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Abstract. Multigrid methods can provide computable estimates of the truncation error for a
discretized partial differential equation by comparing discretizations on grids of two different mesh
sizes. [11] studied the differences between the standard formulation and a more accurate formulation
for linear problems limited on non-staggered grids. This paper extends the accurate truncation error
estimates to non-linear problems on staggered grids and gives applications to the Cauchy-Riemann
equations, Stokes equations and Navier-Stokes equations.
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1. Introduction. Multigrid methods use approximations on grids of different
mesh sizes to obtain fast solvers for boundary value problems [2, 8]. Comparing the
approximations on different grids also provides computable estimates of the trunca-
tion error on the coarse grid, which can then be used in adaptive grid refinement
algorithms or in extrapolation to higher-order accuracy (τ -extrapolation). The basic
procedures have been presented in many places, e.g., [6, 8, 14]. However, the stan-
dard formulation (e.g., [14]) includes an assumption (not always explicitly stated) on
the residual transfer operator; when this assumption is violated, the truncation error
estimates are inaccurate unless a high-order residual transfer is used. A more general
formulation [11] based on the approach of [12] which gives accurate truncation error
estimates in all cases without the need for high-order residual transfers. However, the
analysis in [11] was limited to linear differential operators on non-staggered grids.

The purpose of this paper is to extend the analysis to nonlinear partial differ-
ential equations on staggered grids. Bernert [1] has discussed τ -extrapolation for
Navier-Stokes equations on staggered grids. According to [1], the only way to do
τ -extrapolation (and presumably to compute accurate truncation error estimates) on
staggered grids is to use high-order restrictions from fine to coarse grid and high-order
averaging operators on the coarse grid. However, based on the analysis and numeri-
cal results presented here, a much simpler approach exists. The analysis follows [11]
by using pointwise asymptotic estimates (rather than bounds on error norms). The
presentation is organized as follows. Section 2 defines the problem and notation. In
section 3 we state and prove the main result relating the accuracy of the truncation
error estimates to the accuracy of the discretization and grid transfers. Numerical re-
sults for the Cauchy-Riemann equations are given in section 4 and applications to the
Stokes equations are written in section 5. The results for the nonlinear Navier-Stokes
equations are displayed in section 6. Discussion and conclusions are summarized in
section 7.

2. Problem formulation. A nonlinear partial differential equation is denoted
by

L(u) = 0 (2.1)
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on a domain Ω ⊂ Rd, where L : Cn(Ω) → C(Ω) is a nonlinear differential operator
and u ∈ Cn(Ω) is the solution. The boundary condition is ignored here since it has
no impact on the analysis presented in this paper. Note that a linear PDE Lu = f is
a special case of (2.1) with L(u) := Lu − f . If L is C2, and if u + tw, 0 ≤ t ≤ 1, is
contained in Cn(Ω), by using the Taylor formula, we have

L(u+ w) = L(u) + DL(w) +O|w|2, (2.2)

where DL is the Fréchet derivative [4, 5].
The discretization of Equation (2.1) on a grid Ωh indexed by a mesh size param-

eter h is of the form

Lh(uh) = 0, (2.3)

where Lh is the discrete form of the operator on grid Ωh, and uh is the correspond-
ing (exact) solution of the discrete equation. While we have in mind finite-difference
discretizations, this formulation could also describe finite element or other discretiza-
tions. Similarly, for the discrete equation, if Lh is C2, and if u + tw, 0 ≤ t ≤ 1, is
∈ Cn(Ω), we have

Lh(Îhu+ Îhw) = Lh(Îhu) + DLh(Îhw) +O||Îhw||2, (2.4)

where DLh is Fréchet derivative [3] and Îh represents linear restriction (e.g., pointwise
restriction) from Ω to grid Ωh.

The corresponding (local) truncation error is

τh = τh(u) := Lh(Îhu). (2.5)

Comparing (2.2) with (2.4), when the truncation error is order of p, and w = O(hp),
by applying the Fréchet derivative for the truncation error term of order p, there exists
the approximation

DLh(Îhw) = ÎhDL(w) +O(hp+p), (2.6)

In addition to the discrete equation (2.3), a multigrid method also uses a corresponding
discrete equation on a coarser grid ΩH , with mesh ratio ρ = h/H < 1 (usually
ρ = 1/2). The coarse grid problem is denoted as

LH(uH) = 0. (2.7)

Corresponding to the linear relative local truncation error in [11]

τHh := LH(ÎHh ũ
h)− fH − IHh (Lhũh − fh), (2.8)

we define the nonlinear relative local truncation error

τHh := LH(ÎHh ũ
h)− IHh Lh(ũh). (2.9)

Here ũh is the current approximation to the true (discrete) solution uh of the fine-grid
equation (2.3), ÎHh represents the fine-to-coarse transfer of the solution (which is not
necessary the same as the solution transfer used FAS because there is no connection
between these two solution restriction operators), and IHh is the fine-to-coarse residual
transfer operator (e.g., full weighting).
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3. Analysis. Our main result is the following.
Theorem 3.1 (Truncation Error Estimate). Assume that there exists p ≥ 1 and

q ≥ 1 such that if u ∈ Cn+p+q(Ω), and L is C2, the truncation error (2.5) satisfies
(A1) τh = hpÎhv +O(hp+q) with v ∈ Cn+q(Ω),
that the approximate solution ũh of the discrete problem (2.3) satisfies
(A2) ũh = Îh(u+ w), w = O(hp),
and that there exists r ≥ 1 and t ≥ 1such that for any φ ∈ Cr(Ω), and ψ ∈ Ct(Ω),
(A3) IHh Î

hφ = ÎHφ+O(hr)
(A4) ÎHh Î

hψ = ÎHψ +O(ht).
Then

τH − γτHh = O(hα) (3.1)

where γ = (1− ρp)−1 = Hp/(Hp − hp) and α = min(p+ q, t, p+ r, p+ p).
Proof. Following [11] we use (A1) and (A3) to estimate the truncation error

difference between grids Ωh and ΩH as

(∆τ)Hh := τH − IHh τh

= HpÎHv − hpIHh Îhv +O(hp+q)

= Hp(1− ρp)ÎHv +O(hp+r) +O(hp+q)

= (1− ρp) τH +O(hp+r) +O(hp+q). (3.2)

We then use (A2), (A3), (A4), (2.4), and (2.6) relate (∆τ)Hh to τHh via

τHh − (∆τ)Hh =
[
LH(ÎHh ũ

h)− IHh Lh(ũh)
]
−
[
LH(ÎHu)− IHh Lh(Îhu)

]
=
[
LH

(
ÎHh Î

h(u+ w)
)
− IHh Lh

(
Îh(u+ w)

)]
−
[
LH(ÎHu)− IHh Lh(Îhu)

]
= DLH(ÎHw)− IHh DLh(Îhw) +O(ht) +O(hp+p)

= ÎHDL(w)− IHh ÎhDL(w) +O(ht) +O(hp+p)

= O(hp+r) +O(ht) +O(hp+p). (3.3)

Combining (3.2) and (3.3) yields the desired result.
Similarly to the linear case, a higher-order extrapolation is obtained by choosing

t ≥ 3 to calculate the truncation error estimate:
Corollary 3.2 (τ -Extrapolation). Under the assumptions of Theorem 3.1, the

extrapolated discretization

LH ūh = f̄H := γτHh (3.4)

has accuracy O(hα).
Proof. Using (3.1) the associated truncation error is

τ̄H := LH ÎHu− f̄H = τH − γτHh = O(hα). (3.5)

As noted by Schaffer [12] and Hackbusch [16], at convergence on grid Ωh, the
extrapolated equation (3.4) gives the same result as Richardson extrapolation for uh

when Lh(uh) := Lhuh − fh is affine.
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4. Cauchy-Riemann equations. As a first example of solving a system of par-
tial differential equations on staggered grid consider the Cauchy-Riemann equations

ux + vy = F1, (4.1a)

uy − vx = F2, (4.1b)

on a domain Ω = [0, 1] × [0, 1] with Dirichlet boundary conditions: specifying the
true solution value of u on east and west boundary and the true solution value of v
on north and south boundary, where u = u(x, y) and v = v(x, y) are the unknown
functions, the subscripts denote partial derivative, and F1 and F2 are given functions
of x and y.

u
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v
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Fig. 4.1. Sixteen fine and four coarse staggered grid cells and corresponding unknowns. For
the Cauchy-Reimann equations, the first equation is defined at the cell centers and second equation
is defined at cell vertices. For the Stokes and Navier-Stokes equations, the first momentum equation
is defined at u points, the second momentum is defined at v points, and the third continuity equation
is defined at the cell centers. This figure is after [15]).

We approximate equations (4.1) by central difference on staggered grid (shown in
Fig. 4.1 in the following form

∂hxu
h + ∂hy v

h = F1(x, y) at cell centers, (4.2a)

∂hyu
h − ∂hxvh = F2(x, y) at interior vertices, (4.2b)

where ∂hxφ
h = 1

h (φ(x+ h
2 , y)−φ(x− h

2 , y)) and ∂hy is defined similarly. The truncation
error is O(h2), and (A1) holds with p = 2 and q = 2.
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A multigrid method with Distributive Gauss-Seidel (DGS) relaxation ([6, 18]) as
its smoother on each grid is used to solve this system. The coarse grid correction
consists of geometric transfer operators and direct coarse-grid discretization which
is the analog of (4.2). The assumption (A3) is satisfied by averaging restriction for
center residuals and injection for vertex residuals. By using Taylor expansion for the
averaging restriction

1
4

 1 1
•

1 1

 , (4.3)

for any function φ ∈ C2(Ω), we have

IHh I
hφ = IHφ+

h2

8
IH
[
∂2φ

∂x2
+
∂2φ

∂y2

]
+ o(h2), (4.4)

which leads to r = 2. The assumption (A4) for the fine-to-coarse solution transfer
ÎHh to calculate the truncation error estimate is fulfilled by a fourth-order (t = 4)
interpolation in one dimension: at the interior points this is given by

1
16
[
−1 9 • 9 −1

]
, (4.5)

and adjacent to the boundaries the stencil is modified to

1
16
[

5 • 15 −5 1
]

or
1
16
[

1 −5 15 • 5
]
. (4.6)

The right hand sides of the system and the boundary data are chosen to match
the analytical solutions u(x, y) = e1.8u cos(3.7y) and v(x, y) = − cos(1.8x) sin(3.7y).
The discrete problem is solved by enough multigrid V-cycles that the solutions have
effectively converged on the fine grid, thus satisfying assumption (A2). Consequently,
according to (3.5), the τ -extrapolation (3.4) produces an approximation which is
O(h4).

Figure. 4.2 shows results for the u equation, which verify the conclusion of the
theorem; results for the v equation (not shown) are similar. In the figure, various
measures of the error in the truncation error estimates, i.e., the left-hand side of (3.1)
are plotted as functions of N . The truncation error is about O(h2) and the error
in the truncation error estimates is about O(h4) except the maximum error over the
whole domain which is about O(h3). This is due to the large error of the points near
the boundary. The relative poor performance near the boundary does not invalidate
the analysis in section 3: pointwise, the errors are O(h4) as expected.

5. Stokes equations. As a prelude to nonlinear Navier-Stokes equations, we
first consider the linear Stokes equations,

−∆u+ px = F1, (5.1a)

−∆v + py = F2, (5.1b)

ux + vy = F3, (5.1c)

on a domain Ω = [0, 1]× [0, 1] with Dirichlet boundary conditions: specifying the true
solution for u on east and west boundary, and the true solution of v on north and
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Fig. 4.2. Error in the truncation error estimates (solid lines) and true truncation error (dashed
lines) for the Cauchy-Riemann equation (4.1a). The curves give the maximum error over the
domain, the maximum errors with strips of widths 1/16 and 1/8 adjacent to the boundaries omitted,
and the errors at the point (1/2, 1/4). Dotted lines give slopes for orders p = 2, 3 and 4.

south boundary, where ∆ is the Laplacian operator, (u, v) represents the velocity of
a fluid, p represents the pressure, and Fi are given forcing functions. The discrete
approximation for (5.1) on a staggered grid (Fig. 4.1) is,

−∆huh + ∂hxp
h = Fh1 at u-face centers, (5.2a)

−∆hvh + ∂hy p
h = Fh2 at v-face centers, (5.2b)

∂xu
h + ∂yv

h = Fh3 at cell centers, (5.2c)

where ∆h is the usual 5-point approximation for Laplace operator. For a point near
a boundary, this approximation may involve a ghost point, which is obtained by a
quadratic extrapolation from the boundary value and the first two nearby interior
points. The other operators are the same as described in the Cauchy-Reimann equa-
tions. The order of the truncation errors in Stokes equations are also O(h2), and (A1)
holds with p = 2 and q = 2.

Since the Stokes equations are linear partial differential equations, we still use a
linear multigrid correction scheme, in which the smoother is DGS. We use bilinear
interpolation for u, v, p. The residual restriction for the u− and v− face centers is
given by

IHh,u =
1
8

 1 2 1
•

1 2 1

 , IHh,v =
1
8

 1 1
2 • 2
1 1

 . (5.3)
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The residual restriction for cell centers is the same as (4.3) which is second order.
Using the Taylor expansions we can show that for any function φ ∈ C2(Ω),

IHh,uI
hφ = IHφ+

h2

8
IH
[
2
∂2φ

∂x2
+
∂2φ

∂y2

]
+ o(h2). (5.4)

Similarly, IHh,v is also second-order restriction. Thus, (A3) is satisfied with r = 2. For
assumption (A4) with higher-order t can be satisfied by a fourth-order full weight-
ing restriction for u, v via the tensor product between (4.5-4.6) and a fourth-order
interpolation the in other direction, i.e.,

1
16
[
−1 4 8 4 −1

]
, (5.5)

and for p via the tensor product among (4.5–4.6).
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Fig. 5.1. Error in the truncation error estimates (solid lines) and true truncation error (dashed
lines) for the Stokes second momentum equation (5.2b). The curves give the maximum errors with
strips of widths 1/4 and 1/8 adjacent to the boundaries omitted, and the errors at the point (1/2, 1/4).

The conclusion is illustrated by the numerical results in Fig. 5.1–5.2. Here, the
forcing f and boundary data are chosen to match the analytical u = sin(3x + 3y),
v = − sin(3x + 3y), and p = 6 cos(3x + 3y) as used in [17]. Various measures of
the error in the truncation error estimates, i.e., the left side of (3.1), are plotted as
functions of N . Fig. 5.1 corresponds to the second momentum equation (the results
corresponding to the first momentum equation are similar). The truncation error
for the second momentum equation is O(h2), and the error in the truncation error
estimates, if a narrow boundary strip (width 1/8 or 1/4) is omitted, is asymptotically
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Fig. 5.2. Error in the truncation error estimates for Stokes continuity equation (5.2c). Omit
1/4 or 1/8 is the maximum norm for a domain whose boundary strip (width 1/4 or 1/8) is omitted,
and point (1/2, 1/4) is the error evaluated at the point. Maximum is the maximum norm over the
whole domain.

O(h4)—as it is at a typical point (x, y) = ( 1
2 ,

1
4 ) as well. Fig. 5.2 shows the continuity

equation. Since we chose the true solution which gives zero truncation error for the
continuity equation, the truncation error is not included. However, the errors in the
truncation error estimates also appear to be O(h4).

6. Navier-Stokes equations. An example of nonlinear system is given by
Navier-Stokes equations

(u2)x + (uv)y −
1
Re

∆u+ px = F1, (6.1a)

(uv)x + (v2)y −
1
Re

∆v + py = F2, (6.1b)

ux + vy = F3, (6.1c)

on a domain Ω = [0, 1] × [0, 1] with Dirichlet boundary condition which is specified
as for the Stokes equations, where Re is the Reynolds number. We discretize (6.1)
on a staggered grid (Fig. 4.1) by using central differences for the nonlinear parts for
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a comparably slow flow, i.e.,

∂hx (µhxu
h)2 + ∂hy (µhyu

hµxv
h)− 1

Re
∆huh + ∂xp

h = F1 at u-face centers (6.2a)

∂hx (µhyu
hµxv

h) + ∂hy (µhyv
h)2 − 1

Re
∆hvh + ∂yp

h = F2 at v-face centers (6.2b)

∂hxu
h + ∂hy v

h = F3, (6.2c)

where µhx = 1
2 (φ(x + h

2 , y) + φ(x − h
2 , y)), and µhy is defined similarly. After this

discretization, the truncation error is p = 2. (A3) is satisfied with r = 2 by a second-
order residual transfer operator. Because of the nonlinearity, a FAS multigrid method
is applied here. The smoothing operator is still DGS and when updating ph for the
continuity equation, we only consider the linear part with Laplace operator (which
restricts big Reynolds number in this solver). The other multigrid components are
the same as those used in Stokes system. The restriction for solution inside the FAS
is the same as the restriction for the residual (4.3) and (5.3). Note that this does not
have to be high order. For ÎHh , we use the same fourth-order full weighting restriction
as for the Stokes equations. Thus, (A4) is satisfied by t = 4. In this numerical
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Fig. 6.1. Error in the truncation error estimates (solid lines) and truncation error (dash line)
for Navier-Stokes first momentum equation (6.2). Omit 1/4 or 1/8 is the maximum norm for
a domain whose boundary strip (width 1/4 or 1/8) is omitted, and point (1/2, 1/4) is the error
evaluated at the point.

test, the Reynolds number is Re = 1 and the right hand side is chosen to fit for the
exact solution u = sin(2πx) cos(2πy), v = − cos(2πx) sin(2πy), and p = 0. Similar
results are obtained for other Reynolds number (e.g. Re = 5, 10) when the values
are good for the central difference scheme and designed multigrid solver. Fig. 6.1
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also demonstrates a high order α = 4 is obtained in the error in the truncation error
estimates.

7. Discussion and Conclusions. In [11], Fulton gave a proper definition of the
relative truncation error on a non-staggered grid which eliminates the requirement of
IHf = IHh I

hf . However, [11] and other papers [1, 14, 16] also requires ÎHu = ÎHh Î
hu

in the truncation error estimates, which leads to a dilemma: using injection on non-
staggered grid [11] or using both high-order restriction and high-order discretization on
coarse grid [1]. In our study, high-order truncation error estimates can be obtained by
a high-order ÎHh without requiring the condition ÎHu = ÎHh Î

hu. Thus, the truncation
error estimates in [11] are extended to nonlinear problems on staggered grids with
general multigrid components (simple discretizations on the coarse grid and second-
order restrictions for both residue and solution). The only extra work we need to add
is to use a high-order solution transfer in calculating the truncation error estimates.
All three numerical examples verify the results.
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