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What’s it about?

A framework
 

of efficient iterative
 methods for solving

 
problems with many 

variables
 

and many scales.
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•
 

Framework: common concept, different methods.
•

 
Efficient: usually O(N) or O(N log N) operations
The importance of efficient methods becomes greater as 
computers grow stronger! 

•
 

Iterative: most nontrivial problems in our field cannot be 
solved directly efficiently.

•
 

Solving: approximately, subject to appropriate convergence 
criteria, constraints, etc.

•
 

Many variables: the larger the number of variables, the 
greater the gain of efficient methods. 

•
 

Many scales:
 

typical spatial and/or temporal sizes.

A framework of efficient iterative methods for 
solving problems with many variables and many 
scales.
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Basic Concepts:
 

Local vs. Global processing.

Imagine a large number of soldiers who need to be 
arranged in a

 
straight line and at equal distances

 
from 

each other. 

The two soldiers at the ends of the line are fixed. 
Suppose we number the soldiers 0 to N ,

 
and that the 

length of the entire line is L.
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Initial Position
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Final Position
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Global processing.
 

Let soldier number
 

j stand on the 
line connecting soldier 0 to soldier N at a distance jL/N 
from soldier number 0.
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This method solves the problem
 

directly,
 

but it 
requires a high degree of

 
sophistication:

 
recognition 

of the extreme soldiers and some pretty fancy 
arithmetic.



11

Local processing (iterative method).
 

Suppose that the 
inner soldiers’

 
initial position is

 
. 

Then repeat for i=1,2,…: Let each soldier j, j=1,…N-1 at 
iteration i move to the point midway between the 
locations of soldier j-1 and soldier j+1 at iteration i-1:

( 0 ) ( 0 )
1 2 1( , , , )Nx x x x 
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This is an
 

iterative
 

process. Each iteration brings us 
closer to the solution(?). The arithmetic is trivial.
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A step in the right direction
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Slow convergence
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Fast convergence
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Slow convergence
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Local solution: damping
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Local solution: damping
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Local solution: damping
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Local solution: damping
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The multiscale
 

idea:
 

Employ the local processing with 
simple arithmetic. But do this

 
on all the different 

scales.
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Large scale
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Large scale
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Intermediate scale
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Intermediate scale
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Small scale
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HOW MUCH DO WE SAVE?

Analysis of the Jacobi iterative process

Matrix representation:

   1 ii Sxx
where
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This matrix S
 

has N - 1 linearly independent eigenvectors, 
vk,  and corresponding real

 
eigenvalues,

 
k

Since
 

vk span the space        , any initial configuration of 
the soldiers can be written as a linear combination:

.k k
kS v v

  





1

1

0
N

k

k
kc vx

with some coefficients,
 

ck .

1N
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Hence, we obtain after
 

m iterations:

     

   

 

k
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k
k

mm

mmm

cc vvSxS
xSSxx

0

221



Conclusion:

The iteration
 

converges if the spectral radius, ,
 

of 
the iteration matrix,

 
S, is smaller than

 
1.

  0 1, 1, , 1lim m
k

m

if k N


   x 
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Observation:
 

the
 

eigenvectors
 

and
 

eigenvalues of the 
matrix

 
S are given by

with
 

k = 1, …, N –1.

Proof:
 

Using the trigonometric identity,

and the fact that
 

, we obtain by 
substitution,                   .

  sin , 1, , 1,

cos ,

k k
j

k

jk j N
N

k
N





     
 

   
 

v v 

   1 11 sin sin cos sin ,
2
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     
  

 
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Note:
 

since
 

| k | < 1, the method converges. But, for 
some eigenvectors,

 
| k | is close to

 
1, so

 
convergence is 

slow.
 

In particular, for
 

k/N  <<  1, we have,

For k =1 we obtain

Conclusion:
 

O(N 2) iterations
 

are required to reduce such 
an error by an order of magnitude.

21cos 1 .
2k

k k
N N
          
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      
   
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How much work do we save?

Jacobi’s method requires about N 2 iterations and N 2 * 
N = N 3 operations to improve the accuracy by an order 
of magnitude.

The multiscale
 

approach solves the problem in about  
Log2 (N) iterations (whistle blows) and only about N 
operations.

Example: for N = 1000 we require about:

10 iterations and 1000 operations

instead of about 

1,000,000 iterations and 1,000,000,000 operations
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How important is computational efficiency?

Suppose that we have three different algorithms
 

for a 
given problem, with different computational 
complexities for input size N :

Algorithm 1: 106 N operations

Algorithm 2: 103 N 2 operations

Algorithm 3: N 3 operations

Suppose that the problem size,
 

N, is such that 
Algorithm 1 requires one second. 

How long do the others require? 
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Algorithm 3
O(N3)

Algorithm 2
O(N2)

Algorithm 1 
O(N)

N
Computer 
Speed

(ops/sec)

0.000001 sec0.001 sec1 sec11M (~106)
(1980’s)

1 sec1 sec1 sec1K1G (~109)
(1990’s)

12 days17 min1 sec1M1T (~1012)
(2000’s)

31,710 years12 days1 sec1G1P (~1015)
(2010’s)

Stronger Computers     

Greater Advantage of Efficient Algorithms!

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The catch: in less trivial problems, we cannot 
construct appropriate equations on the large 
scales without first propagating information 
from the small scales. 

Skill in developing efficient multilevel 
algorithms is required for:

1. Choosing a good local iteration.

2. Choosing appropriate coarse-scale 
variables.

3. Choosing inter-scale transfer operators.

4. Constructing coarse-scale approximations
 to the fine-scale problem.
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Damping

Recall:
 

the
 

eigenvectors
 

and
 

eigenvalues of the 
iteration matrix

 
S are given by

with
 

k = 1, …, N –1.

Note that
 

convergence is
 

also slow
 

for

 
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This slow convergence can be overcome by
 

damping:

where
 

 is a parameter. 

Then,                       where

Note:
 

vk are
 

eigenvectors
 

of
 

S

 

. The corresponding
 eigenvalues

 
are now

For                            we have convergence,

         ,
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 
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Definition:

Eigenvectors vk with                     are called
 smooth

 
(low-frequency). 

Those with                           are called
 

rough or 
oscillatory (high-frequency).

Recall that                            so for
 

rough 
eigenvectors,

2/1 Nk 

NkN 2/

0 .k 

cos ,k
k
N
    

 
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Exercise:
 

Find                  which yields optimal 
convergence for the

 
set of rough modes

 
for 

arbitrary
 

N:

i.e., 

What is then the bound on the convergence 
factor,            , maximized over the rough modes? 
(Clues in my introductory paper.)

10 

 

2

: sup max min!,kNN k N

 
 



  k

 1,0
: sup 1 m in!,


  

 
  
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1D Model Problem

Find
 

u which satisfies:

In the particular case where f  = 0, the solution is a
 straight line

 
that connects

 
u0 with

 
u1 .

     
 
 

0

1

, 0, 1 ,

0 ,

1 .

Lu u x f x x

u u

u u

  





(1)
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Discrete approximation:
 

Since closed-form solutions 
exist only for a small number of differential equations, 
we solve such equations approximately by a

 
discrete 

approximation.

Define a grid:
 

divide the domain
 

(0,1) into
 

N intervals.
 Assume for simplicity a uniform grid of

 
mesh-size

 h=1/N.
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Finite-difference discretization; examples:

Forward differences:

Backward differences:

Central differences:

Second derivative:

Derivation: by the
 

Taylor theorem

     .hO
h

xuhxuu 




     .
2

2hO
h

hxuhxuu 




     .hO
h

hxuxuu 




         .2 2
2 hO

h
hxuxuhxuxu 


 (2)
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1 1
2

0 0

1

2 ,

1, , 1,

,

.

h h h
h h hi i i

i

h

h
N

u u uL u f
h

i N

u u

u u

  
 

 







We can thus approximate the differential 
equation by a set of algebraic difference 
equations:
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1 0
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1 1
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1 2

/
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/
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N
h
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h
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N
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f u h
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f
f u h









   
     
   
     
     

 
 
 
 
 
 
  

   



In matrix form:

This is a
 

tridiagonal
 

system of equations which 
can be solved directly or iteratively.
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2D Model Problem

Find
 

u which satisfies:

This is the
 

2D Poisson equation,
 

with Dirichlet boundary 
conditions. It is an elliptic

 
partial differential equation 

which appears in many models.

   
    .,,,

,,,,





yxyxgu

yxyxfuuLu yyxx (4)
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h
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Discrete approximation

Define a grid:
 

(assumed to be uniform for 
simplicity, with mesh interval

 
h).

Let
 

uh, gh and
 

f h denote
 

discrete approximations
 

to
 

u, g 
and

 
f defined at the nodes of the grid.

Plug
 

(2) for
 

uxx ,
 

and the analogous approximation for
 

uyy 
into (4), obtaining:

h
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,

1, , 1, , 1 , , 1
,2 2

2 2
in

on

h h
i j

h h h h h h
i j i j i j i j i j i j h h

i j

h h h h

L u

u u u u u u
f

h h

u g

   



   
  

  

(5)

This yields a nonsingular linear system of equations for
 (the discrete operator satisfies a

 
maximum 

principle.)

We consider solving this system by the classical 
approach of

 
Gauss-Seidel relaxation.

h
jiu ,
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Gauss-Seidel (GS) Relaxation:

1.
 

Choose initial guess,

2.
 

Repeat until some convergence criterion is satisfied 
{

Scan all variables in some prescribed  order, and 
change each variable

 
in turn so as to satisfy 

the
 

(i,j)th equation.

}

.~ hu

h
jiu ,

~
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Observation:
 

GS is a
 

local process,
 

because only near 
neighbors appear in each equation. Hence, it may be 
efficient for eliminating errors which can be detected 
locally. But large-scale

 
(“smooth”) errors are 

eliminated very slowly.

(The difference between GS and Jacobi is that old 
neighboring values are used in Jacobi, while the most 
updated values are used in GS.)
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Key Observation re-worded:
 

Relaxation cannot be 
generally efficient for reducing the error (i.e., the 
difference vector

 
). But relaxation may be 

extremely efficient for
 

smoothing the error relative 
to the grid.

Practical conclusion:

1.
 

A smooth error can be approximated well on a
 coarser grid.

2.
 

A coarser grid implies less variables, hence
 

less 
computation.

3.
 

On the coarser grid the error is no longer as 
smooth relative to the grid, so

 
relaxation may once 

again be efficient.

hh uu ~
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refinement algorithm-Grid

Define a sequence of progressively finer grids all 
covering the full domain. Then,

1.
 

Define and solve the problem on the coarsest grid, 
say by relaxation.

2.
 

Interpolate the solution
 

to the next-finer grid. 
Apply several iterations of

 
relaxation.

3.
 

Interpolate the solution to the next-finer grid and 
continue in the same manner…

Does this method converge fast?
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1D Model Problem Revisited

Fine-grid
 

(h) difference equation:

The
 

eigenvectors of
 

Lh (like those of the Jacobi 
relaxation operation) are

 
Sine-function “waves”:

1 1
2

0 0

1

2 ,

1, 1,

,

.

h h h
h h hi i i

i

h

h
N

u u uL u f
h

i N

u u

u u

  
 

 







(sin / , sin / , sin( 1) / )k Tk N jk n N k N   v  

(6)

(7)
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Aliasing
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Smooth waves—with
 

k << N—have wavelengths large 
compared to

 
h.

 
Hence they can be

 
approximated well 

on the coarse grids.
 

But
 

non-smooth eigenvectors
 

alias
 with smooth components on the coarse grids.

Since the right-hand side,
 

f h, will generally have some
 non-smooth components,

 
these will be “interpreted”

 
as 

smooth components by the coarse grids,
 

resulting in a 
smooth error.

Hence, when we interpolate a coarse-grid solution to 
the fine grid, we still have smooth errors in this 
solution.

 
These cannot be corrected efficiently by 

relaxation.
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Errors:

There is an important distinction here between the
 discretization error:

and the
 

algebraic error:

Where       is our current approximation to     .hu~

,huu 

,~ hh uu 

hu
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Note:
 

Neither the solution,
 

uh,
 

nor the discretization 
error are smoothed by relaxation,

 
only the algebraic 

error.
 

Hence, we formulate our problem in terms of 
this error.

Denote

Recall

Subtract
 

from both sides, and use the linearity 
of

 
Lh to obtain:

.~ hhh uuv 

.hhh fuL 

hhuL ~

hhhhhh ruLfvL  ~ (8)
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As we have seen, we need to smooth the error
 

vh on the 
fine grid first, and only then solve the coarse-grid 
problem. Hence, we need two types of

 
integrid 

transfer operations:

1.
 

A
 

Restriction
 

(fine-to-coarse) operator:

2.
 

A
 

Prolongation
 

(coarse-to-fine) operator:

For restriction we can often use simple injection, but 
full-weighted transfers are preferable.

For prolongation linear interpolation (bi-linear in
 

2D) is 
simple and usually effective.

.H
hI

.h
HI
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Two-grid Algorithm

•
 

Relax several times on grid
 

h,
 

obtaining
 

with a 
smooth corresponding error.

•
 

Calculate the residual:

•
 

Solve approximate error-equation on the coarse 
grid:

•
 

Interpolate and add correction:

•
 

Relax again on grid
 

h.

Multi-grid is obtained by recursion.

hu~

.~ hhhh uLfr 

.hH
h

HHH rIfvL 

.~~ Hh
H

hh vIuu 
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Multi-grid Cycle

Let      approximate     ,         approximate the error on 
grid 2h, etc.

 

 

 

timesonRelax

Correct

timesonRelax

Correct

timesonRelax

Correct

Solve

Set

timesonRelax

Set

timesonRelax

Set

timesonRelax

2

2
2

2
222

42
4

22
2

444

84
8

44

84448
4

8
1

444

42224
2

4
1

222

222
1

0,

0,

0,

vfuL

uIuu

vfuL

uIuu

vfuL

uIuu

fuL

uuLfIf

vfuL

uuLfIf

vfuL

uuLfIf

vfuL

hhh

hh
h

hh

hhh

hh
h

hh

hhh

hh
h

hh

MhMhMh

hhhhh
h

h

hhh

hhhhh
h

h

hhh

hhhhh
h

h

hhh































 21 ,V
hu2 hv2 hu4
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Coarsest grid

Finest grid

          V  cycle

PROLONGATION

RESTRICTION

RELAXATION



89

Multigrid vs. Relaxation



90

Remarks:

1.
 

Simple recursion yields a
 

V cycle. More generally, 
we can choose a

 
cycle index

 
, and define a

 
–cycle 

recursively as follows: Relax; transfer to next 
coarser grid; perform

 
 –cycles; interpolate and

 correct; Relax. (On the coarsest grid define the – 
cycle as an exact solution).

2.
 

The best number of pre-relaxation + post-
 relaxation sweeps is normally

 
2 or

 
3.

3.
 

The boundary conditions for all coarse-grid 
problems is zero (because the coarse-grid variable 
is the error).

 
The initial guess for the coarse-grid 

solution must be zero.
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Local Mode Analysis (LMA)

We would like to obtain a quantitative prediction 
of the convergence behavior of the multigrid (or 
at least two-grid) cycle.

This is important for debugging, choosing 
parameters, etc.

We first derive the iteration matrix of the two-
 grid cycle. That is, the matrix Sh,

where             and          are the algebraic errors 
before and after the two-grid cycle.

,h
before

hh
after vSv 

h
aftervh

beforev
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Notation

grid matrix-Two

      2 11
S R I I L I L Rh h h h H H h h

H h

 
 

Rh – Relaxation matrix

Lh – Fine-grid matrix,  LH – Coarse-grid matrix

– Prolongation matrix,     – Restriction matrix

Ih – Fine-grid identity matrix

1
 

– # Relaxations before CGC 

2
 

– # Relaxations after CGC 

h
HI H

hI
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For a given problem, we can compute the norm of    
Sh and determine the convergence behavior of the 
two-grid algorithm, which often provides a relevant 
approximation of the multigrid

 
performance.

However, this requires use of a computer, and it is 
only moderately useful for algorithm development.

We can in fact obtain a useful quantitative 
approximate prediction by means of a local 
(Fourier) analysis. 
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Fourier Analysis

Consider for simplicity the 1D problem.

Instead of fixed boundary conditions we assume 
periodicity. Also, we assume our operator, Lh, to 
have constant coefficients. Hence, every 
element of the corresponding matrix, denoted 
by

 
A, satisfies:

That is, every row of
 

A is identical to the 
previous row, modulo

 
N, shifted one place 

forward.

We next compute the eigenvectors and 
eigenvalues

 
of matrices of this type.

  .mod1,1, Njiji  AA
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representing a A any matrixObservation:
 constant-coefficient discretization + periodicity 

can be written as a polynomial in the cyclic 
forward shift matrix,

.

00001
10000

01000
00100
00010








































Here,
  .mod,1, Njiji  
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Proof.

By induction, for any integer
 

p,

    .mod,, Njpiji
p

 

That is,        is a cyclic forward shift by
 

p 
places. Hence we have

p

.
1

0
,0






N

j

j
jAA 
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is a square Bis a polynomial andPIfObservation:
 matrix with eigenvector

 
v and corresponding 

eigenvalue
 

, then
 

v is also an eigenvector of
 

P(B) 
with corresponding eigenvalue

 
P().

Proof: 

Suppose                          

Observe that, by induction,                         

Hence,

.)(
0




m

i

i
icP BB

.vvB ii 

   
0

m
i

i
i

P B c P 


 v v v
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of the type we are ASince any matrixConclusion:
 considering is a polynomial in

 
,

 
we only need to 

compute the eigenvalues and eigenvectors of
 

. 
The corresponding eigenvalues of

 
A will then be 

easy to compute.

Let
 

k denote an eigenvalue of
 

, and let vk 

denote the corresponding eigenvector. We have :
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0 1 0

1 2 1

1

2 1 2

1 0 1

k k k

k k k

k k k
kj j j

k k k
N N N
k k k
N N

 

  

 

     
     
     
     
     

      
     
     
     
     
     

v v v
v v v

v v v

v v v
v v v

  

  

Hence,
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1 0
2

2 1 0

0

0 1 0

,

,

,

.

k k
k

k k k
k k

k j k
j k

k k N k
k N k



 



 



 



 

v v

v v v

v v

v v v





Thus, the
 

N eigenvalues
 

are the
 

N th
 

roots 
of

 
1:

.1 /2/1 NkiN
k e  
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The
 

N eigenvectors are

2 /

2 2 2 /

2 /

1 ( 1) 2 /

1 1

.

ik N
k

ik N
k

k

j jik N
k

N N ik N
k

e
e

e

e














  

   
   
   
   
   

    
   
   
   

     

v  

 

Here,
 

k is any integer. But note that if k1 = k2 (mod N) 
then the eigenvalues corresponding to k1 and k2 alias. 
Thus,

 
k runs over any

 
N consecutive integers.
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Consider now a grid of
 

N equally spaced points 
over a domain of size

 
2. The grid-points are 

located at
,1,,0,2

 Nj
N

jhjxj 

where
 

is the mesh-size.

The eigenvectors can be considered as grid-
 based functions of the form:

Nh /2

  .jikx
jk ex 

Here,
 

k can be any integer, but note that 
k aliases with k+N . We therefore 
restrict:

.
2

,1
2 



 

NNk



103

The functions
 

k are called Fourier components. 
They possess some useful properties. Amongst 
these:

Define an inner product,

where “bar”
 

denotes complex conjugate. Then the 
Fourier components are orthogonal:

     ,1,
1

0
j

N

j
j xgxf

N
gf 







   ., mod, Nlklk  
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   ,
1

0






N

k
kkcf xx 

where the coefficients ck are uniquely 
determined by

 ., kk fc 

Furthemore,

(Parseval’s
 

theorem).

 .,2 ffc k 

The Fourier expansion
 

is unique:
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Additional Remarks.

1. Domain length
 

2L: replace
 

x by
 

x/L.

2. Nonperiodic, with function vanishing at 
endpoints: Antisymmetric

 
continuation 

(sine series).

3. The wavelength is
 

l=2/k.

4. For multigrid analysis we define

Then,

2 , .khk
N
       

  / .ji x h i j
jx e e 

  
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Fourier Analysis

Local mode (Fourier) analysis is the main tool 
used for practical analysis of multigrid solvers. 
Though it is rigorously justified only for rather 
special situations, it is useful for quantitative 
predictions in a wide set of circumstances. 

The underlying assumption is that small subsets 
comprised of one or a few Fourier components 
of the form (in d dimensions)

are invariant under operations of the common 
multigrid components.

 1 2

1 2

1 2

,
, , , ,

, , , ,

i

d

d

d

e

xx x
h h h


   




 
  
 

j

j






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The Symbol

The symbol
 

is a generalization of the eigenvalue. 
The symbol of an operator

 
L is denoted by   . 

When the Fourier mode is an eigenfunction, it is 
defined by:

):1DExamples (

L̂

 ˆ .i iL e L e j j 

2
/ /

2

2

2

,

,

ˆ

xx

i x h i x h

Lu u

Le e
h

L
h

 





 

  
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Suppose we discretize L by

Then,

So,

Truncation error:

1 1
2

2
.

h h h
j j jh h u u u

L u
h

  


/ /
2

2 .
i i

h i x h i x he eL e e
h

 
 

 


     2
2 2

2 4ˆ cos 1 sin .
2

hL
h h

        
 

   
2 4

2
2 2 2

4ˆ ˆ sin .
2

hL L O
h h h
   

         
   
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The symbol of relaxation

Consider the discretized equation

A pointwise
 

relaxation can often be written as 

where         denotes the old approximation to   
(before the relaxation step), and         denotes 
the new approximation.

Thus, the relaxation is characterized by the 
splitting:

.h h hL u f

,h h h h h
after beforeL u L u f  

hu

.h h hL L L  

h
beforeu

h
afteru
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:Examples

For
 

1D Poisson,

we obtain for Jacobi relaxation,

and for Gauss-Seidel relaxation,

1 1
2

2
,

h h h
j j jh h u u u

L u
h

  


 
 

 
   

1 1
2 2

2
, ,

h h h
after before beforej j jh h h h

after beforej j

u u u
L u L u

h h
  

 
 

 
   

 
 

1 1
2 2

2
, ,

h h h
after after beforej j jh h h h

after beforej j

u u u
L u L u

h h
  


 
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Let                           denote the algebraic error 
before the relaxation, and let                            
denote the new error. Then,

Now, consider an error that is a single Fourier 
component (assumed to be an eigenfunction

 
of  

):

h h h
before beforev u u 

0 .h h h h
after beforeL v L v  

hL 

/ /, .h i x h h i x h
before afterv A e v A e 

  

h h h
after afterv u u 
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The relaxation operator,
 

Rh, is defined by

We obtain that the symbol
 

of
 

Rh is:

Examples: for Jacobi relaxation
 

we have

So the symbol of Jacobi relaxation
 

is

.h h h
after beforev R v

   
 

ˆ
ˆ .ˆ

h
h

h

LAR
A L












  

   ˆ cos .
2

i i
h
Jac

e eR
 

 


 

   2 2

2ˆ ˆ, ,
i i

h h e eL L
h h

 

 


  
 
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For damped Jacobi relaxation
 

we have

So the symbol of damped Jacobi
 

relaxation is

 
 

ˆ1

1 cos .

h
Ja cA R A

A

 



  

  

    
    

   ˆ 1 cos .h
JacR      
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For Gauss-Seidel relaxation
 

we have

Substituting the Fourier function
 

yields

Hence,

The symbol of Gauss-Seidel relaxation
 

is 
therefore

     
1 1

2 0 .h h h
before after afterj j j

v v v
 
  

.
2

i

i

eA A
e



 


   1 12

2 0 .

i j i ji j

i i i j

A e A e A e

A e A A e e

 
  

  
  

 



  

    

 ˆ .
2

i
h
GS i

eR
e



 

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Aliasing Revisited

Note that

That is, Fourier modes           and                alias
 with each other on grid

 
h.

On grid 2h the component           becomes          . 

That is, its frequency relative to the grid is 
doubled.

   2 / 2

/2 .

j

j

i x h i j

i x hi j i j i j

e e

e e e e

   

  

 



 

 

/i x he   2 /i x he  

/i x he  2 / 2i x he 
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Aliasing Revisited

Fourier modes           and                alias
 

with 
each other on grid

 
h.

On grid 2h the component           becomes          . 
That is, its frequency relative to the grid is 
doubled.

Thus, the fine-grid components              and       
alias when sampled on grid 2h.

Conclusion:
 

the coarse grid
 

2h resolves only 
about

 
½ of the fine-grid frequencies –

 
those in 

the range
 

.

/i x he   2 /i x he  

  /i x he  

/ 2 

/i x he  2 / 2i x he 

/i x he 



117

Smoothing analysis

We simplify the analysis of the two-grid algorithm 
by making the following approximation:

1. The coarse-grid correction eliminates all smooth
 fine-grid components, those with                 .

2. The coarse-grid correction has no effect
 

on the 
rough

 
fine-grid error components, with                 .

With these simplifications we can predict 
approximately the convergence rate per fine-grid 
relaxation sweep

 
of the two-grid cycle by computing 

the smoothing factor
 

defined below. 

/ 2 

/ 2 
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The smoothing factor

Let      denote the symbol of a relaxation 
operator whose eigenvectors are Fourier 
components. Then the smoothing factor

 
is 

defined by

ˆhR

 
/ 2

ˆm ax .hR
  

 
 


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Example:

The smoothing factor of Gauss-Seidel relaxation
 

is

 

   

    

/ 2

/ 2

/ 2

2/ 2 2

ˆmax

max
2

1max
2 cos sin

1 1max .
52 cos sin

h
GS

i

i

R

e
e

i

  



  

  

  

 

 

 

 

 

 

 







 

 
 

The maximum is obtained at                 . / 2  
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The smoothing factor of Jacobi relaxation
 with no damping is 1, because                   . 

Jacobi relaxation does not smooth errors at 
the highest frequencies, only changes their 
signs.

What is the smoothing factor of damped 
Jacobi? What is the optimal damping? That is,

 
 

what is the
 

 which minimizes
 

 of damped 
Jacobi? What is the corresponding

 
?

 cos 1 
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Higher dimensions

The Fourier analysis can be generalized to
 

d 
dimensions.

where

        
1 2

1 2
1 2, , , , , , , ,

d

d
j j j dx x x     jx  

  , 1, , .
k

k
j k kx j h k d  
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Higher dimensions

The Fourier components
 

are

Where hk is the mesh-size in the kth coordinate.

 
 

1 1

/

,

d d
k

k k k kjk
k k

i x h i j

e e
 

  

   
      
   
 

 jx
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The smoothing factor (for standard coarsening) is 
now defined as in the

 
1D case, with

)2D(Example 

The symbol of Gauss-Seidel Relaxation
 

for the 
Poisson problem

 
is

The smoothing factor
 

 is the maximum of           
over all

 
 for which the absolute value of at least 

one component is at least
 

/2.

 
1 2

1 2

ˆ .
4

i i

i i

e eR
e e

 

   




 
 R̂ 

 1m ax , , .
def

d   
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 0, 0

 ,  ,  

 ,   ,  Domain

The shaded area marks the part of the  domain that 
is ignored when computing the smoothing factor.
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The smoothing factor
 

is most easily computed 
approximately by a small computer program. For 
Gauss-Seidel

 
relaxation of the

 
5-point

 
Laplacian

 
, 

the smoothing factor is found to be
 

½.

Conclusion: a
 

V(2,1) cycle
 

is expected to reduce 
the error approximately by a factor

 
8 per cycle.
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Exercise:

Write a MATLAB function that computes approximately
 the smoothing factor,

 
.  The input should be two small 

matrices representing the stencils of and , and also 
a damping parameter,

 
. The function should compute the 

symbol
 

of the relaxation, and maximize its absolute value 
over a discrete subset spanning the high frequencies,

The resolution of the
 

’s should also be a parameter (run 
with 65 by 65). Use the program to verify the analytical 
results of the smoothing analysis for Jacobi relaxation 
(presented later). Verify also that the smoothing factor of 
point Gauss-Seidel for the

 
5-point

 
Laplacian

 
is

 
0.5.

     1 2, , , \ , , .
2 2 2 2
                        

hL hL 
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For example, for Gauss-Seidel the input is

whereas for Jacobi it is

The symbol of the relaxation is then given by 

0 0 0 0 1 0
1 4 0 , 0 0 1 ,
0 1 0 0 0 0

h hL L 

   
        
      

0 0 0 0 1 0
0 4 0 , 1 0 1 .
0 0 0 0 1 0

h hL L 

   
        
      

ˆ
1 .ˆ

h
h

h

LR
L

 




 
    

 
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Ellipticity
 

and h-Ellipticity

Multigrid
 

methods are particularly useful and often 
straightforward for elliptic problems. But the “on-off”

 definition of ellipticity
 

is inadequate for numerical 
purposes, and a quantitative measure of “ellipticity”

 
of 

the discrete operator is important. This is given by the
 h-ellipticity

 
measure, Eh, defined by

where      is the symbol of     .

 
 

 
/ 2

/ 2

ˆmin
,

ˆmax

h

h h
h

L
E L

L
  

  




 

 



ˆhL hL
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We say that a discrete operator,
 

Lh, is
 

h-elliptic
 

if
 

Eh 

is bounded away from zero. Generally, for ordinary 
(i.e., local) relaxation methods, larger

 
Eh corresponds 

to better “error-smoothability”
 

by local processing.

Basically, a large
 

Eh implies that all high-frequency 
errors generate relatively large residuals that are 
roughly of the same size. If

 
Eh is small, then there 

are some error components whose residuals are 
relatively small. Such components cannot be detected 
locally, and hence they cannot be reduced efficiently 
by a local relaxation.

Remark: an elliptic PDO may have a discretization 
that is not h-elliptic, while a nonelliptic

 
PDO might 

have one that is.  
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Examples:

Consider three different stencils for the Laplacian
 

.

(1)

Here,

Hence,                            and we say that Lh is
 

h-
 elliptic.

2

1
1 1 4 1 .

1

hL
h

  
   
   

        2 2
1 2 1 22 2

1 4ˆ 2 cos 2 cos 4 sin / 2 sin / 2 .hL
h h

         

 1 / 4 1 ,hE O 
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Next, choose

(2)

Here,

and 

Conclusion:
 

if this discretization is used, the error 
cannot be smoothed efficiently

 
by local relaxation.

2

1 1
1 4 .

2
1 1

hL
h

 
     
  

   1 22

2ˆ c o s c o s 1 ,hL
h

   

0.hE 
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Finally, choose

(3)

Here,

Again              Note that in the last two examples, 
the Red-Black mode

 
could not be smoothed.

2

1

1 .1 4 1
4

1

hL
h

    
      
    
      
     

     2 2
1 2 1 22 2

1 4ˆ 2 cos 2 2 cos 2 4 sin sin .
4

hL
h h

         

0.hE 
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ellipticity-hSmoothing and 

h-ellipticity
 

is a necessary and sufficient condition for 
the existence of pointwise

 
smoothers based on a local 

splitting,

where Lh + is comprised of the coefficients of variables 
already relaxed, while Lh - is comprised of the 
coefficients of unrelaxed

 
variables.

Obviously,                 implies                   for some high 
frequency *,

 
and therefore 

,h h hL L L  

  0h hE L   ˆ 0hL   

   .h hL L     
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For                          , we get

Thus the smoothing factor is at best
 

1.

  0ˆ *  hL

   
 

*
*

*

ˆ
ˆ 1 .ˆ

h

h

L
R

L









 
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Exercise:

Show that optimally damped Jacobi relaxation
 

yields 
for symmetric constant-coefficient operators, a 
smoothing factor 

where
 

Eh is the
 

h-ellipticity
 

measure.
 

(Note that the 
symmetry of the operators implies that the symbols 
are real).

Hint: without loss of generality, assume that Lh is 
normalized such that its diagonal is the identity matrix. 
Then, write the damped Jacobi relaxation matrix in 
terms of Lh .

1 ,
1

h

h

E
E

 



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For non-symmetric stencils
 

we can obtain the bound

By means of a distributive relaxation. However, in 
practice we can usually find far simpler and more 
effective smoothers.

 
  .1

1
1

2

2







h

h

E
E
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Anisotropic Diffusion

Let

Let
 

 be the angle between
 

(s,t) and the grid-aligned 
coordinate system,

 
(x,y). Hence,

with  

.ss ttLu u u 

     2 2 2 22 1 ,xx xy yyLu C S u CSu C S u       

 cos , sin .C S  



138

Anisotropic Diffusion

We discretize
 

L using the stencil

   

 

   

2 2

2 2 2 2
2

2 2

1 11 1
2 21 2 1 .

1 11 1
2 2

h

CS C S CS

L C S C S
h

CS C S CS

  

  

  

     
 

     
 

    
 
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Anisotropic Diffusion: The Aligned case

In the previous examples, of the Laplacian
 

operator, we 
were able to

 
find a

 
discretization that would give us a 

good
 

h-ellipticity
 

measure. But suppose that the 
differential operator is

yyxxL 
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A 2nd
 

order discretization for the aligned linear 
diffusion operator is again obtained by the standard 
five-point stencil:

Here,

  .
.1.

12
.1.

1
2
















 

h
Lh

      

   

1 22

2 2
1 22

1ˆ 2 cos cos 2 1

4 sin 2 sin 2 .

hL
h

h

   

  

     

    
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Setting                         vs.           , for example, we 
obtain                            hence small h-ellipticity. 
Indeed, all error components which have high-

 frequency oscillations only in the x direction generate 
relatively small residuals. Such errors cannot be 
reduced efficiently by local relaxation.

For example, the symbol of the Gauss-Seidel relaxation 
for this operator is

setting                  , for example we get

Thus the smoothing factor is very poor for small  as 
expected.

   0,2, 21     ,
  , 0,hE O   

   
1 2

1 2

ˆ
2 1

i i

i i

e eR
e e

 

 


   




  

 0, 

   21ˆ , 0 1 4 , 0
1 3

R O   



    



(9)

(10)
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Treating Aligned Anisotropy

There are two general approaches for handling 
anisotropic operators. One method is to employ line-

 relaxation in the direction of the strong coupling
 

(i.e., 
for which the coefficient is relatively large –

 
the y 

direction in this example.) This means that we relax 
simultaneously a full line of variables

 
for each 

gridpoint
 

index i in the x direction. 

In our Gauss-Seidel example, the resulting relaxation 
symbol

 
is

    221

1

12
ˆ






 iii

i

eee
eR  


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Now,          is maximized over the high frequencies for        
, yielding

 
, for , which 

implies very good smoothing.

The drawback of this approach is that for each y-line 
we must solve a tri-diagonal system of equations. We 
can do this by the usual Gaussian elimination or by a 1D 
multigrid cycle.

 R
  510,2 R 0,2  0 
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An alternative approach for anisotropic operators is 
partial coarsening (or semi-coarsening). In this 
approach we use the usual relaxation, but we only 
coarsen in the direction in which the error is smoothed

 efficiently
 

(y in our example). 

Thus, the relaxation symbol remains as usual, but the 
coarse grid resolves more components, and the 
definition of the smoothing factor changes 
accordingly.
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In our example, the smoothing factor
 

is given by

where          is the usual Gauss-Seidel symbol (9). Given 
the range of , the maximum (for small ) is now 
obtained at               , yielding,                 

again implying good smoothing properties.

 
22

ˆmax ,R    

 R̂ 

 0, /2 

    0

1ˆ ,
2 1 5

iR
i 


  


 

  
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The General Rule of Block Relaxation

The general rule is that local (point) relaxation
 

only 
smoothes the error efficiently in the direction of the 
strongest coupling.

 
If we relax the strongly-coupled 

variables simultaneously (block relaxation), then the 
relaxation will smooth well also in the direction of the 
second-strongest coupling. Thus, we can use block-

 relaxation (line, plane, etc.) to
 

regain full multigrid 
efficiency.

Alternatively, we can refrain from coarsening in the 
directions along which the error is not smoothed.

 
The 

ultimate form of this is Algebraic Multigrid (AMG).
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Both techniques can be used simultaneously.
 

For 
example, if we do not know a priori the direction of 
strong coupling, then we can use line relaxation in one 
direction while coarsening only in the other.

 
This can 

be generalized to higher dimensions.

Alternatively, we can use line relaxation in each of the 
directions (alternating), but then the generalization to 
higher dimensions is more cumbersome.
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Conclusions

•
 

With proper care and insight, multigrid
 

methods are a 
highly efficient tool for the iterative solution of 
problems arising from the discretization

 
of elliptic 

PDE

•
 

Honing your multigrid
 

algorithm to make it work for 
your particular problem may be difficult. 

•
 

A more general and robust approach –
 

that comes with 
the cost of heavier machinery –

 
is Algebraic Multigrid

 Methods, introduced in the next tutorial.
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