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Abstract. Three related results in this paper will be presented for the finite element discretiza-

tion of time-harmonic Maxwell equations: a two-grid method, L2 error estimates and convergence
and complexity of adaptive finite element methods. Numerical experiments are carried out to

justify the optimality of these results.

1. Introduction

In this paper, we shall study the classical time-harmonic Maxwell equations in three dimensions
of the following form (with moderate size of frequency ω):

∇× (µ−1∇×E)− ω2(ε + iσ/ω)E = F in Ω,(1.1)
ν ×E = 0 on ∂Ω.(1.2)

We will be interested in the basic algorithmic development and analysis of the finite element dis-
cretizations and the corresponding multilevel and adaptive methods for the above model equations.

We firstly present a two-grid method for the Nédélec’s second type element discretizations. The
two-grid method, originally developed by Xu in early 90s for elliptic boundary value problems,
transforms an indefinite problem discretized on a fine grid into a symmetric positive definite (SPD)
problem on the same grid together with a discretization of the original indefinite problem on a much
coarse grid. Because of the leading term in (1.1)-(1.2) has a large kernel, the extension of the two
grid method to (1.1)-(1.2) is not straightforward. Thanks to an optimal L2 error estimate which
will be introduced in §2.2, we are able to obtain an optimal two-grid result for (1.1)-(1.2) in §2.1.

Secondly, we present an optimal L2 error estimate for the Nédélec’s type element discretizations.
Note to mention that this type of estimate is of fundamental importance in finite element theory, it
is also instrumental in developing and analyzing multilevel and adaptive finite elements. However,
one very interesting observation we have made is that an optimal L2 error estimate has still not yet
rigorously established in the literature. Despite of the much effort given in the literature, we found
either the estimate is not optimal, see Monk [6], or the proof has a nontrivial gap, see Hiptmair [3].
In this paper, we will settle this issue and present an optimal L2 estimate in §2.2.

Finally, we concern the optimality of adaptive finite element methods (AFEM), which is a result
of extensive research interests, see Cascon et. al. [1] as one most recent example of work for second
order elliptic boundary value problems. The best resutl for H(curl) positive definite problems
as far as we know, is Hoppe and Schoberl [5]. They proved the convergence of adaptive edge
finite element methods (AEFEM) for the three dimensional cases with the so-called interior node
property and extra marking for oscillation. With the techniques in Cascon et. al. [1] and several
other techniques we developed (including the aforementioned L2 error estimates), we are able to
establish optimal estimates, for both error and complexity, on AEFEM for (1.1)-(1.2) without using
interior node property and extra marking for oscillation, see §2.3.
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We have also carried out extensive numerical computations to implement various algorithms in
study and to verify the estimates that we have obtained. We will report these numerical results in
§2.1 and §2.3, respectively.

To avoid the repeated use of generic but unspecified constants, we use the notation a . b
means that there exists a positive constant C such that a ≤ Cb, the above generic constants C are
independent of the function under consideration, but they may depend on parameters of model and
the shape-regularity of the meshes.

2. Main results

We first describe some details for the model problem (1.1)-(1.2) and the finite element method to
discretize it. We assume that Ω is a Lipschitz polyhedron in R3 with connected boundary ∂Ω and
unit outwards normal ν, µ is the magnetic permeability, ω > 0 is the angular frequency, i =

√−1, ε
and σ are the electric permittivity and conductivity of the homogeneous isotropic body occupying
Ω, and F = iωJ with the applied current density J . In general, µ and ε are positive definite tensor
functions, and σ is positive definite in a conductor and vanishes in an insulator. In particular,
(1.1)-(1.2) describe the eddy current model when ε = 0 and the lossless case of the indefinite time-
harmonic Maxwell equations when σ = 0. For simplicity of exposition, we assume that µ = 1, both
ε and σ are positive constants, and F ∈ (L2(Ω))3.

Let us introduce the Sobolev space H0(curl; Ω) = {u ∈ (L2(Ω))3,∇×u ∈ (L2(Ω))3, (ν×u)|∂Ω =
0} associated with the norm ‖v‖H(curl;Ω) := (‖∇×u‖20 +‖u‖20)1/2, where ‖ ·‖0 denotes the norm in
(L2(Ω))3. The variational formulation of equations (1.1)-(1.2) is: Find E ∈ H0(curl; Ω) such that

â(E,ψ) = (F ,ψ) ∀ ψ ∈ H0(curl; Ω),(2.3)

where (·, ·) denotes the inner product in (L2(Ω))3 and

â(E,ψ) = (∇×E,∇×ψ)− ω2((ε + iσ/ω)E,ψ).(2.4)

In order to ensure the well-posedness of the variational problem (2.3), we shall make the following
assumptions throughout this paper:

(2.5) σ > 0 in Ω,

or

(2.6) σ = 0, and ω2ε is not an eigenvalue of equations (1.1)-(1.2).

Assume that Ω is discretized into a regular tetrahedron mesh Th, where h is the maximum
diameter of the tetrahedron in Th. We introduce the following Nédélec’s first type elements space
V k,1(Th) and second type elements space V k,2(Th)

V k,1(Th) =
{

vh ∈ H0(curl; Ω)
∣∣∣ vh|τ ∈ (Pk−1)3 ⊕

{
p ∈ (P̃k)3 | x · p = 0

}
for all τ ∈ Th

}
,

V k,2(Th) =
{

vh ∈ H0(curl; Ω)
∣∣∣ vh|τ ∈ (Pk)3 for all τ ∈ Th

}
,

where Pk is the space of polynomials of total degree at most k and P̃k the space of homogeneous
polynomials of order k.

Using the degrees of freedom of Nédélec edge element space V k,l(Th)(l = 1, 2), we can define the
corresponding edge interpolations Πcurl,l

h u ∈ V k,l(Th), for any u ∈ H1/2+δ̄(curl; τ) with constant
δ̄ > 0 and τ ∈ Th (c.f. [9, 10]), where the Sobolev space Hs(curl; τ) = {u ∈ (Hs(τ))3,∇ × u ∈
(Hs(τ))3} (s > 0) associated with the norm ‖u‖Hs(curl;τ) = (‖u‖2(Hs(τ))3 + ‖∇ × u‖2(Hs(τ))3)

1/2.
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The next lemma states the interpolation error estimate, see Theorem 8.15 in [8], Lemma 3.2 and
Lemma 3.3 in [2].

Lemma 2.1. Let V k,2(Th) and Πcurl,2
h be constructed as above. Then

(1) If u ∈ (Hs+1(Ω))3 for 1 ≤ s ≤ k, we have

‖u−Πcurl,2
h u‖0 + h‖∇ × (u−Πcurl,2

h u)‖0 . hs+1‖u‖(Hs+1(Ω))3 .(2.7)

(2) If u ∈ Hδ(curl; Ω) for 1/2 < δ ≤ 1, we have

‖u−Πcurl,2
h u‖H(curl;Ω) . hδ‖u‖Hδ(curl;Ω),(2.8)

The estimate of (2.8) also holds for the interpolation Πcurl,1
h .

To save notation, we shall use V (Th) for both first and second types Nédélec element spaces.
The edge finite element approximation of (2.3) is: Find Eh ∈ V (Th) such that

â(Eh,ψh) = (F ,ψh) ∀ ψh ∈ V (Th).(2.9)

In the rest of this paper, we shall assume the mesh size h is small enough such that there exists
a unique solution to (2.9).

2.1. Two-grid Method. We start with two regular tetrahedral meshes: Th and TH , with different
mesh sizes h and H such that h ¿ H. The two-grid method is to solve the original indefinite
problem in a coarse mesh space V k,2(TH) and then correct the approximation by solving a SPD
problem in the fine space V k,2(Th) for which we can use standard multigrid method or preconditions.
Note that h ¿ H, the indefinite problem to be solved is in a small size and the computation cost
is negligible.

Algorithm 2.2 (Two-Grid Method).
(1) Find EH ∈ V k,2(TH) such that

(2.10) â(EH ,ψH) = (F ,ψH) ∀ ψH ∈ V k,2(TH).

(2) Find Eh ∈ V k,2(Th) such that

(2.11) a(Eh,ψh) = (F ,ψh) + N(EH ,ψh) ∀ ψh ∈ V k,2(Th),

where

a(E,ψ) = (∇×E,∇×ψ) + (E,ψ), and N(E,ψ) = ω2((ε + iσ/ω)E,ψ)− (E,ψ).

The following theorem ensures that the approximation Eh obtained by the two-grid methods is
sufficiently close to the finite element solution Eh of (2.9).

Theorem 2.3. Under the hypotheses of Lemma 2.4, and furthermore assume the solution of (2.3)
E ∈ (Hs+1(Ω))3 for some s ∈ [1, k]. Let Eh and Eh ∈ V k,2(Th) be the approximation obtained
by Algorithm 2.2 and (2.9), respectively. Then there exist a constant δ ∈ (1/2, 1] and a constant
h0 > 0, such that for all h < h0, we have

‖Eh −Eh‖H(curl;Ω) . Hs+δ|E|(Hs+1(Ω))3 ,(2.12)

‖E −Eh‖H(curl;Ω) . (hs + Hs+δ)|E|(Hs+1(Ω))3 .(2.13)

where the constants in (2.12) and (2.13) depend only on Ω, the shape-regularity of the meshes, the
parameters ε and σ.
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Note to mention that L2 error estimates is instrumental in developing and analyzing the two-grid
method. In the following we only present the corresponding results and list an outline of its proof
in the next subsection.

Lemma 2.4. Suppose (2.3) and (2.9) are well posed and E,Eh are solutions to (2.3) and (2.9),
respectively. Then there exists a constant h0 > 0, such that for all h < h0,

(2.14) ‖E −Eh‖H(curl;Ω) . inf
vh∈V (Th)

‖E − vh‖H(curl;Ω).

Furthermore, there exist a constant δ ∈ (1/2, 1] depending only the shape of Ω (with δ = 1 when the
domain Ω is convex), such that for all h < h0,

(2.15) ‖E −Eh‖0 . inf
vh∈V (Th)

(‖E − vh‖0 + hδ‖∇ × (E − vh)‖0
)
.

where the above constants in (2.14) and (2.15) depend only on Ω, the shape-regularity of the meshes,
the parameters ε and σ.

As a consequence of Lemma 2.4 and (2.7), we obtain a priori optimal order error estimate in
L2-norm.

Corollary 2.5. Suppose the assumptions in Lemma 2.4 hold and furthermore assume E ∈
(Hs+1(Ω))3 for some s ∈ [1, k] and Eh ∈ V k,2(Th). Then there exists a constant C3 depend-
ing only on Ω, the shape-regularity of the meshes, the parameters ε and σ, such that for all h < h0,
such that for all h < h0, we have

‖E −Eh‖0 . hs+δ‖E‖(Hs+1(Ω))3 ,

where h0 and δ are given in Lemma 2.4.

Proof of Theorem 2.3. By (2.9) (2.11), the definitions of a(·, ·) and N(·, ·), we have

a(Eh −Eh,ψh) = −N(Eh −EH ,ψh)
. ‖Eh −EH‖0‖ψh‖0
. (‖E −Eh‖0 + ‖E −EH‖0) ‖ψh‖H(curl;Ω)

Picking ψh = Eh −Eh in the above inequality and noting that a(·, ·) = ‖ · ‖2H(curl;Ω), we obtain

‖Eh −Eh‖H(curl;Ω) . ‖E −Eh‖0 + ‖E −EH‖0.(2.16)

Using Corollary 2.5 and the assumption h ¿ H in (2.16), we get

‖Eh −Eh‖H(curl;Ω) . (hs+1 + Hs+1)|E|(Hs+1(Ω))3

. Hs+1|E|(Hk+1(Ω))3 ,

Using the triangular inequality and the above inequality, we obtain

‖E −Eh‖H(curl;Ω) . ‖E −Eh‖H(curl;Ω) + ‖Eh −Eh‖H(curl;Ω)

. (hs + Hs+1)|E|(Hs+1(Ω))3

which concludes the proof. ¤

From Theorem 2.3, to obtain an optimal order approximation from the two-grid method, we can
choose H = O(hλ), such that Hs+δ = hs. When the domain is convex, we can choose H = h1/2.
As an example, when H = 1/8, dimV 1,2(Th) = 7, 322, 562 while dim V 1,2(TH) = 8, 802 is much
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smaller. Note that the main computation cost is to solve a SPD problem in the fine space, and we
can use the new preconditioner of Hiptmair and Xu [4].

While the two-grid method can be used as a discretization method applied directly to (1.1)-(1.2),
it can also be applied to design efficient iterative methods for solving (1.1)-(1.2) that is directly
discretized by a finite element method. Two approaches are possible. One is to use it to devise a
multigrid method in which smoothers are only carried using symmetric positive definite system like
(2.11) while only the original discretizated system (2.10) is solved on the coarsest grid. Another
approach is to extend a result of Hiptmair and Xu [4] to design a preconditioner (that involves four
Poisson solvers a coarse grid solver on the original system, and some local symmmetric positive
definite smoothers on the finest grids).

Now we present numerical experiments of Algorithm 2.2 to support our theoretical results. We
choose Ω = (0, 1)3 and discretize it by a hierarchy of multilevel uniform cubic meshes. Each
tetrahedron mesh is obtained by dividing every cube into six sub-tetrahedra. We use the lowest
order second family of Nédélec edge elements. The right-hand side of (2.9) is chosen so that the
true solution is: U(x, y, z) = [y(1− y)z(1− z), x(1− x)z(1− z), x(1− x)y(1− y)].

H h e e ∗H−2

1/2 1/4 8.66e-2 0.346

1/3 1/9 3.90e-2 0.351

1/4 1/16 2.20e-2 0.352

1/5 1/25 1.41e-2 0.352

H h e e ∗H−2

1/5 1/25 1.19e-1 2.975

1/6 1/36 7.49e-2 2.696

1/7 1/49 5.20e-2 2.548

1/8 1/64 3.85e-2 2.464

H h e e ∗H−2

1/6 1/36 1.38e-1 4.968

1/7 1/49 8.92e-2 4.371

1/8 1/64 6.93e-2 4.435

Table 1. From left to right: error of two-grid approximation for ω = 1, ω = 5, ω = 10.

In the above table, e denotes ‖E − Eh‖H(curl;Ω). Since e ∗ H2 approaches to a constant, we
conclude ‖E − Eh‖H(curl;Ω) is second order. Note that for larger ω, we need more refined coarse
grid which reflects to the assumption: the mesh size is small enough.

2.2. Optimal L2 error estimates. One key to the proof of Lemma 2.4 is to transform the L2

error estimates into the L2 estimate of a discrete divergence-free function which belongs to the edge
finite element spaces, and then use the approximation of the discrete divergence-free function by
the continuous divergence-free function and a duality argument for the continuous divergence-free
function. In the following, we only list an outline of our proof.

For any vh ∈ V (Th), using the discrete Helmholtz decompositions for vh −Eh, we have

vh −Eh = wh +∇qh,(2.17)

where wh ∈ V 0(Th) := {uh ∈ V (Th) | (uh,∇ph) = 0 for ∀ ph ∈ Sh} and qh ∈ Sh := { ph ∈
H1

0 (Ω) ∩ C(Ω̄)
∣∣ ph|τ ∈ Pk+l−1, for ∀ τ ∈ Th, l = 1, 2}.

Then using the Galerkin orthogonality and noting that that E −Eh is discrete divergence-free,
we conclude the following Lemma.

Lemma 2.6. The following estimate holds

‖E −Eh‖0 ≤
√

2 (‖E − vh‖0 + ‖wh‖0) .(2.18)

Combining Lemma 2.6 and the Galerkin orthogonality again, we have
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Lemma 2.7. The following estimate holds

‖∇ × eh‖0 . ‖E − vh‖H(curl;Ω) + ‖wh‖0,(2.19)

where the constant only depends on the parameters α and β.

It is clear that it suffices to estimate ‖wh‖0 for completing error estimates in both L2-norm and
H(curl)-seminorm. Noting that wh is discrete divergence-free, and the following lemma shows
that the discrete divergence-free function can be well approximated by a continuous divergence-free
function.

Lemma 2.8 (see [3]). For any given uh ∈ V 0(Th), there exists a u ∈ H0(curl; Ω) that satisfies

∇× u = ∇× uh, ∇ · u = 0,(2.20)

and

‖u− uh‖0 . hδ‖∇ × uh‖0(2.21)

with a constant δ ∈ (1/2, 1] and δ = 1 for the case that Ω is smooth or convex.

In the following, we use Lemma 2.8 and a duality argument for the continuous divergence-free
function for obtaining ‖wh‖0.
Lemma 2.9. There exists a constant h0 > 0 independents of h, E and Eh, such that for all h < h0,
we have

‖wh‖0 . ‖E − vh‖0 + hδ‖∇ × (E − vh)‖0,(2.22)

where the constant δ is the exponent in Lemma 2.8.

Proof. For given wh ∈ V 0(Th) in (2.17), using Lemma 2.8, there exists a w ∈ H0(curl; Ω) satisfies

∇×w = ∇×wh, ∇ ·w = 0,(2.23)

and

‖w −wh‖0 . hδ‖∇ ×wh‖0.(2.24)

Taking the curl of both side of (2.17), we have

∇×wh = ∇× (vh −Eh).(2.25)

Using (2.24), (2.25) and the triangle inequality, we have

‖w −wh‖0 . hδ‖∇ × (vh −Eh)‖0
≤ hδ (‖∇ × eh‖0 + ‖∇ × (E − vh)‖0) .(2.26)

Using the triangle inequality, (2.26) and (2.19), we obtain

‖wh‖0 ≤ C1

(
hδ (‖∇ × eh‖0 + ‖∇ × (E − vh)‖0) + ‖w‖0

)

≤ C2

(
hδ‖E − vh‖H(curl;Ω) + hδ‖wh‖0 + ‖w‖0

)
.

where the constants Ci(i = 1, 2) independent of h, E and Eh. Choosing h1 > 0 satisfies 1−C2h
δ
1 >

0, then for all h < h1, we have

‖wh‖0 . hδ‖E − vh‖H(curl;Ω) + ‖w‖0.(2.27)

Next, we will use a duality argument to obtain the L2 estimate of w.
Let φ ∈ H0(curl; Ω) solves the following auxiliary problem

â(ψ,φ) = (w,ψ) ∀ ψ ∈ H0(curl; Ω).(2.28)
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Taking ψ = ∇q with some q ∈ H1
0 (Ω) in (2.28), and using the Green formula with the fact

∇ ·w = 0, we have

((α + iβ)∇q, φ) = 0.(2.29)

Since ∇ ·w = 0, then we have the following regularity result for auxiliary problem (2.28) (See
[7])

‖φ‖Hδ(curl;Ω) . ‖w‖0.(2.30)

Combining (2.25) and (2.23), we have

∇× (w − (vh −Eh)) = 0.(2.31)

Noting that w − (vh − Eh) ∈ H0(curl; Ω) and (2.31), thus using the exact sequence property,
there exists a p ∈ H1

0 (Ω), such that

w − (vh −Eh) = ∇p.(2.32)

Using (2.31), (2.32) and (2.29), we have

â(w − (vh −Eh),φ) = (∇× (w − (vh −Eh)),∇× φ)
− ((α + iβ)(w − (vh −Eh)),φ)

= ((α + iβ)∇p, φ) = 0(2.33)

Setting ψ = w in (2.28), and from (2.33), (2.29), Galerkin orthogonality, (2.28), (2.8) and (2.30),
we have

‖w‖20 = â(w,φ) = â(w − (vh −Eh),φ) + â(vh −Eh,φ)
= â(eh,φ)− â(E − vh,φ)

= â(eh,φ−Πcurl
h φ)− (w,E − vh)

. ‖eh‖H(curl;Ω)‖φ−Πcurl
h φ‖H(curl;Ω) + ‖w‖0‖E − vh‖0

. ‖w‖0
(
hδ‖eh‖H(curl;Ω) + ‖E − vh‖0

)
,

where Πcurl
h denotes Πcurl,1

h ( or Πcurl,2
h ). Hence we concludes that

‖w‖0 . ‖E − vh‖0 + hδ‖eh‖H(curl;Ω).(2.34)

At last, substituting (2.34) into (2.27) and using Lemmas 2.6 and 2.7, we obtain

‖wh‖0 ≤ C3

(‖E − vh‖0 + hδ‖∇ × (E − vh)‖0 + hδ‖eh‖H(curl;Ω)

)

≤ C4

(‖E − vh‖0 + hδ‖∇ × (E − vh)‖0 + hδ‖wh‖0
)
.

where the constants Ci(i = 3, 4) independent of h, E and Eh. Choosing h2 > 0 satisfies 1−C4h
δ
2 >

0, then for all h < h0 := min{h1, h2}, we obtain the estimate (2.22). ¤

Lemma 2.1 is a direct consequence of Lemmas 2.6, 2.7 and 2.9.
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2.3. Adaptive edge finite element method. In view of theoretical analysis, the finite element
solution of indefinite time-harmonic Maxwell’s equations exists uniquely and the corresponding error
estimates have been proved only provided that the mesh size is sufficiently small. Furthermore, the
mesh size strongly depend on the angular frequency ω. Noting that mesh adaptation can present the
most efficient distributions of degrees of freedom and yield sufficiently accurate solutions using the
fewest free parameters. So in this subsection, we will present some results on adaptive finite element
methods for (1.1)-(1.2) with σ = 0. Here, we only consider the case that V (Th) = V 1,l(Th)(l = 1, 2).

We use standard AEFEM procedure which is analogous to AFEM procedure in Cascon et. al.
[1] with the following a posteriori error estimator:

η2(Ek,F , Tk) =
∑

τ∈Tk

h2
τ

(‖R1(Ek)‖20,τ + ‖R2(Ek)‖20,τ

)
+

∑

f∈F(Tk)

hf

(‖J1(Ek)‖20,f + ‖J2(Ek)‖20,f

)
,

where hτ = |τ |1/3 measures the local mesh size of the element τ , hf := 1/2(hτ1 + hτ2) for any
f ∈ F(Tk) sharing by two elements τ1 and τ2, R1(Ek) := F −∇× (∇×Ek) + ω2Ek, R2(Ek) :=
F +ω2Ek, J1(Ek) := [(∇×Ek)×nf ], J2(Ek) := [(F +ω2Ek) ·nf ], [u] is the interelement jumps
across f of a function u and F(Tk) is the set of interior faces of Tk.

We define the oscillation as follows

osc2(Ek,F , Tk) = h2
τ

(‖(Id−QTk
)R1(Ek)‖20,τ + ‖(Id−QTk

)R2(Ek)‖20,τ

)

+
∑

f∈τ∩F(Tk)

hf

(‖(Id−QTk
)J1(Ek)‖20,f + ‖(Id−QTk

)J2(Ek)‖20,f

)
,

where the operator QTk
is the L2 projection onto the set of piecewise (P0)3 or P0 over τ ∈ T or

f ∈ F(Tk).
Let {Tk,V (Tk),Ek, ηk, osck}k≥0 be the sequence of meshes, finite element spaces, and discrete

solutions, estimators and oscillations produced by AEFEM in the k-th step.

Theorem 2.10. There exists constants C > 0, δ ∈ (0, 1), and h̃0 depending only on Ω and the
parameter ω, such that for all hk < h̃0, we have,

(2.35) ‖E −Ek+1‖2H(curl;Ω) + Cη2
k+1 ≤ δ

(
‖E −Ek‖2H(curl;Ω) + Cη2

k

)
.

Suppose (E,F ) ∈ As, where As denote some approximation space. Then there exist a constant
C(T0, ω) depending only on the shape of triangles in T0 and parameter ω, such that

(2.36)
(
‖E −Ek‖2H(curl;Ω) + Cosc2

k

)1/2

≤ C(T0, ω) (#Tk −#T0)
−s

.

The contraction (2.35) between two consecutive steps, hence AEFEM will converge in finite steps
for a given tolerance. Furthermore according to (2.36) it produce the best possible approximation.

The main difficulties of the proof of Theorem 2.10 are a quasi-orthogonality and a localized upper
bound of a posteriori error estimate. Due to space limitation, we only present the corresponding
Lemmas and key techniques.

Lemma 2.11 (quasi-orthogonality). for any δ0 ∈ (0, 1), there exists a constant h(δ0) solely de-
pending on the parameter ω and the domain Ω, such that, if hT ≤ h(δ0), we have

‖E −Ek+1‖2curl,Ω ≤ Λ0‖E −Ek‖2curl,Ω − ‖Ek+1 −Ek‖2curl,Ω,(2.37)

where the constant Λ0 := 1
1−δ0

.
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We use some techniques which developed in the aforementioned L2 error estimates for proving
Lemma 2.11.

Lemma 2.12 (Localized upper bound). Let RTk→Tk+1 be the set of refined elements from Tk to
Tk+1, then we have

(2.38) ‖Ek+1 −Ek‖curl,Ω . η(Ek,F ,RTk→Tk+1),

where the constant depends only on the ratio of two levels grids.

The above lemma shows that the error can be estimated by using only the indicators of refined
elements without a buffer layer. The main technique is to use some appropriate interpolation
operators. Due to a technical reason, we assume that, at most finite steps of refinements separate
two consecutive subdivisions.

At the end of subsection, we present a numerical example to support our theoretical results.
We choose a “L-shaped” domain Ω = [−1, 1]3/(0, 1] × (0, 1] × [−1,−1], the finite element space
V (Th) = V 1,1(Th), and the true solution is E = grad(r

2
3 sin( 2

3θ)) in cylindrical coordinates.
Figure 1 shows the robustness and quasi-optimality of adaptive mesh refinements of the error
‖E −Ek‖H(curl;Ω) for θ ∈ (0.1, 0.5) in different values of ω.

Figure 1. Quasi-optimality of adaptive mesh refinements of the error ‖E −
Ek‖H(curl;Ω) for different values of ω and θ.
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