
1

A Multigrid Tutorial

Irad Yavneh

Department of Computer Science

Technion

–

Israel Institute of Technology

irad@cs.technion.ac.il

2

Some Relevant Books:
1.

W.L. Briggs, V.E. Henson, and S.F. McCormick: “A Multigrid
Tutorial”, 2nd ed., SIAM, 2000.

2.

U. Trottenberg, C.W. Oosterlee, and A. Schueller:
“Multigrid”, Academic Press, 2001.

3.

Brandt, A., “1984 Guide with Applications to Fluid
Dynamics”, GMD-Studie

Nr. 85, 1984.

4.

Hackbusch, W., “Multigrid Methods and Applications”,
Springer, Berlin, 1985.

5.

W. Hackbusch

and U Trottenberg

eds.: “Multigrid Methods”,
Springer-Verlag, Berlin, 1982.

6.

Wienands, R., and Joppich, W., “Practical Fourier Analysis
for Multigrid Methods”, Chapman & Hall/CRC, 2004.

3

What’s it about?

A framework

of efficient iterative
 methods for solving

problems with many

variables

and many scales.

4

•

Framework: common concept, different methods.
•

Efficient: usually O(N) or O(N log N) operations
The importance of efficient methods becomes greater as
computers grow stronger!

•

Iterative: most nontrivial problems in our field cannot be
solved directly efficiently.

•

Solving: approximately, subject to appropriate convergence
criteria, constraints, etc.

•

Many variables: the larger the number of variables, the
greater the gain of efficient methods.

•

Many scales:

typical spatial and/or temporal sizes.

A framework of efficient iterative methods for
solving problems with many variables and many
scales.

5

Basic Concepts:

Local vs. Global processing.

Imagine a large number of soldiers who need to be
arranged in a

straight line and at equal distances

from

each other.

The two soldiers at the ends of the line are fixed.
Suppose we number the soldiers 0 to N ,

and that the

length of the entire line is L.

6

Initial Position

7

Final Position

8

Global processing.

Let soldier number

j stand on the
line connecting soldier 0 to soldier N at a distance jL/N
from soldier number 0.

9

10

This method solves the problem

directly,

but it
requires a high degree of

sophistication:

recognition

of the extreme soldiers and some pretty fancy
arithmetic.

11

Local processing (iterative method).

Suppose that the
inner soldiers’

initial position is

.

Then repeat for i=1,2,…: Let each soldier j, j=1,…N-1 at
iteration i move to the point midway between the
locations of soldier j-1 and soldier j+1 at iteration i-1:

(0) (0)
1 2 1(, , ,)Nx x x x 

      1
1

1
12

1 



  i

j
i

j
i

j xxx

This is an

iterative

process. Each iteration brings us
closer to the solution(?). The arithmetic is trivial.

12

A step in the right direction

13

14

Slow convergence

15

16

Fast convergence

17

18

Slow convergence

19

Local solution: damping

20

Local solution: damping

21

Local solution: damping

22

Local solution: damping

23

The multiscale

idea:

Employ the local processing with
simple arithmetic. But do this

on all the different

scales.

24

25

Large scale

26

Large scale

27

Intermediate scale

28

Intermediate scale

29

Small scale

30

31

HOW MUCH DO WE SAVE?

Analysis of the Jacobi iterative process

Matrix representation:

   1 ii Sxx
where































01
101

101

101
101

10

2
1 S

32

This matrix S

has N - 1 linearly independent eigenvectors,
vk, and corresponding real

eigenvalues,

k

Since

vk span the space , any initial configuration of
the soldiers can be written as a linear combination:

.k k
kS v v

  





1

1

0
N

k

k
kc vx

with some coefficients,

ck .

1N

33

Hence, we obtain after

m iterations:

     

   

 

k

km
kk

k

k
k

mm

mmm

cc vvSxS
xSSxx

0

221



Conclusion:

The iteration

converges if the spectral radius, ,

of
the iteration matrix,

S, is smaller than

1.

  0 1, 1, , 1lim m
k

m

if k N


   x 

34

Observation:

the

eigenvectors

and

eigenvalues of the
matrix

S are given by

with

k = 1, …, N –1.

Proof:

Using the trigonometric identity,

and the fact that

, we obtain by
substitution, .

  sin , 1, , 1,

cos ,

k k
j

k

jk j N
N

k
N





     
 

   
 

v v 

   1 11 sin sin cos sin ,
2

j k j k k jk
N N N N

     
  

 

0sin0sin  
k

k
k vvS 

35

36

Note:

since

| k | < 1, the method converges. But, for
some eigenvectors,

| k | is close to

1, so

convergence is

slow.

In particular, for

k/N << 1, we have,

For k =1 we obtain

Conclusion:

O(N 2) iterations

are required to reduce such
an error by an order of magnitude.

21cos 1 .
2k

k k
N N
          

   

22 1
2

1
11 .
2

m
m

m Ne
N


   
 

      
   

37

38

How much work do we save?

Jacobi’s method requires about N 2 iterations and N 2 *
N = N 3 operations to improve the accuracy by an order
of magnitude.

The multiscale

approach solves the problem in about
Log2 (N) iterations (whistle blows) and only about N
operations.

Example: for N = 1000 we require about:

10 iterations and 1000 operations

instead of about

1,000,000 iterations and 1,000,000,000 operations

39

How important is computational efficiency?

Suppose that we have three different algorithms

for a
given problem, with different computational
complexities for input size N :

Algorithm 1: 106 N operations

Algorithm 2: 103 N 2 operations

Algorithm 3: N 3 operations

Suppose that the problem size,

N, is such that
Algorithm 1 requires one second.

How long do the others require?

40

Algorithm 3
O(N3)

Algorithm 2
O(N2)

Algorithm 1
O(N)

N
Computer
Speed

(ops/sec)

0.000001 sec0.001 sec1 sec11M (~106)
(1980’s)

1 sec1 sec1 sec1K1G (~109)
(1990’s)

12 days17 min1 sec1M1T (~1012)
(2000’s)

31,710 years12 days1 sec1G1P (~1015)
(2010’s)

Stronger Computers

Greater Advantage of Efficient Algorithms!


41

The catch: in less trivial problems, we cannot
construct appropriate equations on the large
scales without first propagating information
from the small scales.

Skill in developing efficient multilevel
algorithms is required for:

1. Choosing a good local iteration.

2. Choosing appropriate coarse-scale
variables.

3. Choosing inter-scale transfer operators.

4. Constructing coarse-scale approximations
 to the fine-scale problem.

42

Damping

Recall:

the

eigenvectors

and

eigenvalues of the
iteration matrix

S are given by

with

k = 1, …, N –1.

Note that

convergence is

also slow

for

 

,cos

,1,,1,sin

















N
k

Nj
N

jkv

k

k
j

k



 v

.1/ Nk

43

This slow convergence can be overcome by

damping:

where

 is a parameter.

Then, where

Note:

vk are

eigenvectors

of

S

. The corresponding
 eigenvalues

are now

For we have convergence,

         ,
2
1)1(1

1
1

1
1 





  i
j

i
j

i
j

i
j xxxx 

   1 ,i i


x S x

  .1 SIS  

   .111 kkk   

0 1 ,    1 .k
 

44

Definition:

Eigenvectors vk with are called
 smooth

(low-frequency).

Those with are called

rough or
oscillatory (high-frequency).

Recall that so for

rough
eigenvectors,

2/1 Nk 

NkN 2/

0 .k 

cos ,k
k
N
    

 

45

Exercise:

Find which yields optimal
convergence for the

set of rough modes

for

arbitrary

N:

i.e.,

What is then the bound on the convergence
factor, , maximized over the rough modes?
(Clues in my introductory paper.)

10 

 

2

: sup max min!,kNN k N

 
 



  k

 1,0
: sup 1 m in!,


  

 
  

46

1D Model Problem

Find

u which satisfies:

In the particular case where f = 0, the solution is a
 straight line

that connects

u0 with

u1 .

     
 
 

0

1

, 0, 1 ,

0 ,

1 .

Lu u x f x x

u u

u u

  





(1)

47

Discrete approximation:

Since closed-form solutions
exist only for a small number of differential equations,
we solve such equations approximately by a

discrete

approximation.

Define a grid:

divide the domain

(0,1) into

N intervals.
 Assume for simplicity a uniform grid of

mesh-size

 h=1/N.

48

Finite-difference discretization; examples:

Forward differences:

Backward differences:

Central differences:

Second derivative:

Derivation: by the

Taylor theorem

     .hO
h

xuhxuu 




     .
2

2hO
h

hxuhxuu 




     .hO
h

hxuxuu 




         .2 2
2 hO

h
hxuxuhxuxu 


 (2)

49

1 1
2

0 0

1

2 ,

1, , 1,

,

.

h h h
h h hi i i

i

h

h
N

u u uL u f
h

i N

u u

u u

  
 

 







We can thus approximate the differential
equation by a set of algebraic difference
equations:

50

1

2

2

2

1

2
1 0

2

2
2

1 1

2 1
1 2 1

1

1 2 1
1 2

/

.

/

h

h

h
N
h
N

h h

h

h
N
h h

N

u
u

h
u
u

f u h
f

f
f u h









   
     
   
     
     

 
 
 
 
 
 
  

   



In matrix form:

This is a

tridiagonal

system of equations which
can be solved directly or iteratively.

51

2D Model Problem

Find

u which satisfies:

This is the

2D Poisson equation,

with Dirichlet boundary
conditions. It is an elliptic

partial differential equation

which appears in many models.

   
    .,,,

,,,,





yxyxgu

yxyxfuuLu yyxx (4)

52

h

53

Discrete approximation

Define a grid:

(assumed to be uniform for
simplicity, with mesh interval

h).

Let

uh, gh and

f h denote

discrete approximations

to

u, g
and

f defined at the nodes of the grid.

Plug

(2) for

uxx ,

and the analogous approximation for

uyy
into (4), obtaining:

h

54

,

1, , 1, , 1 , , 1
,2 2

2 2
in

on

h h
i j

h h h h h h
i j i j i j i j i j i j h h

i j

h h h h

L u

u u u u u u
f

h h

u g

   



   
  

  

(5)

This yields a nonsingular linear system of equations for
 (the discrete operator satisfies a

maximum

principle.)

We consider solving this system by the classical
approach of

Gauss-Seidel relaxation.

h
jiu ,

55

Gauss-Seidel (GS) Relaxation:

1.

Choose initial guess,

2.

Repeat until some convergence criterion is satisfied
{

Scan all variables in some prescribed order, and
change each variable

in turn so as to satisfy

the

(i,j)th equation.

}

.~ hu

h
jiu ,

~

56

Observation:

GS is a

local process,

because only near
neighbors appear in each equation. Hence, it may be
efficient for eliminating errors which can be detected
locally. But large-scale

(“smooth”) errors are

eliminated very slowly.

(The difference between GS and Jacobi is that old
neighboring values are used in Jacobi, while the most
updated values are used in GS.)

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

Key Observation re-worded:

Relaxation cannot be
generally efficient for reducing the error (i.e., the
difference vector

). But relaxation may be

extremely efficient for

smoothing the error relative
to the grid.

Practical conclusion:

1.

A smooth error can be approximated well on a
 coarser grid.

2.

A coarser grid implies less variables, hence

less
computation.

3.

On the coarser grid the error is no longer as
smooth relative to the grid, so

relaxation may once

again be efficient.

hh uu ~

79

refinement algorithm-Grid

Define a sequence of progressively finer grids all
covering the full domain. Then,

1.

Define and solve the problem on the coarsest grid,
say by relaxation.

2.

Interpolate the solution

to the next-finer grid.
Apply several iterations of

relaxation.

3.

Interpolate the solution to the next-finer grid and
continue in the same manner…

Does this method converge fast?

80

1D Model Problem Revisited

Fine-grid

(h) difference equation:

The

eigenvectors of

Lh (like those of the Jacobi
relaxation operation) are

Sine-function “waves”:

1 1
2

0 0

1

2 ,

1, 1,

,

.

h h h
h h hi i i

i

h

h
N

u u uL u f
h

i N

u u

u u

  
 

 







(sin / , sin / , sin(1) /)k Tk N jk n N k N   v  

(6)

(7)

81

Aliasing

82

Smooth waves—with

k << N—have wavelengths large
compared to

h.

Hence they can be

approximated well

on the coarse grids.

But

non-smooth eigenvectors

alias
 with smooth components on the coarse grids.

Since the right-hand side,

f h, will generally have some
 non-smooth components,

these will be “interpreted”

as

smooth components by the coarse grids,

resulting in a
smooth error.

Hence, when we interpolate a coarse-grid solution to
the fine grid, we still have smooth errors in this
solution.

These cannot be corrected efficiently by

relaxation.

83

Errors:

There is an important distinction here between the
 discretization error:

and the

algebraic error:

Where is our current approximation to .hu~

,huu 

,~ hh uu 

hu

84

Note:

Neither the solution,

uh,

nor the discretization
error are smoothed by relaxation,

only the algebraic

error.

Hence, we formulate our problem in terms of
this error.

Denote

Recall

Subtract

from both sides, and use the linearity
of

Lh to obtain:

.~ hhh uuv 

.hhh fuL 

hhuL ~

hhhhhh ruLfvL  ~ (8)

85

As we have seen, we need to smooth the error

vh on the
fine grid first, and only then solve the coarse-grid
problem. Hence, we need two types of

integrid

transfer operations:

1.

A

Restriction

(fine-to-coarse) operator:

2.

A

Prolongation

(coarse-to-fine) operator:

For restriction we can often use simple injection, but
full-weighted transfers are preferable.

For prolongation linear interpolation (bi-linear in

2D) is
simple and usually effective.

.H
hI

.h
HI

86

Two-grid Algorithm

•

Relax several times on grid

h,

obtaining

with a
smooth corresponding error.

•

Calculate the residual:

•

Solve approximate error-equation on the coarse
grid:

•

Interpolate and add correction:

•

Relax again on grid

h.

Multi-grid is obtained by recursion.

hu~

.~ hhhh uLfr 

.hH
h

HHH rIfvL 

.~~ Hh
H

hh vIuu 

87

Multi-grid Cycle

Let approximate , approximate the error on
grid 2h, etc.

 

 

 

timesonRelax

Correct

timesonRelax

Correct

timesonRelax

Correct

Solve

Set

timesonRelax

Set

timesonRelax

Set

timesonRelax

2

2
2

2
222

42
4

22
2

444

84
8

44

84448
4

8
1

444

42224
2

4
1

222

222
1

0,

0,

0,

vfuL

uIuu

vfuL

uIuu

vfuL

uIuu

fuL

uuLfIf

vfuL

uuLfIf

vfuL

uuLfIf

vfuL

hhh

hh
h

hh

hhh

hh
h

hh

hhh

hh
h

hh

MhMhMh

hhhhh
h

h

hhh

hhhhh
h

h

hhh

hhhhh
h

h

hhh































 21 ,V
hu2 hv2 hu4

88

Coarsest grid

Finest grid

 V cycle

PROLONGATION

RESTRICTION

RELAXATION

89

Multigrid vs. Relaxation

90

Remarks:

1.

Simple recursion yields a

V cycle. More generally,
we can choose a

cycle index

, and define a

–cycle

recursively as follows: Relax; transfer to next
coarser grid; perform

 –cycles; interpolate and

 correct; Relax. (On the coarsest grid define the –
cycle as an exact solution).

2.

The best number of pre-relaxation + post-
 relaxation sweeps is normally

2 or

3.

3.

The boundary conditions for all coarse-grid
problems is zero (because the coarse-grid variable
is the error).

The initial guess for the coarse-grid

solution must be zero.

91

Local Mode Analysis (LMA)

We would like to obtain a quantitative prediction
of the convergence behavior of the multigrid (or
at least two-grid) cycle.

This is important for debugging, choosing
parameters, etc.

We first derive the iteration matrix of the two-
 grid cycle. That is, the matrix Sh,

where and are the algebraic errors
before and after the two-grid cycle.

,h
before

hh
after vSv 

h
aftervh

beforev

92

Notation

grid matrix-Two

      2 11
S R I I L I L Rh h h h H H h h

H h

 
 

Rh – Relaxation matrix

Lh – Fine-grid matrix, LH – Coarse-grid matrix

– Prolongation matrix, – Restriction matrix

Ih – Fine-grid identity matrix

1

– # Relaxations before CGC

2

– # Relaxations after CGC

h
HI H

hI

93

For a given problem, we can compute the norm of
Sh and determine the convergence behavior of the
two-grid algorithm, which often provides a relevant
approximation of the multigrid

performance.

However, this requires use of a computer, and it is
only moderately useful for algorithm development.

We can in fact obtain a useful quantitative
approximate prediction by means of a local
(Fourier) analysis.

94

Fourier Analysis

Consider for simplicity the 1D problem.

Instead of fixed boundary conditions we assume
periodicity. Also, we assume our operator, Lh, to
have constant coefficients. Hence, every
element of the corresponding matrix, denoted
by

A, satisfies:

That is, every row of

A is identical to the
previous row, modulo

N, shifted one place

forward.

We next compute the eigenvectors and
eigenvalues

of matrices of this type.

  .mod1,1, Njiji  AA

95

representing a A any matrixObservation:
 constant-coefficient discretization + periodicity

can be written as a polynomial in the cyclic
forward shift matrix,

.

00001
10000

01000
00100
00010








































Here,
  .mod,1, Njiji  

96

Proof.

By induction, for any integer

p,

    .mod,, Njpiji
p

 

That is, is a cyclic forward shift by

p
places. Hence we have

p

.
1

0
,0






N

j

j
jAA 

97

is a square Bis a polynomial andPIfObservation:
 matrix with eigenvector

v and corresponding

eigenvalue

, then

v is also an eigenvector of

P(B)
with corresponding eigenvalue

P().

Proof:

Suppose

Observe that, by induction,

Hence,

.)(
0




m

i

i
icP BB

.vvB ii 

   
0

m
i

i
i

P B c P 


 v v v

98

of the type we are ASince any matrixConclusion:
 considering is a polynomial in

,

we only need to

compute the eigenvalues and eigenvectors of

.
The corresponding eigenvalues of

A will then be

easy to compute.

Let

k denote an eigenvalue of

, and let vk

denote the corresponding eigenvector. We have :

99

0 1 0

1 2 1

1

2 1 2

1 0 1

k k k

k k k

k k k
kj j j

k k k
N N N
k k k
N N

 

  

 

     
     
     
     
     

      
     
     
     
     
     

v v v
v v v

v v v

v v v
v v v

  

  

Hence,

100

1 0
2

2 1 0

0

0 1 0

,

,

,

.

k k
k

k k k
k k

k j k
j k

k k N k
k N k



 



 



 



 

v v

v v v

v v

v v v





Thus, the

N eigenvalues

are the

N th

roots
of

1:

.1 /2/1 NkiN
k e  

101

The

N eigenvectors are

2 /

2 2 2 /

2 /

1 (1) 2 /

1 1

.

ik N
k

ik N
k

k

j jik N
k

N N ik N
k

e
e

e

e














  

   
   
   
   
   

    
   
   
   

     

v  

 

Here,

k is any integer. But note that if k1 = k2 (mod N)
then the eigenvalues corresponding to k1 and k2 alias.
Thus,

k runs over any

N consecutive integers.

102

Consider now a grid of

N equally spaced points
over a domain of size

2. The grid-points are

located at
,1,,0,2

 Nj
N

jhjxj 

where

is the mesh-size.

The eigenvectors can be considered as grid-
 based functions of the form:

Nh /2

  .jikx
jk ex 

Here,

k can be any integer, but note that
k aliases with k+N . We therefore
restrict:

.
2

,1
2 



 

NNk

103

The functions

k are called Fourier components.
They possess some useful properties. Amongst
these:

Define an inner product,

where “bar”

denotes complex conjugate. Then the
Fourier components are orthogonal:

     ,1,
1

0
j

N

j
j xgxf

N
gf 







   ., mod, Nlklk  

104

   ,
1

0






N

k
kkcf xx 

where the coefficients ck are uniquely
determined by

 ., kk fc 

Furthemore,

(Parseval’s

theorem).

 .,2 ffc k 

The Fourier expansion

is unique:

105

Additional Remarks.

1. Domain length

2L: replace

x by

x/L.

2. Nonperiodic, with function vanishing at
endpoints: Antisymmetric

continuation

(sine series).

3. The wavelength is

l=2/k.

4. For multigrid analysis we define

Then,

2 , .khk
N
       

  / .ji x h i j
jx e e 

  

106

Fourier Analysis

Local mode (Fourier) analysis is the main tool
used for practical analysis of multigrid solvers.
Though it is rigorously justified only for rather
special situations, it is useful for quantitative
predictions in a wide set of circumstances.

The underlying assumption is that small subsets
comprised of one or a few Fourier components
of the form (in d dimensions)

are invariant under operations of the common
multigrid components.

 1 2

1 2

1 2

,
, , , ,

, , , ,

i

d

d

d

e

xx x
h h h


   




 
  
 

j

j







107

The Symbol

The symbol

is a generalization of the eigenvalue.
The symbol of an operator

L is denoted by .

When the Fourier mode is an eigenfunction, it is
defined by:

):1DExamples (

L̂

 ˆ .i iL e L e j j 

2
/ /

2

2

2

,

,

ˆ

xx

i x h i x h

Lu u

Le e
h

L
h

 





 

  

108

Suppose we discretize L by

Then,

So,

Truncation error:

1 1
2

2
.

h h h
j j jh h u u u

L u
h

  


/ /
2

2 .
i i

h i x h i x he eL e e
h

 
 

 


     2
2 2

2 4ˆ cos 1 sin .
2

hL
h h

        
 

   
2 4

2
2 2 2

4ˆ ˆ sin .
2

hL L O
h h h
   

         
   

109

The symbol of relaxation

Consider the discretized equation

A pointwise

relaxation can often be written as

where denotes the old approximation to
(before the relaxation step), and denotes
the new approximation.

Thus, the relaxation is characterized by the
splitting:

.h h hL u f

,h h h h h
after beforeL u L u f  

hu

.h h hL L L  

h
beforeu

h
afteru

110

:Examples

For

1D Poisson,

we obtain for Jacobi relaxation,

and for Gauss-Seidel relaxation,

1 1
2

2
,

h h h
j j jh h u u u

L u
h

  


 
 

 
   

1 1
2 2

2
, ,

h h h
after before beforej j jh h h h

after beforej j

u u u
L u L u

h h
  

 
 

 
   

 
 

1 1
2 2

2
, ,

h h h
after after beforej j jh h h h

after beforej j

u u u
L u L u

h h
  


 

111

Let denote the algebraic error
before the relaxation, and let
denote the new error. Then,

Now, consider an error that is a single Fourier
component (assumed to be an eigenfunction

of

):

h h h
before beforev u u 

0 .h h h h
after beforeL v L v  

hL 

/ /, .h i x h h i x h
before afterv A e v A e 

  

h h h
after afterv u u 

112

The relaxation operator,

Rh, is defined by

We obtain that the symbol

of

Rh is:

Examples: for Jacobi relaxation

we have

So the symbol of Jacobi relaxation

is

.h h h
after beforev R v

   
 

ˆ
ˆ .ˆ

h
h

h

LAR
A L












  

   ˆ cos .
2

i i
h
Jac

e eR
 

 


 

   2 2

2ˆ ˆ, ,
i i

h h e eL L
h h

 

 


  
 

113

For damped Jacobi relaxation

we have

So the symbol of damped Jacobi

relaxation is

 
 

ˆ1

1 cos .

h
Ja cA R A

A

 



  

  

    
    

   ˆ 1 cos .h
JacR      

114

For Gauss-Seidel relaxation

we have

Substituting the Fourier function

yields

Hence,

The symbol of Gauss-Seidel relaxation

is
therefore

     
1 1

2 0 .h h h
before after afterj j j

v v v
 
  

.
2

i

i

eA A
e



 


   1 12

2 0 .

i j i ji j

i i i j

A e A e A e

A e A A e e

 
  

  
  

 



  

    

 ˆ .
2

i
h
GS i

eR
e



 


115

Aliasing Revisited

Note that

That is, Fourier modes and alias
 with each other on grid

h.

On grid 2h the component becomes .

That is, its frequency relative to the grid is
doubled.

   2 / 2

/2 .

j

j

i x h i j

i x hi j i j i j

e e

e e e e

   

  

 



 

 

/i x he   2 /i x he  

/i x he  2 / 2i x he 

116

Aliasing Revisited

Fourier modes and alias

with
each other on grid

h.

On grid 2h the component becomes .
That is, its frequency relative to the grid is
doubled.

Thus, the fine-grid components and
alias when sampled on grid 2h.

Conclusion:

the coarse grid

2h resolves only
about

½ of the fine-grid frequencies –

those in

the range

.

/i x he   2 /i x he  

  /i x he  

/ 2 

/i x he  2 / 2i x he 

/i x he 

117

Smoothing analysis

We simplify the analysis of the two-grid algorithm
by making the following approximation:

1. The coarse-grid correction eliminates all smooth
 fine-grid components, those with .

2. The coarse-grid correction has no effect

on the
rough

fine-grid error components, with .

With these simplifications we can predict
approximately the convergence rate per fine-grid
relaxation sweep

of the two-grid cycle by computing

the smoothing factor

defined below.

/ 2 

/ 2 

118

The smoothing factor

Let denote the symbol of a relaxation
operator whose eigenvectors are Fourier
components. Then the smoothing factor

is

defined by

ˆhR

 
/ 2

ˆm ax .hR
  

 
 



119

Example:

The smoothing factor of Gauss-Seidel relaxation

is

 

   

    

/ 2

/ 2

/ 2

2/ 2 2

ˆmax

max
2

1max
2 cos sin

1 1max .
52 cos sin

h
GS

i

i

R

e
e

i

  



  

  

  

 

 

 

 

 

 

 







 

 
 

The maximum is obtained at . / 2  

120

The smoothing factor of Jacobi relaxation
 with no damping is 1, because .

Jacobi relaxation does not smooth errors at
the highest frequencies, only changes their
signs.

What is the smoothing factor of damped
Jacobi? What is the optimal damping? That is,

what is the

 which minimizes

 of damped
Jacobi? What is the corresponding

?

 cos 1 

121

Higher dimensions

The Fourier analysis can be generalized to

d
dimensions.

where

        
1 2

1 2
1 2, , , , , , , ,

d

d
j j j dx x x     jx  

  , 1, , .
k

k
j k kx j h k d  

122

Higher dimensions

The Fourier components

are

Where hk is the mesh-size in the kth coordinate.

 
 

1 1

/

,

d d
k

k k k kjk
k k

i x h i j

e e
 

  

   
      
   
 

 jx

123

The smoothing factor (for standard coarsening) is
now defined as in the

1D case, with

)2D(Example

The symbol of Gauss-Seidel Relaxation

for the
Poisson problem

is

The smoothing factor

 is the maximum of
over all

 for which the absolute value of at least

one component is at least

/2.

 
1 2

1 2

ˆ .
4

i i

i i

e eR
e e

 

   




 
 R̂ 

 1m ax , , .
def

d   

124

 0, 0

 ,  ,  

 ,   ,  Domain

The shaded area marks the part of the  domain that
is ignored when computing the smoothing factor.

125

The smoothing factor

is most easily computed
approximately by a small computer program. For
Gauss-Seidel

relaxation of the

5-point

Laplacian

,

the smoothing factor is found to be

½.

Conclusion: a

V(2,1) cycle

is expected to reduce
the error approximately by a factor

8 per cycle.

126

Exercise:

Write a MATLAB function that computes approximately
 the smoothing factor,

. The input should be two small

matrices representing the stencils of and , and also
a damping parameter,

. The function should compute the

symbol

of the relaxation, and maximize its absolute value
over a discrete subset spanning the high frequencies,

The resolution of the

’s should also be a parameter (run
with 65 by 65). Use the program to verify the analytical
results of the smoothing analysis for Jacobi relaxation
(presented later). Verify also that the smoothing factor of
point Gauss-Seidel for the

5-point

Laplacian

is

0.5.

     1 2, , , \ , , .
2 2 2 2
                        

hL hL 

127

For example, for Gauss-Seidel the input is

whereas for Jacobi it is

The symbol of the relaxation is then given by

0 0 0 0 1 0
1 4 0 , 0 0 1 ,
0 1 0 0 0 0

h hL L 

   
        
      

0 0 0 0 1 0
0 4 0 , 1 0 1 .
0 0 0 0 1 0

h hL L 

   
        
      

ˆ
1 .ˆ

h
h

h

LR
L

 




 
    

 

128

Ellipticity

and h-Ellipticity

Multigrid

methods are particularly useful and often
straightforward for elliptic problems. But the “on-off”

 definition of ellipticity

is inadequate for numerical
purposes, and a quantitative measure of “ellipticity”

of

the discrete operator is important. This is given by the
 h-ellipticity

measure, Eh, defined by

where is the symbol of .

 
 

 
/ 2

/ 2

ˆmin
,

ˆmax

h

h h
h

L
E L

L
  

  




 

 



ˆhL hL

129

We say that a discrete operator,

Lh, is

h-elliptic

if

Eh

is bounded away from zero. Generally, for ordinary
(i.e., local) relaxation methods, larger

Eh corresponds

to better “error-smoothability”

by local processing.

Basically, a large

Eh implies that all high-frequency
errors generate relatively large residuals that are
roughly of the same size. If

Eh is small, then there

are some error components whose residuals are
relatively small. Such components cannot be detected
locally, and hence they cannot be reduced efficiently
by a local relaxation.

Remark: an elliptic PDO may have a discretization
that is not h-elliptic, while a nonelliptic

PDO might

have one that is.

130

Examples:

Consider three different stencils for the Laplacian

.

(1)

Here,

Hence, and we say that Lh is

h-
 elliptic.

2

1
1 1 4 1 .

1

hL
h

  
   
   

        2 2
1 2 1 22 2

1 4ˆ 2 cos 2 cos 4 sin / 2 sin / 2 .hL
h h

         

 1 / 4 1 ,hE O 

131

Next, choose

(2)

Here,

and

Conclusion:

if this discretization is used, the error
cannot be smoothed efficiently

by local relaxation.

2

1 1
1 4 .

2
1 1

hL
h

 
     
  

   1 22

2ˆ c o s c o s 1 ,hL
h

   

0.hE 

132

Finally, choose

(3)

Here,

Again Note that in the last two examples,
the Red-Black mode

could not be smoothed.

2

1

1 .1 4 1
4

1

hL
h

    
      
    
      
     

     2 2
1 2 1 22 2

1 4ˆ 2 cos 2 2 cos 2 4 sin sin .
4

hL
h h

         

0.hE 

133

ellipticity-hSmoothing and

h-ellipticity

is a necessary and sufficient condition for
the existence of pointwise

smoothers based on a local

splitting,

where Lh + is comprised of the coefficients of variables
already relaxed, while Lh - is comprised of the
coefficients of unrelaxed

variables.

Obviously, implies for some high
frequency *,

and therefore

,h h hL L L  

  0h hE L   ˆ 0hL   

   .h hL L     

134

For , we get

Thus the smoothing factor is at best

1.

  0ˆ *  hL

   
 

*
*

*

ˆ
ˆ 1 .ˆ

h

h

L
R

L









 

135

Exercise:

Show that optimally damped Jacobi relaxation

yields
for symmetric constant-coefficient operators, a
smoothing factor

where

Eh is the

h-ellipticity

measure.

(Note that the
symmetry of the operators implies that the symbols
are real).

Hint: without loss of generality, assume that Lh is
normalized such that its diagonal is the identity matrix.
Then, write the damped Jacobi relaxation matrix in
terms of Lh .

1 ,
1

h

h

E
E

 




136

For non-symmetric stencils

we can obtain the bound

By means of a distributive relaxation. However, in
practice we can usually find far simpler and more
effective smoothers.

 
  .1

1
1

2

2







h

h

E
E

137

Anisotropic Diffusion

Let

Let

 be the angle between

(s,t) and the grid-aligned
coordinate system,

(x,y). Hence,

with

.ss ttLu u u 

     2 2 2 22 1 ,xx xy yyLu C S u CSu C S u       

 cos , sin .C S  

138

Anisotropic Diffusion

We discretize

L using the stencil

   

 

   

2 2

2 2 2 2
2

2 2

1 11 1
2 21 2 1 .

1 11 1
2 2

h

CS C S CS

L C S C S
h

CS C S CS

  

  

  

     
 

     
 

    
 

139

Anisotropic Diffusion: The Aligned case

In the previous examples, of the Laplacian

operator, we
were able to

find a

discretization that would give us a

good

h-ellipticity

measure. But suppose that the
differential operator is

yyxxL 

140

A 2nd

order discretization for the aligned linear
diffusion operator is again obtained by the standard
five-point stencil:

Here,

  .
.1.

12
.1.

1
2
















 

h
Lh

      

   

1 22

2 2
1 22

1ˆ 2 cos cos 2 1

4 sin 2 sin 2 .

hL
h

h

   

  

     

    

141

Setting vs. , for example, we
obtain hence small h-ellipticity.
Indeed, all error components which have high-

 frequency oscillations only in the x direction generate
relatively small residuals. Such errors cannot be
reduced efficiently by local relaxation.

For example, the symbol of the Gauss-Seidel relaxation
for this operator is

setting , for example we get

Thus the smoothing factor is very poor for small  as
expected.

   0,2, 21     ,
  , 0,hE O   

   
1 2

1 2

ˆ
2 1

i i

i i

e eR
e e

 

 


   




  

 0, 

   21ˆ , 0 1 4 , 0
1 3

R O   



    



(9)

(10)

142

Treating Aligned Anisotropy

There are two general approaches for handling
anisotropic operators. One method is to employ line-

 relaxation in the direction of the strong coupling

(i.e.,
for which the coefficient is relatively large –

the y

direction in this example.) This means that we relax
simultaneously a full line of variables

for each

gridpoint

index i in the x direction.

In our Gauss-Seidel example, the resulting relaxation
symbol

is

    221

1

12
ˆ






 iii

i

eee
eR  



143

Now, is maximized over the high frequencies for
, yielding

, for , which

implies very good smoothing.

The drawback of this approach is that for each y-line
we must solve a tri-diagonal system of equations. We
can do this by the usual Gaussian elimination or by a 1D
multigrid cycle.

 R
  510,2 R 0,2  0 

144

An alternative approach for anisotropic operators is
partial coarsening (or semi-coarsening). In this
approach we use the usual relaxation, but we only
coarsen in the direction in which the error is smoothed

 efficiently

(y in our example).

Thus, the relaxation symbol remains as usual, but the
coarse grid resolves more components, and the
definition of the smoothing factor changes
accordingly.

145

In our example, the smoothing factor

is given by

where is the usual Gauss-Seidel symbol (9). Given
the range of , the maximum (for small ) is now
obtained at , yielding,

again implying good smoothing properties.

 
22

ˆmax ,R    

 R̂ 

 0, /2 

    0

1ˆ ,
2 1 5

iR
i 


  


 

  

146

The General Rule of Block Relaxation

The general rule is that local (point) relaxation

only
smoothes the error efficiently in the direction of the
strongest coupling.

If we relax the strongly-coupled

variables simultaneously (block relaxation), then the
relaxation will smooth well also in the direction of the
second-strongest coupling. Thus, we can use block-

 relaxation (line, plane, etc.) to

regain full multigrid
efficiency.

Alternatively, we can refrain from coarsening in the
directions along which the error is not smoothed.

The

ultimate form of this is Algebraic Multigrid (AMG).

147

Both techniques can be used simultaneously.

For
example, if we do not know a priori the direction of
strong coupling, then we can use line relaxation in one
direction while coarsening only in the other.

This can

be generalized to higher dimensions.

Alternatively, we can use line relaxation in each of the
directions (alternating), but then the generalization to
higher dimensions is more cumbersome.

148

Conclusions

•

With proper care and insight, multigrid

methods are a
highly efficient tool for the iterative solution of
problems arising from the discretization

of elliptic

PDE

•

Honing your multigrid

algorithm to make it work for
your particular problem may be difficult.

•

A more general and robust approach –

that comes with
the cost of heavier machinery –

is Algebraic Multigrid

 Methods, introduced in the next tutorial.

	A Multigrid Tutorial
	Slide Number 2
	What’s it about?
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Slide Number 140
	Slide Number 141
	Slide Number 142
	Slide Number 143
	Slide Number 144
	Slide Number 145
	Slide Number 146
	Slide Number 147
	Slide Number 148

