. By switching the method for computing I(λopt) from the fixed-point AMG Algo-
rithm 1 to other algorithms in the fourth and thirteenth step of Algorithm 2, we can find the optimal regularization
parameters for those algorithms, see Section 4 for detail.

5



4 Experimental results

This section is devoted to presenting the results obtained with the proposed algorithm. A comparison with the
conventional linear Gaussian filter, Wiener filter [12], and total variation (TV) denoising [8] is also presented.

Since the exact, noise-free images were known, the distance between restored image I and the ground truth
image I0 was computed using the Mean Structure Similarity (MSSIM) [25], which is designed to improve on
traditional methods like peak signal-to-noise ratio (PSNR) and mean squared error (MSE). Given any two images
x and y, the Structure Similarity (SSIM) is defined as

SSIM(x,y) =
(2µxµy + c1)(2cov(x,y) + c2)
(µ2

x + µ2
y + c1)(σ2

x + σ2
y + c2)

(11)

where µx and µy are the means of images x and y respectively, σx and σy are the variances of images x and y,
cov(x,y) is the covariance of the two images, and c1 and c2 are two variables to stabilize the division with small
denominators, the defaults are c1 = 0.0001, c2 = 0.0009.

In practice, SSIM is calculated on local windows rather than over the whole image. As in [25], we use a
normalized 11 × 11 circular-symmetric Gaussian weighting function w = {wi | i = 1, 2, · · · , N = 121}, with
standard deviation of 1.5 in our experiments. As a result, µx, σx and cov(x,y) in the SSIM measure (11) are
modified as µx =

∑N
i=1 wixi, σx =

(∑N
i=1 wi(xi − µx)2

)
, cov(x,y) =

∑N
i=1 wi(xi − µx)(yi − µy). In order to

get a single overall similarity measure of the two images, the MSSIM is computed by choosing the local window
pixel-by-pixel

MSSIM(I, I0) =
1
mn

mn∑
i=1

SSIM(xi,yi), (12)

where xi and yi are the ith local window, and mn is size of the two images, I and I0.
Three common test images and a noisy variant of each of them are shown in the first and second row of Figure

2. White Gaussian noise has been added. Its variance was chosen to be 50%, 50% and 25% times the images value
range, respectively. We applied the proposed fixed-point AMG Algorithm 1, as well as TV, Wiener filters and
linear Gaussian filters, to the three noisy test images.

First, we test the applicability of Brent-NCP Algorithm 2. Table 1 shows the computed optimal regularization
parameters, λ, using Algorithm 2. In the fourth and thirteenth step of Algorithm 2, we use four different methods
to compute the denoised image I(λopt). The first two methods use Algorithm 1 to solve the anisotropic diffusion
equation (5), the difference is a) using only a single V-cycle to compute the solution In+1 in Step 3 of Algorithm 1,
while b) solving the system in Step 3 of Algorithm 1 to a residual-reduction tolerance of 0.01. Besides anisotropic
diffusion denosing, we also use c) TV and d) linear Guassian filters [14] to get the denoised image I(λopt). For
TV denoising, the cost functional is defined the as

min
I
TV (I) +

λ

2
‖I − I0‖22, (13)

where TV (I) =
∫

Ω
|∇I|2, and λ is the regularization parameter. We use the algorithm proposed by Chambolle

in [8] to solve the above TV minimization problem. For linear Gaussian filters, the regularization parameters are
the convolution kernel, Gσ. In the experiments, we set the size of kernel to be 5×5 by trial and error. The variance
σ is computed using the Brent-NCP Algorithm 2.

Denoting the above 4 different methods as A,B,C and D, respectively, the first two columns in Table 1 show
that the optimal regularization parameters computed using method A are very close to those using method B. The
computational work for these two methods are shown in Table 2. We can see that the total number of V-cycles
needed in method A is much less than that of needed in method B. We can further speedup the NCP-Brent
Algorithm 2 by using a single V-cycle in Step 3 of Algorithm 1, however this may lead to poorer-quality solutions,
further investigation is still needed.

Table 1: Computed regularization parameters λ using Brent-NCP Algorithm 2.

AMG Algorithm 1 TV Gaussian filters

images Method A Method B λ σ

Head phantom 5.9052e-02 6.4438e-02 6.2442 1.2461
Satellite 1.4755e-01 1.2705e-01 8.3027 2.0163
Cameraman 1.3868e-01 1.0966e-01 7.6393 1.1559
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Table 2: Comparison of the computational work in Brent-NCP Algorithm 2.

# of Brent steps # of linearizations # of V-cycles

images Method A Method B Method A Method B Method A Method B

Head phantom 14 14 15 15 77 3263
Satellite 15 15 16 16 96 2112
Cameraman 12 14 13 15 48 1739

Given the computed optimal regularization λopt in Table 1, we compute the denoised image using four different
methods: a) fixed-point AMG Algorithm 1 with anisotropic diffusion equation 5 (in Step 3 of Algorithm 1, we use
a single V-cycle), b) TV, c) Wiener filters, and d) linear Guassian filters. The MSSIM of the final denoised results
are shown in Table 3. The result images are shown in the last two rows in Figure 2 and Figure 3. The results using
AMG with anisotropic diffusion after 1 V-cycle are similar to the results achieved with a linear Gaussian filter
shown in the last row of Figure 3. The quality of final restored images using the AMG algorithm with anisotropic
diffusion are between those results from Wiener filters and those from TV denoising.

Table 3: Best denoised results using different methods.

MSSIM of the results using different denosing methods

images noisy image Fixed-point AMG Algorithm 1 Gaussian filters Wiener filters TV

Head phantom 0.16 0.76 0.49 0.58 0.83
Satellite 0.16 0.62 0.45 0.50 0.76
Cameraman 0.26 0.74 0.59 0.65 0.76

5 Conclusion

The goal of this paper is to introduce a new regularization parameter-choice approach and investigate the applica-
tion of the AMG algorithm to image restoration. After reviewing the anisotropic diffusion equation methodology
and its application to image restoration, we solve a regularized anisotropic diffusion equation (5), which is not only
well-posed, but also has a nontrivial steady-state solution, using AMG Algorithm 1. In order to make the algorithm
more adaptive and efficient, we introduce a new automatic regularization parameter-choice method, which com-
bines Brent’s method and the NCP information of residual. The application of the Brent-NCP parameter-choice
Algorithm 2 is not limited to anisotropic-diffusion based denoising, and is shown to have applicability to a very
broad range of parameter-dependent denoising algorithms. The experiments show that the denoised images quality
using AMG Algorithm 1 are similar as those results using TV, and better than linear Gaussian filter and Wiener
filter.
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(a) phantom (b) satellite (c) cameraman

(d) noisy phantom, MSSIM = 0.16 (e) noisy satellite, MSSIM = 0.16 (f) noisy cameraman, MSSIM = 0.26

(g) 1 V-cycle, MSSIM = 0.51 (h) 1 V-cycle, MSSIM = 0.40 (i) 1 V-cycle, MSSIM = 0.53

(j) 5 V-cycle, MSSIM = 0.76 (k) 5 V-cycle, MSSIM = 0.62 (l) 3 V-cycle, MSSIM = 0.74

Figure 2: Test images and results by AMG with anisotropic diffusion. First row: original noise-free images. Second
row: noisy image. Third row: results by AMG with 1 V-cycle. Last row: final AMG results.
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(a) 5 V-cycle, MSSIM = 0.76 (b) 5 V-cycle, MSSIM = 0.62 (c) 3 V-cycle, MSSIM = 0.74

(d) TV, MSSIM = 0.83 (e) TV, MSSIM = 0.76 (f) TV, MSSIM = 0.76

(g) Wiener filter, MSSIM = 0.58 (h) Wiener filter, MSSIM = 0.50 (i) Wiener filter, MSSIM = 0.65

(j) Gaussian filter, MSSIM = 0.49 (k) Gaussian filter, MSSIM = 0.45 (l) Gaussian filter, MSSIM = 0.59

Figure 3: Optimal denoised results for AMG with anisotropic diffusion, TV, Wiener and linear Gaussian filter.
First row: final AMG results. Second row: TV results. Third row: Wiener filter results. Last row: linear Gaussian
filter results.
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