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Abstract. An algebraic multigrid (AMG) method is presented for the calculation of the stationary probability
vector of an irreducible Markov chain. A modified AMG interpolation formula is proposed that produces a nonnegative
interpolation operator with unit row sums. It is shown how the adoption of a lumping technique maintains the irreducible
singular M-matrix character of the coarse-level operators on all levels. Together, these properties are sufficient to
guarantee the well-posedness of the algorithm. Numerical results show how it leads to nearly optimal multigrid efficiency
for a representative set of test problems.
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1. Introduction. This paper describes an algebraic multigrid (AMG) method for computing
the stationary probability vector of large, sparse, irreducible Markov transition matrices.

While multigrid methods, including multilevel aggregation methods [10, 8] and smoothed aggre-
gation [7], have been considered before for Markov chains, our present approach is based on AMG
for nonsingular linear systems. At the same time, it also incorporates some aspects of recent work on
aggregation multigrid for Markov chains.

Starting from the classical definition of AMG interpolation described in [5], we propose a modi-
fied interpolation formula, which produces a nonnegative interpolation operator with unit row sums.
Furthermore, it is shown how the adoption of a lumping technique, which was recently employed in an
aggregation-based method for Markov chains [7], maintains the irreducible singular M-matrix charac-
ter of the coarse-level operators on all levels. We show numerically that the resulting lumped AMG
method for Markov chains (MCAMG) leads to nearly optimal multigrid efficiency for a representative
set of test problems for which traditional iterative methods are slow to converge. The aim here is to
use a sequence of successively coarser versions of the original problem to remedy the slow convergence
that plagues traditional one-level iterative methods, like the power method, when the subdominant
eigenvalue satisfies |λ2| ≈ 1 [13].

The use of AMG has already been explored for Markov chain problems [17], in the context of
additive AMG used as a preconditioner for GMRES. Our formulation, however, is multiplicative,
and near-optimal results are obtained without needing GMRES acceleration. Our formulation is also
different in that it is related to adaptive AMG [4].

Large sparse Markov chains are of interest in a wide range of applications, including information
retrieval and web ranking, performance modelling of computer and communication systems, depend-
ability and security analysis, and analysis of biological systems [15]. Multilevel solvers for Markov
problems with improved efficiency thus promise to have significant impact in many disciplines.

2. Mathematical formulation. The problem of finding the stationary probability vector of
a Markov chain can be stated as follows. Given a column-stochastic transition-probability matrix,
B ∈ R

n×n, i.e., 0 ≤ bij ≤ 1 and

1T B = 1T , (2.1)

we seek the vector x ∈ R
n, such that

B x = x, xi ≥ 0 ∀ i, ‖x‖1 = 1. (2.2)

Here, 1 is the column vector of all ones. It can be shown that, if B is irreducible, then there exists
a unique solution to (2.2) with strictly positive components. This is a consequence of the Perron-
Frobenius theorem for nonnegative matrices [9]. In what follows, we consider the case where B is
irreducible. For the sake of completeness, we formally define irreducibility here.
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Definition 2.1 (Directed walk and directed path).
For nodes u and v in a directed graph, D = (N ,A), with node set N and arc set A, a u-v walk in D

is a finite sequence of nodes u = v0, v1, . . . , vk−1, vk = v, beginning at u and ending at v, such that
(vi−1, vi) ∈ A for i = 1, . . . , k. A directed u-v path is a directed u-v walk in which no node is repeated.

Definition 2.2 (Directed graph of a matrix).
The directed graph of A ∈ R

n×n, denoted by Γ(A), is the directed graph on n nodes v1, . . . , vn such
that an arc exists from vi to vj if and only if aji 6= 0.

Definition 2.3 (Irreducible matrix).
Matrix A ∈ R

n×n is called irreducible if and only if there exists a directed path from vi to vj for any
two distinct nodes vi, vj ∈ N (Γ(A)).

3. Singular M-matrices. Following the approach outlined in [17], we can, equivalently, restate
the problem of solving for the stationary probability vector as solving for a strictly positive vector of
unit length in the nullspace of a singular M-matrix. Mathematically, we seek the vector x ∈ R

n such
that

Ax = 0, xi > 0 ∀ i, ‖x‖1 = 1, (3.1)

where A := I −B and B is irreducible. Here, A is a singular M-matrix and 1T A = 0.
We now define singular M-matrices, show that A belongs to this class, and state a number of

properties shared by all singular M-matrices. These properties, together with irreducibility, provide
a solid theoretical foundation with which we can prove the well-posedness of our algorithm. Let ρ(B)
be the spectral radius of B. Then, we have the following definition:

Definition 3.1 (Singular M-matrix).
A ∈ R

n×n is a singular M-matrix if and only if there exists B ∈ R
n×n with bij ≥ 0 for all i, j, such

that A = ρ(B)I −B.
The justification that A := I−B is a singular M-matrix now follows readily from Definition 3.1 and

from the fact that ρ(B) = 1 for any column-stochastic matrix B. Furthermore, it is easy to see that,
if B is irreducible, then A must also be irreducible, since subtracting B from I cannot zero out any
off-diagonal elements of B (refer to Definition 2.3). The following properties of singular M-matrices
are taken from [2, 7, 17]. We choose to restate them here so that the paper is self-contained.

Theorem 3.2 (Some properties of singular M-matrices).
(1) Irreducible singular M-matrices yield a unique solution to Ax = 0, up to scaling, which can be
chosen such that all components of x are strictly positive.
(2) Irreducible singular M-matrices have nonpositive off-diagonal elements and strictly positive diag-
onal elements (n > 1).
(3) If A has a strictly positive vector in its left or right nullspace and its off-diagonal elements are
nonpositive, then A is a singular M-matrix.
(4) If A is an irreducible singular M-matrix, then each of its principal submatrices, other than A itself,
is a nonsingular M-matrix (Theorem 4.16 in [2]).

As we shall see, property (2) allows us to construct an interpolation operator with nonnegative
entries and unit row sums. These properties are also used below to prove that the coarse operators of
our AMG method are irreducible singular M-matrices on all levels.

4. Algebraic multigrid for Markov Chains. In this section, we recall the principal features
of the classical AMG V-cycle [3, 5, 16] on which our method is based. We discuss how our approach
for Markov chains deviates from the classical approach for nonsingular linear systems, and how it
incorporates aspects of recent work on aggregation multigrid for Markov chains [7]. We conclude this
section by describing our V-cycle algorithm and proving well-posedness.

4.1. Multiplicative AMG method and coarsening. One major difference between our ap-
proach for Markov chains and that of classical AMG for nonsingular linear systems is the use of
multiplicative error, ei, defined by x = diag(xi) ei, where x is the exact solution of (3.1) and xi is
the ith iterate. As we will see below, the iterates xi obtained by our algorithm have strictly positive
components. Equation (3.1) can then be rewritten as

Adiag(xi) ei = 0. (4.1)
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We observe that, at convergence, xi = x and, hence, ei = 1. This motivates the following definition
of the multiplicative coarse-level error correction:

xi+1 = diag(xi)P ec, (4.2)

where P is the interpolation operator (see Section 4.2) and ec is the error approximation on the coarse
level. It is easy to see that (4.2) is the natural extension of the additive coarse-level error correction
to the multiplicative case.

Now consider the scaled fine-level operator Ā := Adiag(xi). By Theorem 3.2(3), Ā is also an
irreducible singular M-matrix. We can rewrite Equation (4.1) in terms of Ā, which results in the
following fine-level error equation:

Ā ei = 0. (4.3)

To seek a coarse representation of Equation (4.3), we first perform the two-pass AMG coarsening
routine described in [5], which determines the set of points on the coarse level. Basing strength of
connection (and coarsening) on the scaled operator, Ā, is motivated heuristically in [8]. Recall that,
given a threshold value, θ ∈ [0, 1], the point i depends strongly on the point j if

−āij ≥ θ max
k 6=i
{−āik}. (4.4)

In this paper we use θ = 0.25. At convergence, 1 lies in the nullspace of Ā, so standard AMG
coarsening and interpolation approaches work well. The coarse-level version of (4.3) is given by

R Ā P ec = 0 or Āc ec = 0, (4.5)

with Āc := R ĀP and the restriction operator defined by the variational property, R = PT .
The attentive reader may question the well-posedness of the coarse-level equation. In fact, the

coarse-level operator Āc may not be an irreducible singular M-matrix. As we show in Section 4.3,
this problem is remedied by applying a lumping method [7] to the coarse-level operator, whereby we
obtain the lumped coarse-level operator, Âc. We prove below that this lumped Āc is an irreducible
singular M-matrix, and that the exact solution, x, is a fixed point of the V-cycle with the lumped
coarse-level error equation, Âc ec = 0.

We conclude this section by stating two identities for the unlumped Āc, which are used in Section
4.3. Let the coarse-level column vector of all ones be denoted by 1c. We choose P such that P 1c = 1

(see below), which implies that

1T
c Āc = 0 ∀ xi, (4.6)

Āc 1c = 0 for xi = x. (4.7)

4.2. Interpolation. The interpolation operator, P , transfers information from coarse to fine
levels. It is constructed in such a way that it accurately represents fine-level algebraically smooth
components, by which we mean components whose error is not effectively reduced by relaxation. In
the AMG method, interpolation is accomplished by approximating the error at each fine-level point
(F -point) as a weighted sum of the error at coarse-level points (C-points). In what follows, we
recall the definition of the AMG interpolation operator from [5], and explain how the formula for the
interpolation weights is modified to obtain the properties for P that are desirable for Markov chain
problems.

Suppose we have already performed coarsening on the current set of fine-level points, H =
{1, . . . ,m}, and have, thus, partitioned H into a set of coarse (C) and fine (F ) points. Then, for
any point i ∈ H = C ∪ F , we require that

(P ec)i =

{

(ec)i if i ∈ C,
∑

j∈Ci
wij(ec)j if i ∈ F,

(4.8)

where ec is the coarse-level error approximation, wij are the interpolation weights, and Ci is the set
of C-points that strongly influence point i according to (4.4). Observe that, for any i ∈ C, row i of
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P is all zeros except for the entry corresponding to C-point i, which equals 1. A classical formula for
AMG interpolation weights is derived in [5]:

wij = −

āij +
∑

m∈Ds
i

(

āimāmj
∑

k∈Ci
āmk

)

āii +
∑

r∈Dw
i

āir
, (4.9)

where Ci ∪Ds
i ∪Dw

i = Ni, the directed neighborhood of point i, which is the set of all points k 6= i

such that āik 6= 0. Here, Ds
i is the set of F -points that strongly influence i, and Dw

i is the set of points
in the neighborhood Ni that do not strongly influence i. Note that Dw

i may contain both F -points
and C-points.

We cannot directly use this formula for our problem for several reasons: the denominator in (4.9)
may be zero, some of the weights may be negative, and the weights do not sum to one. We do indeed
desire an interpolation operator whose rows sum to unity, that is, we desire a P such that P 1c = 1.
This is a necessary condition to establish identities (4.6) and (4.7). Note that this also implies that
constants are interpolated exactly. To ensure that P enjoys this property, we rescale the wijs of (4.8)
with the rescaled weights w̄ij given by

w̄ij =

āij +
∑

m∈Ds
i

(

āimāmj
∑

k∈Ci
āmk

)

∑

p∈Ci
āip +

∑

r∈Ds
i
āir

. (4.10)

Under the premise that Ā is an irreducible singular M-matrix, Theorem 3.2(2) ensures that all matrix
elements in (4.10) are negative. Since the two-pass AMG coarsening routine ensures that Ci 6= ∅,
it follows that the denominator in Equation (4.10) is nonzero. Furthermore, together with the fact
that Ci, Ds

i and Dw
i do not have points in common, we find that w̄ij > 0 for all i ∈ F and j ∈ Ci.

Thus, the redefined interpolation operator has nonnegative entries and unit row sums. Note that it
is important to perform both passes of the coarsening routine, since this ensures that

∑

k∈Ci
āmk 6= 0

for any i ∈ F and m ∈ Ds
i , which is required for the wijs to be well-defined. It is the second pass of

the coarsening routine that ensures that every point in Ds
i strongly depends on at least one point in

Ci.

4.3. Lumping. As we mentioned at the close of Section 4.1, the coarse-level operator, Āc, may
not be an irreducible singular M-matrix. To illustrate this point, we let matrices D, L and U be such
that Ā = D − (L + U), where D is diagonal, L is strictly lower triangular, and U is strictly upper
triangular. Then

Āc = PT Ā P = PT D P − PT (L + U)P = S −G, (4.11)

where both S = PT D P and G = PT (L + U)P are nonnegative matrices because Ā is a singular M-
matrix and P has nonnegative entries. PT D P is generally not diagonal, so Āc may have positive off-
diagonal entries, meaning it may not be a singular M-matrix. Furthermore, Āc may lose irreducibility
due to new zero entries being introduced. To rectify this problem, we adopt the lumping method
described in [7] for smoothed aggregation multigrid methods for Markov chains. An overview of the
lumping procedure is provided below.

We consider a modified version, Ŝ, of S, which is obtained by lumping parts of S to the diagonal
(explained below), resulting in the modified coarse-level operator

Âc = Ŝ −G. (4.12)

Our goal is to modify S in such a way that Âc has nonpositive off-diagonal elements and retains
nonzero off-diagonal elements where G has them (to guarantee irreducibility).

Define an offending index pair as a tuple (i, j) such that i 6= j and sij 6= 0 and (Āc)ij ≥ 0. It is for
these indices that lumping is performed. Let (i, j) be an offending index pair. To correct for the sign in
Āc at location (i, j) we add a matrix S{i,j} to S, with the elements of S{i,j} equaling β{i,j} at positions



5

(i, i) and (j, j), −β{i,j} at positions (i, j) and (j, i), and otherwise being zero. This corresponds to
lumping parts of S to the diagonal, in the sense that β{i,j} is removed from off-diagonal elements sij

and sji and added to diagonal elements sii and sjj . We choose β{i,j} > 0 so that sij − gij −β{i,j} < 0

and sji − gji − β{i,j} < 0, resulting in strictly negative off-diagonal elements in Âc at locations (i, j)
and (j, i). Note that β{i,j} is chosen such that adding S{i,j} for correcting the sign at location (i, j)
also corrects the sign at location (j, i), if necessary. This means that, if both (i, j) and (j, i) are
offending index pairs, then only one matrix S{i,j} has to be added to S. In our implementation,

β{i,j} = max{sij + (η − 1)gij , sji + (η − 1)gji}, (4.13)

and η is a fixed parameter ∈ (0, 1]. It is important to note that while lumping may introduce
new nonzero entries into Âc, it cannot create a zero entry in Âc where G is nonzero. Finally, we
experimentally observed that we should lump as little as possible, so η should be chosen small [7]. In
practice, η = 0.01 seems to be a good choice.

Finally, symmetric matrices such as S{i,j} are used to modify S so that column sums and row

sums of Āc are conserved. This ensures that properties (4.6) and (4.7) are retained after lumping: Âc

has 1 as a left-kernel vector on all levels and, at convergence, has 1 as a right-kernel vector. Indeed,
since (Ŝ − S) =

∑

S{i,j}, where the sum is over all matrices S{i,j} added to S, it follows that

1T
c Âc = 1T

c Āc + 1T
c (Ŝ − S) = 1T

c Āc = 0 ∀ xi, (4.14)

Âc 1c = Āc 1c + (Ŝ − S)1c = Āc 1c = 0 for xi = x. (4.15)

4.4. Relaxation. This paper uses weighted Jacobi for all relaxation operations. Decomposing
matrix A into its diagonal and negative strictly upper and lower triangular parts, A = D − (L + U),
weighted Jacobi for solving Ax = 0 is given by

xi+1 = (1− ω)xi + ωD−1(L + U)xi (4.16)

where ω ∈ (0, 1) is a fixed weight parameter. We observe that if A is an irreducible singular M-matrix,
then Theorem 3.2 confirms that D−1 exists, and that D−1(L + U) has nonnegative entries. Thus,
x(k+1) has strictly positive entries if x(k) has strictly positive entries and ω ∈ (0, 1). Since we can
normalize the result after relaxation, the constraint that x be a probability vector is easily obtained.

4.5. MCAMG V-cycle algorithm. Now that our approach has been described, we state our
V-cycle algorithm for Markov chains:

Algorithm 1: MCAMG(A, x, ν1, ν2), AMG for Markov chains (V-cycle)

if not at the coarsest level then
x← Relax(A, x) ν1 times
Ā← A diag(x)
Compute the set of coarse-level points C

Construct the interpolation operator P

Construct the coarse-level operator Āc ← PT Ā P

Obtain the lumped coarse-level operator Âc ← Lump(Āc, η)
ec ← MCAMG(Âc, 1c, ν1, ν2) /* coarse-level solve */

x← diag(x)P ec /* coarse-level correction */

x← Relax(A, x) ν2 times
else

x← direct solve of Ax = 0

end

Note that the set of coarse-level points, C, and the interpolation operator, P , are recalculated for
each V-cycle on each level. In principle, however, the sets of coarse-level points and the interpolation
operators can be “frozen” after a few cycles to reduce the amount of work, but this is not done for
the results presented in this paper.
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4.6. Well-posedness of MCAMG. We require well-posedness of this algorithm in the sense
that, given an iterate that is strictly positive, the algorithm gives a proper definition for the next
iterate. We begin by proving the following proposition, which is the key result necessary to prove
irreducibility of Âc.

Proposition 4.1 (irreducibility of G).
If Ā = D − (L + U) is an irreducible singular M-matrix, then G = PT (L + U)P is irreducible.

Proof. We need to show that, for any C-points with coarse-level labels I and J , there exists a
directed path from node I to node J in the directed graph of G. First, observe that if Ā is irreducible,
then (L + U) is irreducible, since diagonal entries do not matter for irreducibility. Assume that
(L + U)kl 6= 0 for some fine-level labels k and l and let I be any C-point that interpolates to l, that
is, plI 6= 0. Similarly, let J be any C-point that interpolates to k, that is, pkJ 6= 0. In Section 4.2, we
showed that every row of P contains at least one nonzero element; hence, indices I and J exist. Now,

gIJ = pT
I (L + U)pJ ,

where pI denotes column I of P and pJ denotes column J of P . Since both (pI)l and (pJ )k are
nonzero and (L + U)kl 6= 0, it follows by the nonnegativity of P and (L + U) that gIJ 6= 0. Thus, for
any fine-level points l and k such that there exists an arc from node l to node k in Γ(Ā), there must
also exist coarse-level points I and J such that there is an arc from node I to node J in Γ(G).

Now, let I and J be any distinct C-points. Furthermore, let i and j be the fine-level labels of I

and J , respectively. By the irreducibility of (L + U), there exists a directed path of distinct fine-level
points from node i to node j. Denote this path by

i = v0, v1, . . . , vk−1, vk = j,

where the nodes v0, . . . , vk are fine-level points. By the result above, there must exist coarse-level
points V0, . . . , Vk that form the directed walk (see Definition 2.1)

V0, V1, . . . , Vk−1, Vk

in Γ(G). However, any directed U -V walk contains a directed U -V path [6]. Thus, we can find a
directed path in Γ(G) that begins at V0 and ends at Vk. Finally, we observe that C-points V0 and Vk

were chosen such that they interpolate to i and j, respectively. But, by the definition of P , the only
point that interpolates to a given C-point is the point itself. Thus, it follows that V0 = I and Vk = J .
Therefore, there exists a directed path from node I to node J in the directed graph of G. Since I and
J were arbitrary, G is irreducible.

Well-posedness of the algorithm now follows from the first of the following two theorems; the
second theorem is a requirement for convergence of the method.

Theorem 4.2 (Singular M-matrix property of lumped coarse-level operator).
Âc is an irreducible singular M-matrix on all coarse levels and, thus, has a unique right-kernel vector
with positive components (up to scaling) on all levels.

Proof. Assume that Ā is an irreducible singular M-matrix and let Ā = D−(L+U). By Proposition
4.1, matrix G = PT (L + U)P is irreducible. Lumping ensures that Âc has nonzero entries where G

has nonzero entries. Hence, Âc is irreducible. To establish the singular M-matrix property, observe
that lumping ensures that Âc has nonpositive off-diagonal entries. It follows by (4.14) and Theorem
3.2(3) that Âc is an irreducible singular M-matrix. By Theorem 3.2(1), Âc has a unique right-kernel
vector with strictly positive components (up to scaling). The proof now follows formally by induction
over the levels.

Theorem 4.3 (Fixed-point property of MCAMG V-cycle).
The exact solution, x, is a fixed point of the MCAMG V-cycle.

Proof. Property (4.15) implies that ec = 1c is a solution of the coarse-level equation Âc ec = 0

for xi = x. We note that this solution is unique (up to scaling) since Âc is an irreducible singular
M-matrix. The coarse-level correction formula then gives xi+1 = diag(xi)P ec = diag(x)P 1c = x.
The result now follows by the fact that the exact solution, x, is a fixed point of the weighted Jacobi
relaxation scheme (see Section 4.4).
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5. Numerical results. In this section we present numerical convergence results for MCAMG.
Testing is performed for a variety of problems which fall into two distinct categories: those for which
B has a real spectrum, and those for which the spectrum of B is complex. In the latter case we plot
the spectrum of B for a given problem size.

In the tables that follow, n is the number of degrees of freedom and γ is the geometric mean of
the convergence factors of the last five V-cycles, which are defined as the ratios of the one-norm of the
residual, ‖Axi‖1, after and before each cycle. Note that the xi are scaled such that ‖xi‖1 = 1. For all
the numerical results presented in this paper, we start from a random, strictly positive initial guess
and iterate until the residual has been reduced by a factor of 10−8 measured in the one-norm, or until
100 cycles have been performed, whichever comes first. We perform a direct solve on the coarse level
when n < 12. All V-cycles used are (1, 1) cycles, with one pre-relaxation and one post-relaxation on
each level. A scalable (or optimal) method requires γ to be uniformly bounded away from one as n

is increased, resulting in the number of required iterations to be bounded as well. In the tables, it is
the number of iterations performed and lev is the number of levels in the last cycle. The weight in
the weighted Jacobi relaxation is chosen as ω = 0.7. The operator complexity of the last cycle, Cop,
is defined as the sum of the number of nonzero elements in all operators, A, on all levels divided by
the number of nonzero elements in the fine-level operator. This number gives a good indication of the
amount of work required for a cycle and, for a scalable (or optimal) method, it should be bounded
by a constant not too much larger than one as n increases. We also provide an effective convergence
factor, defined as γeff = γ1/Cop . This effective convergence factor takes work into account and makes
it easier to evaluate the overall efficiency of the method as n increases. For a scalable method, γeff

should be bounded uniformly by a constant less than one as the problem size increases. Finally, Rl

is the lumping ratio of the last cycle, defined as the sum of the number of “offending” elements in
operators A on all levels divided by the sum of the number of nonzero elements in A on all levels. This
ratio gives the fraction of matrix elements for which lumping is required, and is, thus, an indication
of the extra work required for lumping. Note that no lumping is required in the fine-level matrix, so
lumping only contributes extra work starting from the second level.

For the first four test problems, we compare our results with numeric tests performed using
Algebraic Smoothed Aggregation for Markov chains (A-SAM) in [7]. Depending on the case, so-called
distance-one or distance-two aggregation are employed (see [7]), whichever is the most efficient.

5.1. Real spectrum problems. In this section we consider test problems for which B has a
real spectrum. These include a uniform two-dimensional (2D) lattice, an anisotropic 2D lattice and a
random walk on an unstructured planar graph. Each test problem has also been considered in [7], so
our description is brief. The test problems are generated by undirected graphs with weighted edges.
The weights determine the transition probabilities: the transition probability from node i to j is given
by the weight of the edge from node i to j, divided by the sum of the weights of all outgoing edges
from node i. It is easy to show that the spectrum of the resulting transition matrices is real.

In the uniform lattice, all weights are chosen equal to 1, and in the anisotropic lattice, horizontal
weights are 1 while vertical weights are 10−6 (see [7]). The numerical results for the uniform lattice
and the anisotropic lattice are given in Table 5.1 and Table 5.2, respectively. The results obtained

MCAMG A-SAM [7] distance-two
n γ it Cop γeff lev Rlump γ it Cop γeff lev Rlump

64 0.22 11 2.02 0.47 3 0 0.42 18 1.25 0.50 2 0.0e-0
256 0.25 12 2.20 0.54 5 0 0.47 19 1.35 0.57 3 1.2e-3

1024 0.23 11 2.20 0.51 6 0 0.49 20 1.42 0.60 4 4.5e-3
4096 0.23 11 2.20 0.52 7 0 0.49 20 1.47 0.62 4 1.7e-3

16384 0.24 11 2.20 0.52 8 0 0.59 20 1.56 0.72 5 1.4e-3
65536 0.24 11 2.20 0.52 9 0 0.66 21 1.59 0.77 6 1.3e-3

Table 5.1
Uniform 2D lattice.

for the uniform lattice and the anisotropic lattice are very similar and, in both cases, the MCAMG
V-cycles lead to computational complexity that is optimal. Furthermore, we observe that, in each
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MCAMG A-SAM [7] distance-two
n γ it Cop γeff lev Rlump γ it Cop γeff lev Rlump

64 0.19 11 2.15 0.46 4 0 0.40 17 1.76 0.59 3 0.0e-0
256 0.19 11 2.42 0.51 6 0 0.33 15 2.23 0.61 4 7.4e-4

1024 0.18 11 2.58 0.52 8 0 0.33 14 2.81 0.68 5 1.6e-3
4096 0.18 11 2.67 0.53 10 0 0.33 14 3.43 0.73 7 4.9e-4

16384 0.18 11 2.73 0.54 12 0 0.33 13 4.17 0.77 7 2.5e-4
65536 0.18 11 2.76 0.54 14 0 0.32 13 4.80 0.79 9 7.6e-5

Table 5.2
Anisotropic 2D lattice (ε = 1e − 6).

case, the same number of iterations are required to achieve convergence and the effective convergence
factors are almost identical. Note also that no lumping is required on the last cycle. In both cases, it
is clear that MCAMG significantly outperforms A-SAM [7].

In our final test problem of this section, we consider an unstructured planar (undirected) graph
and calculate the stationary probability distribution of the random walk on the graph. The graph is
generated by choosing n random points in the unit square, and triangulating them using Delaunay
triangulation. The random walk on the graph is modelled by a Markov chain, with the transition
probability from node i to node j given by the reciprocal of the number of edges incident on node i

(equal weights). Table 5.3 shows good convergence results for the unstructured planar graph problem

MCAMG A-SAM [7] distance-one
n γ it Cop γeff lev Rlump γ it Cop γeff lev Rlump

1024 0.40 15 2.13 0.65 6 0 0.53 20 1.69 0.68 5 2.6e-2
2048 0.33 14 2.22 0.61 7 3.2e-5 0.52 19 1.68 0.68 5 2.1e-2
4096 0.40 15 2.19 0.66 7 3.2e-5 0.61 21 1.80 0.76 5 2.4e-2
8192 0.40 15 2.25 0.66 8 4.7e-5 0.64 22 1.92 0.79 7 2.5e-2

16384 0.37 14 2.26 0.65 9 3.5e-5 0.76 30 2.03 0.87 7 2.4e-2
32768 0.37 14 2.28 0.65 9 7.6e-5 0.74 28 2.08 0.86 7 2.4e-2

Table 5.3
Unstructured planar graph.

with very little lumping on the last cycle. It appears that Cop is bounded, and consideration of γ

and the number of iterations suggest that the computational complexity is optimal. Compared to the
results in [7], it is evident that MCAMG significantly outperforms A-SAM for this test problem.

5.2. Complex spectrum problems. In this section we consider the test problems for which
B has a complex spectrum. These include a tandem queueing network and a stochastic Petri net
problem. These test problems have also been considered in [7, 10, 15]. We conclude this section with
a plot of the spectrum of B for each test problem.

The first test problem is an open tandem queueing network from [15]; see also [7]. Table 5.4 shows
the numerical results for the tandem queueing network test problem. Iteration numbers are constant

MCAMG A-SAM [7] distance-two
n γ it Cop γeff lev Rlump γ it Cop γeff lev Rlump

256 0.32 15 4.08 0.75 5 7.6e-2 0.39 18 1.94 0.61 4 1.1e-1
1024 0.32 15 4.41 0.77 7 7.4e-2 0.41 20 2.04 0.64 4 7.6e-2
4096 0.32 16 4.49 0.78 8 7.0e-2 0.45 24 2.12 0.69 5 5.5e-2

16384 0.32 16 4.58 0.78 10 9.2e-2 0.56 30 2.18 0.77 6 5.3e-2
65536 0.33 15 4.56 0.78 11 4.9e-2 0.71 37 2.37 0.86 6 1.3e-1

Table 5.4
Tandem queueing network.
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and the operator complexity grows somewhat as a function of problem size, but appears bounded.
The amount of lumping required for this nonsymmetric 2D problem is larger than for the previous
problems, but is still small and does not add much extra work. These results are competitive with
those obtained using A-SAM in [7].

The final test problem we consider is derived from a stochastic Petri net (SPN). Petri nets are
a formalism for the description of concurrency and synchronization in distributed systems. They
consist of: places, which model conditions or objects; tokens, which represent the specific value of the
condition or object; transitions, which model activities that change the value of conditions or objects;
and arcs, which specify interconnection between places and transitions. A stochastic Petri net is a
standard Petri net, together with a tuple Λ = (r1, . . . , rn) of exponentially distributed transition firing
rates. Furthermore, we know from [11] that a finite place, finite transition, marked stochastic Petri
net is isomorphic to a one-dimensional discrete space Markov process. For an in-depth discussion of
Petri Nets, the reader is referred to [1, 11].

We test MCAMG on the SPN described in [10]. Table 5.5 shows that the operator complexity is

n γ it Cop γeff lev Rlump

1496 0.38 16 4.72 0.82 9 2.28e-2
2470 0.38 16 4.86 0.82 10 2.28e-2
3795 0.38 15 5.17 0.83 10 2.16e-2

10416 0.39 16 5.71 0.85 11 2.09e-2
16206 0.39 16 5.89 0.85 11 2.07e-2
23821 0.39 16 6.11 0.86 12 2.08e-2
33511 0.39 16 6.29 0.86 13 2.08e-2
45526 0.39 16 6.47 0.87 13 2.09e-2

Table 5.5
Stochastic Petri net, Λ = (1, 3, 7, 9, 5).

fairly large for this example and grows somewhat as the problem size increases. However, we observe
that the effective convergence factor, γeff , is essentially constant, so optimal complexity is nearly
achieved.

Figure 5.1 shows the unit circle in the complex plane and the spectrum of B for each test problem.
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6. Conclusions and future work. We demonstrated how multiplicative algebraic multigrid
with lumping and a modified interpolation formula can be used to find the stationary probability
vector of a Markov chain. It was shown that, with lumping and a modified interpolation formula, the
coarse-level operators are irreducible singular M-matrices on all levels, resulting in strictly positive
coarse-level corrections. It was also shown that the exact solution is a fixed point of our algorithm. We
performed numerical testing for a wide variety of test problems, and considered problems with both
real and complex spectra. For each test case, we observed that MCAMG V-cycles lead to optimal
or nearly optimal multigrid efficiency, that is, the effective convergence factor, γeff , was bounded
uniformly by a constant less than one as the problem size increased. We observed that MCAMG was
competitive with Algebraic Smoothed Aggregation Multigrid for Markov chains (A-SAM) from [7],
and in most cases, outperformed A-SAM.

Further possible avenues of research include parallel implementations of MCAMG, acceleration
of AMG V-cycle convergence using combinations of previous iterates as in Krylov methods [14], and
use of acceleration on all recursive levels as in K-cycle methods [12].
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