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Abstract. A novel multigrid algorithm for computing the principal eigenvector of column sto-

chastic matrices is developed. The method is based on the Exact Interpolation Scheme multigrid

approach of Brandt and Ron [3], whereby the prolongation is adapted to yield a better and better

coarse representation of the sought eigenvector. The main novelty of the present approach is in

the squaring of the stochastic matrix—followed by a stretching of its spectrum—just prior to the

coarse-grid correction process. This procedure is shown to yield good convergence properties, even

though a cheap and simple aggregation is used for the restriction and prolongation matrices, which

is important for maintaining competitive computational costs. A further contribution of this paper

is a novel bottom-up procedure for defining the coarse-grid aggregates.

1. Introduction

Fast numerical solvers for eigenproblems are in demand in many disciplines. Multigrid methods
are efficient in such problems for certain types of matrices, especially for discretized elliptic partial
differential operators [2, 8, 9] and also more general types of M-matrices [1]. Recently, Brandt and
Ron [3] have suggested an adaptive multigrid approach whereby the solution itself is approximated
on the coarser levels, rather than the error as in classical multigrid. This approach was dubbed
Exact Interpolation Scheme (EIS), because it requires that the prolongation operator be consistently
improved as the iterations progress until, ultimately, one obtains an arbitrarily accurate solution
by prolongating a smaller vector.

In this paper, we present an efficient algorithm, based on EIS, for computing the principal
eigenvector of column-stochastic matrices. This problem has drawn great recent attention, largely
due to its relevance in web search application (via Google’s PageRank algorithm) and in Markov
chain processes. Among the various approaches that have addressed this problem [6, 7, 10], the
multigrid approach of [4, 5] is the closest approach to the one presented here.

1.1. The Stochastic Matrix Eigenproblem. Let B = (Bij)n
i,j=1 be a given irreducible sparse

column-stochastic matrix, that is, for every column j,
∑n

i=1 Bij = 1, and all the elements of B
are non–negative. By the Perron–Frobenius theorem there exists a unique vector x with strictly
positive entries which satisfies Bx = x. Note that ρ(B) = 1, where ρ denotes the spectral radius.
Our objective is to compute the null–space vector of B − I, i.e., the vector x which satisfies

(1.1) Bx = x.

In the analysis below, we assume real eigenvalues (as in symmetric matrices), hence all in the
interval [−1, 1]. Nevertheless, our experiments demonstrate efficiency also for nonsymmetric prob-
lems.
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2. Algorithm Description

2.1. The EIS Approach. Suppose that we could construct some prolongation operator P of size
n × nc, with nc < n, such that the solution x is in its range, i.e., x = Pxc , for some vector xc of
size nc. Then, defining a suitable restriction operator R of size nc × n, we obtain by substituting
Pxc for x in equation (1.1) and multiplying through by R,

(2.1) RBPxc = RPxc .

If we choose the operators such that RP = Ic, where Ic is the nc × nc identity matrix, then the
coarse grid problem (2.1) is of the same form as the original fine grid problem:

(2.2) Bcxc = xc,

where Bc = RBP is the coarse grid operator. After solving (2.2), we obtain the sought solution by
prolongation: x = Pxc. This motivates the following algorithm.

2.2. Basic EIS Two-Level Algorithm. Given an initial guess, x0, do for k = 1, 2, . . ., until some
convergence criterion is satisfied:

(1) Apply ν1 pre-relaxations to (1.1): xk ← Relax(xk, B, ν1)
(2) Define an n by nc prolongation matrix, P , and an nc by n restriction matrix, R, such that

RP = Ic and PRxk = xk.
(3) Compute Bc = RBP , and solve equation (2.2), obtaining xc.
(4) Compute xk+1 = Pxc.
(5) Apply ν2 post-relaxations: xk+1 ← Relax(xk+1, B, ν2)

2.3. Relaxation. Let D denote the diagonal matrix comprised of the diagonal of the singular
M -matrix I −B. Then weighted Jacobi relaxation is defined by the iteration

(2.3) xk+1 =
[
I − ωD−1(I −B)

]
xk ,

where ω is a positive weighting parameter (typically damping, that is, ω < 1.) The effectiveness of
the relaxation as a solver for (1.1) is generally determined by the ratio between the largest eigenvalue
of B, which is 1, and the modulus of the eigenvalue that is second-largest in magnitude. Typically,
especially for large problems of interest, this ratio is very close to 1, so the relaxation converges
slowly. More generally, damped Jacobi relaxation is highly effective for reducing eigenvectors with
relatively large eigenvalues of I − B, corresponding to negative and small positive eigenvalues of
B. These are called the rough eigenmodes. On the other hand, the smooth eigenmodes—those
corresponding to eigenvalues of B that are close to 1—are hardly affected by the relaxation.

2.4. Prolongation and Restriction operators. Our task is to construct a prolongation matrix,
P , such that the exact solution, x, is approximately in its range, and this approximation should
improve as the solution process progresses. Contrary to classical algebraic multigrid, here the
“setup” is not done just once—P and R and Bc need to be updated during each multigrid cycle.
Hence, it is imperative to maintain low-cost operators, and we therefore aim to employ simple
aggregation. We first partition the fine grid index set N = {1, . . . , n}, into nc aggregates {CI}nc

I=1
(which are simply disjoint subsets of N .) The formation of these aggregates is explained later.

2.4.1. Transfer Operators. The prolongation (disaggregation) matrix P (of size n × nc), and the
restriction (aggregation) matrix R (of size nc × n) are defined by:

(2.4) RJ,i =
{

1 if i ∈ CJ
0 otherwise Pi,J =

{
xk

i /
(
xk

c

)
J

if i ∈ CJ
0 otherwise

with
(
xk

c

)
J

=
(
Rxk

)
J

=
∑

r∈CJ

xk
r .
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Denote by Xk and Xk
c the diagonal square matrices whose diagonals are given by xk and xk

c ,
respectively. Observe that Xk

c = RXkRT . Using this notation, we can write:

P = XkRT (Xk
c )−1 .

Clearly, RP = Xk
c (Xk

c )−1 = Ic, and

PRxk = Pxk
c = XkRT (Xk

c )−1xk
c = XkRT1c = Xk1 = xk,

where 1 and 1c are vectors of ones of size n and nc, respectively. Thus, P and R satisfy the
conditions of step 2 of the basic EIS algorithm described above.

Note in (2.4) that the disaggregation operator P distributes each aggregate’s value amongst
the fine-grid elements belonging to the aggregate, with relative weights proportional to the cor-
responding elements in the current approximation xk. The main heuristic observation regarding
the smoothing effect of damped Jacobi relaxation is that, for a sparse matrix B, the ratio between
“strongly connected neighbors” in the current solution xk quickly tends to the corresponding ratio
in the exact solution x. That is, if Bi,j is relatively large in comparison to other terms in the ith
row of B (i and j are strongly connected) then, after several relaxations, the ratio between the ith
and jth elements of the current approximation tends to be close to the corresponding ratio in x.
We strive to create aggregates comprised of strongly connected elements. Thus, by this smoothing
effect of damped Jacobi, the relaxation and coarse grid correction fulfill complementary roles: re-
laxation causes the values within each aggregate to tend to the correct relations, and coarse-grid
correction corrects the value of each aggregate.

2.4.2. Aggregation—a bottom-up approach. The bottom-up aggregation approach we now present
is an alternative to the (more typical) top-down approach of [4, 5]. Both are motivated by the same
notion of strength of connection. However, our approach is to first make sure that the small-valued
variables are represented well in the coarse system, and only later tend to the large ones. The
reason for this is that strong variables will naturally be selected to aggregates, whereas weak ones
will not, unless we explicitly require it. We therefore do this early on, to avoid the situation where
many unattached variables need to be added to existing aggregates at the end of the process.

We denote by Ŝ the connectivity matrix of BXk, where Xk = diag(xk), as defined above:

Ŝij =
{

Bijxk
j if i 6= j and Bijxk

j ≥ θ maxl 6=i Bilxk
l ,

0 otherwise,

where θ ∈ [0, 1] is a threshold parameter. In this paper, we choose θ = 0.1. Note that a binary
version of this matrix is used in the coarsening procedure of [4, 5].

Our goal is to form aggregates that contain elements which are strongly connected. Since there is
no “preferred element” in the aggregate, we choose to disregard the directions of the dependencies
within the aggregate. Therefore, we symmetrize our connectivity matrix as follows.

(2.5) S =
1
2

(
Ŝ + ŜT

)
.

Our algorithm aims to find the most strongly connected aggregates of size equal to or less than
a given parameter s. To this end, it searches for groups of s (or less) points which are closest to
forming a clique, and at least have a circular dependency of all the members of the aggregate. We
define a circle of length s as a set of s members {i1, ..., is} where Sij ,ij+1 > 0 for all 1 ≤ j ≤ s− 1
and Sis,i1 > 0. Note by (2.5) that if Sij > 0 then i and j form a circle of size 2. We also define the
weight of an aggregate as the sum of the elements of the connectivity submatrix corresponding to
its members:

(2.6) w(CJ) =
∑

i,j∈CJ

Sij .
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Our second aim is to limit the operator complexity, defined as the total number of non-zero
elements divided by the number of nonzero elements of the fine-level operator. The tradeoff of
low complexity versus better convergence is controlled by the parameter s. Small s means higher
complexity and, in general, better convergence rates per cycle, and vice versa. Our approach in
this paper is to simply choose for each problem the smallest value of s that keeps the operator
complexity sufficiently low.

Algorithm:Bottom-up(s)
repeat

Among the unassigned elements, find the index i of the smallest element in the current
approximation xk.
Find all circles of length s or less that contain i.
if Circles found then

Choose the circles of maximal length, and amongst those aggregate the circle of
maximal weight as defined in (2.6).
Remove the aggregate’s members from S.

else
Let p = arg maxj 6=i{Bi,jxk

j }.
Assign i to p’s aggregate, and remove it from S.

end
until all elements are assigned to aggregates

The Bottom-up(s) algorithm may be implemented in various ways. We use a Depth-First-Search
technique (starting from seed i) in order to seek circles of length s. As this procedure might
be a bit complex, we may, following a suggestion in [4, 5], calculate aggregates only once or twice
throughout the whole iterative process and then freeze them. In this work, when s > 2, we calculate
the aggregates twice: once in the beginning of the process, and once after the current solution is
stable enough (fourth cycle, for example).

2.4.3. Coarse Grid operators. The coarse matrix Bc = RBP maintains the column-stochastic prop-
erty of the fine-grid matrix B. It is easy to see that 1T P = 1T

c and 1T
c R = 1T , and since 1T B = 1T ,

then
1T

c Bc = 1T
c RBP = 1T BP = 1T

c .

In addition, since all elements in R and P are non-negative, then so are those of Bc. Thus, Bc is
also a column-stochastic matrix. Furthermore, if B is irreducible, then so is Bc. This means that
we can continue recursively and obtain a well-defined multi-level process.

2.5. Properties of the Basic EIS Algorithm. The basic algorithm converges to the solution
in all problems we tested. However, as observed in [5], the simple low-order prolongation produces
sharp differences between aggregates, because all elements of each aggregate receive the same
multiplicative correction. Rough eigenmodes are thus amplified, resulting in slow convergence in
many problems, especially for discretized elliptic partial differential operators. This effect is related
to the well-known requirements on the high-frequency orders of transfer operators in classical
multigrid (see, e.g., [11]). The usual remedy is to use higher-order transfers. Indeed, this approach
is adopted in [5], employing smoothed aggregation. While often effective, there are drawbacks
to this approach, including a significant increase in the cost of constructing the coarse operators,
emergence of negative elements in the coarse operator (overcome in [5] by so-called lumping), and
deterioration for some common nonsymmetric problems such as convection dominated operators.
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We next present an alternative approach, which seems simpler (retaining the simple transfer op-
erators) and appears to yield quite competitive performance, though a detailed comparison between
the approaches would require first optimizing each of them, and this has yet to be performed.

2.6. The Square & Stretch Algorithm. The slow convergence brought about by low-order
transfers is due to the generation and amplification of rough eigenmodes by P (and lack of sufficient
damping of such modes by R). These rough eigenmodes generate large residuals, and their coupling
with the smooth eigenmodes leads to relatively poor carse-grid approximation of the latter. To
overcome this, we simply square the matrix B before coarse-grid correction, defining Bc = RB2P .
Clearly, B2 is column stochastic and retains the same principal eigenvector as B, but it has no
negative eigenvalues1. Thus, the “roughest” eigenmodes of B (with eigenvalues close to -1) no
longer generate large residuals, as they are smooth with respect to B2 (with eigenvalues close to 1.)
This leads to much better two-level convergence rates, even though we continue to use the same P
and R operators.

Now, however, a new problem arises: we cannot continue this approach recursively, because the
spectrum of Bc is approximately in the range [0, 1], with the rough modes having small positive
eigenvalues, so squaring the matrix once again will not be useful. We therefore stretch the spectrum
without changing the eigenvectors by replacing Bc by the matrix B̂c defined as follows:

(2.7) B̂c = RB̂P , with B̂ =
(

1
1− d

)
B2 −

(
d

1− d

)
I ,

where d is the stretching parameter. Observe that we have stretched the spectrum, reducing the
smallest eigenvalue to (approximately) −d

1−d instead of approximately 0. Note that the solution, i.e.,
the eigenvector corresponding to the eigenvalue 1, has not changed.

2.6.1. The stretching parameter. Theoretically, the stretching parameter d should be the largest
value that still keeps the spectral radius of B̂c from being higher than 1. Knowing this requires a
tight bound on the smallest (most negative) eigenvalue of RB2P , which is not generally known.
One option we test is a predefined constant value for all coarse grids. Note, however, that this may
introduce some negative entries in B̂c, and thus ruin its column-stochastic properties, though the
column-sum remains 1.

A safe alternative is given by d = minJ{(RB2P )J,J}. Evidently, the new coarse grid matrix B̂c

remains irreducible and column stochastic. Normally, this value of d is still substantial, as the Jth
diagonal term of B2 is a weighted sum of the elements of the submatrix of B corresponding to fine
variables that belong to the aggregate J . All such elements are positive and relatively large, since
the aggregates are comprised of strongly connected variables. This choice of d corresponds to using
the lower bound on the smallest eigenvalue calculated according to the well-known Gerschgorin
disks theorem, applied to the columns of RB2P .

3. Numerical Results

We compare numerically the basic EIS aggregation multigrid method (Aggr) to the Square and
Stretch (S&S) algorithm for nearly all the test problems of [5]. We use a random positive x0 as
an initializer, and damped Jacobi relaxation with ν1 = 2, ν2 = 2, alternating between ω = 0.5
and ω = 1 (but 0.98 on the finest grid). We begin with 20 relaxation sweeps in order to obtain
a relevant initial approximation for deriving P , and we count this work as a cycle in our results.
In the future, this will be replaced by a full multigrid approach, beginning with a uniform guess
for the solution. We reduce the l1 residual norm to 10−8, but stop after 20 cycles if this goal is
not achieved (marked as ‘>20’). We stop coarsening when n < 16, where we solve the problem

1Recall that we only consider real-valued eigenvalues in this discussion.
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directly. For the S&S method, d represents the stretching parameter of (2.7), where MinDiag refers
to choosing d = minJ{(RB2P )J,J}; the second option we test is a constant d = 0.5. This constant
is motivated by (2.7), where it is seen that if the eigenvalues of B are real and in the range [−1, 1],
then this also holds for B̂, so d = 0.5 is the most aggressive possible stretching parameter that
is expected not to change the spectral radius. ‘γ’ denotes the geometric mean convergence factor
per cycle, computed over the last five cycles. ‘Cop’ is the total number of non-zero elements in the
operators B on all the grids, divided by that of the fine-level operator. Values in brackets refer to
F-cycles rather than V-cycles. All structured problems are described by their stencils of B, denoted
by H with a descriptive subscript. However, the coefficients are normalized at the boundaries, in
order to yield a stochastic matrix.

3.1. 1D Problem Set. The first three problems are one-dimensional Markov chains generated by
linear graphs with weighted edges. In all the examples here, each of the two boundary nodes has
only one outgoing edge with a weight of 1. Here we use the bottom up aggregation method with
s = 2, performed in every cycle, as its cost is low. We do not show a comparison of bottom-up to
“geometric” aggregation in these problems, as both aggregations produce similar results.

3.1.1. 1D uniform chain. The first problem is the 1D uniform chain which is the simplest one. The
operator stencil is given by

HUniform1D =
(

1
2 0 1

2

)
.

Table 1 summarizes the results.

n Method Aggregation d #levels #cycles Cop γ

256 Aggr BottomUp(2) — 6 >20 (>20) 1.90 (3.39) 0.85 (0.73)
256 S&S BottomUp(2) MinDiag 6 7 (6) 1.89 (3.21) 0.08 (0.05)
256 S&S BottomUp(2) 0.5 6 7 (6) 1.73 (2.97) 0.08 (0.04)
1024 Aggr BottomUp(2) — 7 >20 (>20) 1.96 (3.81) 0.9 (0.85)
1024 S&S BottomUp(2) MinDiag 7 7 (6) 1.96 (3.65) 0.10 (0.04)
1024 S&S BottomUp(2) 0.5 7 7 (6) 1.79 (3.20) 0.08 (0.05)
4096 Aggr BottomUp(2) — 9 >20 (>20) 1.98 (3.91) 0.91 (0.88)
4096 S&S BottomUp(2) MinDiag 9 8 (6) 1.97 (3.75) 0.15 (0.05)
4096 S&S BottomUp(2) 0.5 9 7 (6) 1.80 (3.30) 0.08 (0.04)

Table 1. 1D uniform chain

3.1.2. Birth-death chain. The second problem is a Birth-Death chain with the same constant birth
and death rates as in [5]. The stencil is given by

HBirth−Death =
(

1
1+µ 0 µ

1+µ

)
,

with µ = 0.96. Table 2 summarizes the results for this problem. Here, using d = 0.5 did not yield
any improvement. Furthermore, in the bigger example (4096), this choice failed.

3.1.3. 1D uniform chain with two weak links. The third problem is a 1D uniform chain with two
weak links of weight ε in its middle. This means that there exist nodes i and i + 1 where the two
edges between them are of weight ε. Here we use ε = 0.001 as in [5]. The results are summarized
in Table 3.

3.2. 2D Problem Set. We next show results for two dimensional problems on a uniform mesh. As
before, in all the examples, the outgoing edges of the boundary nodes are weighted proportionally
to the stencil weights to yield a sum of 1.
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n Method Aggregation d #levels #cycles Cop γ

256 Aggr BottomUp(2) — 6 >20 (>20) 1.91 (3.53) 0.93 (0.78)
256 S&S BottomUp(2) MinDiag 6 7 (6) 1.92 (3.50) 0.08 (0.06)
256 S&S BottomUp(2) 0.5 6 7 (6) 1.92 (3.53) 0.07 (0.05)
1024 Aggr BottomUp(2) — 7 >20 (>20) 1.97 (3.78) 0.95 (0.82)
1024 S&S BottomUp(2) MinDiag 7 7 (7) 1.97 (3.82) 0.08 (0.07)
1024 S&S BottomUp(2) 0.5 7 7 (7) 1.98 (3.84) 0.08 (0.06)
4096 Aggr BottomUp(2) — 9 >20 (>20) 1.97 (3.78) 0.95 (0.82)
4096 S&S BottomUp(2) MinDiag 9 7 (6) 1.98 (3.88) 0.1 (0.07)

Table 2. Birth-Death chain with µ = 0.96

n Method Aggregation d #levels #cycles Cop γ

256 Aggr BottomUp(2) — 6 >20 (>20) 1.87 (3.38) 0.89 (0.77)
256 S&S BottomUp(2) MinDiag 6 7 (6) 1.89 (3.21) 0.08 (0.05)
256 S&S BottomUp(2) 0.5 6 7 (6) 1.73 (2.92) 0.08 (0.04)
1024 Aggr BottomUp(2) — 7 >20 (>20) 1.97 (3.78) 0.91 (0.86)
1024 S&S BottomUp(2) MinDiag 7 7 (6) 1.79 (3.16) 0.08 (0.04)
1024 S&S BottomUp(2) 0.5 7 7 (6) 1.78 (3.19) 0.08 (0.04)
4096 Aggr BottomUp(2) — 9 >20 (>20) 1.98 (3.89) 0.92 (0.86)
4096 S&S BottomUp(2) MinDiag 9 8 (6) 1.97 (3.72) 0.15 (0.04)
4096 S&S BottomUp(2) 0.5 9 7 (6) 1.80 (3.28) 0.08 (0.05)

Table 3. 1D uniform chain with two weak links in the middle

3.2.1. Uniform 2D lattice. The first test is the uniform 2D lattice with stencil given by

HUniform−2D =
1
4

 1
1 0 1

1

 .

In this problem, when using the S&S method, we use the bottom up aggregation method with
s = 4, as smaller aggregation size leads to relatively high operator complexity. The aggregation
is calculated in the first and fourth multigrid iterations only. In addition, we provide results for a
geometric 2D uniform aggregation of size 2× 2. Table 4 summarizes these results.

3.2.2. Anisotropic 2D lattice. The next problem is the 2D lattice with anisotropic weights:

HAnisotropic−2D =
1

2 + 2ε

 ε
1 0 1

ε

 ,

where ε = 1e − 6. In this problem, the aggregation occurs first along the strong connections and
only later along the weak ones. We employ the bottom up aggregation method with s = 2, although
it might lead to relatively high complexity. (Note that there are no circles longer than 2, so using
larger s would not lead to any significant difference.) As in the 1D problems, the S&S convergence
rates are excellent, and the F-cycle, which increases the complexity, is not worthwhile. Table 5
summarizes these results.
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n Method Aggregation d #levels #cycles Cop γ

256 Aggr BottomUp(2) — 9 >20 (>20) 1.99 (3.58) 0.72 (0.64)
256 S&S BottomUp(4) MinDiag 4 >20 (14) 1.53 (2.22) 0.58 (0.40)
256 S&S Geometric MinDiag 3 17 (12) 1.47 (2.03) 0.47 (0.33)
256 S&S BottomUp(4) 0.5 4 14 (12) 1.56 (2.35) 0.39 (0.29)
256 S&S Geometric 0.5 3 13 (12) 1.48 (2.04) 0.37 (0.31)
1024 Aggr BottomUp(2) — 9 >20 (>20) 2.09 (3.95) 0.83 (0.70)
1024 S&S BottomUp(4) MinDiag 5 >20 (14) 1.70 (2.66) 0.70 (0.42)
1024 S&S Geometric MinDiag 4 19 (13) 1.54 (2.20) 0.57 (0.36)
1024 S&S BottomUp(4) 0.5 5 16 (12) 1.68 (2.58) 0.49 (0.33)
1024 S&S Geometric 0.5 4 15 (12) 1.54 (2.22) 0.45 (0.33)
4096 Aggr BottomUp(2) — 8 >20 (>20) 2.06 (4.27) 0.88 (0.79)
4096 S&S BottomUp(4) MinDiag 6 >20 (15) 1.73 (2.78) 0.76 (0.52)
4096 S&S Geometric MinDiag 5 20 (13) 1.53 (2.31) 0.66 (0.37)
4096 S&S BottomUp(4) 0.5 6 19 (12) 1.70 (2.83) 0.59 (0.34)
4096 S&S Geometric 0.5 5 16 (12) 1.57 (2.31) 0.46 (0.33)

Table 4. 2D uniform lattice

n Method Aggregation d #levels #cycles Cop γ

256 Aggr BottomUp(2) — 4 >20 (>20) 1.86 (3.25) 0.61 (0.51)
256 S&S BottomUp(2) MinDiag 5 7 (6) 3.31 (8.16) 0.08 (0.05)
256 S&S BottomUp(2) 0.5 5 7 (6) 3.46 (8.27) 0.08 (0.05)
1024 Aggr BottomUp(2) — 6 >20 (>20) 1.95 (3.38) 0.67 (0.48)
1024 S&S BottomUp(2) MinDiag 7 7 (6) 4.26 (10.29) 0.10 (0.08)
1024 S&S BottomUp(2) 0.5 7 7 (6) 4.15 (10.24) 0.11 (0.08)
4096 Aggr BottomUp(2) — 9 >20 (>20) 2.00 (3.81) 0.88 (0.75)
4096 S&S BottomUp(2) MinDiag 8 7 (6) 5.64 (14.44) 0.10 (0.05)
4096 S&S BottomUp(2) 0.5 8 7 (6) 5.25 (14.46) 0.08 (0.05)

Table 5. 2D lattice with anisotropic weights

3.2.3. Tandem queuing network. The final problem in this set is the tandem queueing network
problem appearing in [5]. The stencil is given by

HTandemQueue =
1

µ + µ1 + µ2

 µ1

µ 0
µ2

 ,

where µ = 10, µ1 = 11 and µ2 = 10 as in [5].
In this problem, similarly to uniform 2D, we use the bottom up aggregation with s = 4, as

smaller size leads to relatively high operator complexity. The aggregation is calculated in the first
and fourth multigrid cycles only. Here too, we provide results for a geometric 2D aggregation of
size 2× 2. Table 6 summarizes the results.

3.2.4. Random walk on unstructured planar graph. The final test problem is a random walk on an
unstructured planar undirected graph. This problem also appears in [5]. The graph is generated by
choosing n random points in the unit square, and triangulating them using Delaunay triangulaion.
The weight of an edge (i, j) is determined by the reciprocal of the outgoing degree of node i, that
is, we normalize the columns of the symmetric binary matrix representing the graph to make it
column-stochastic. In this problem, we use the bottom up aggregation with s = 4 in S&S. As for
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n Method Aggregation d #levels #cycles Cop γ

256 Aggr BottomUp(2) — 4 >20 (>20) 1.95 (3.38) 0.67 (0.48)
256 S&S BottomUp(4) MinDiag 4 19 (14) 1.67 (2.54) 0.47 (0.35)
256 S&S Geometric MinDiag 3 18 (14) 1.50 (2.11) 0.46 (0.36)
256 S&S BottomUp(4) 0.5 4 15 (13) 1.67 (2.52) 0.39 (0.34)
256 S&S Geometric 0.5 3 14 (12) 1.51 (2.12) 0.39 (0.34)
1024 Aggr BottomUp(2) — 6 >20 (>20) 2.12 (4.04) 0.8 (0.57)
1024 S&S BottomUp(4) MinDiag 5 >20 (19) 1.66 (2.62) 0.63 (0.47)
1024 S&S Geometric MinDiag 4 >20 (17) 1.57 (2.30) 0.61 (0.43)
1024 S&S BottomUp(4) 0.5 5 21 (15) 1.69 (2.71) 0.52 (0.38)
1024 S&S Geometric 0.5 4 18 (14) 1.57 (2.31) 0.46 (0.36)
4096 Aggr BottomUp(2) — 9 >20 (>20) 2.23 (4.57) 0.89 (0.64)
4096 S&S BottomUp(4) MinDiag 6 >20 (21) 1.65 (2.62) 0.74 (0.53)
4096 S&S Geometric MinDiag 5 >20 (18) 1.42 (2.40) 0.69 (0.47)
4096 S&S BottomUp(4) 0.5 6 >20 (16) 1.67 (2.60) 0.62 (0.41)
4096 S&S Geometric 0.5 5 18 (14) 1.60 (2.40) 0.47 (0.35)

Table 6. Tandem queuing network with µ = 10, µ1 = 11 and µ2 = 10

n Method Aggregation d #levels #cycles Cop γ

256 Aggr BottomUp(3) — 4 >20 (>20) 1.47 (2.10) 0.76 (0.63)
256 S&S BottomUp(4) MinDiag 4 15 (12) 1.66 (2.51) 0.46 (0.34)
256 S&S BottomUp(4) 0.5 4 14 (12) 1.63 (2.31) 0.44 (0.36)
1024 Aggr BottomUp(3) — 5 >20 (20) 1.50 (2.24) 0.77 (0.65)
1024 S&S BottomUp(4) MinDiag 5 19 (13) 1.87 (3.23) 0.54 (0.36)
1024 S&S BottomUp(4) 0.5 5 16 (12) 1.81 (3.11) 0.48 (0.33)
4096 Aggr BottomUp(3) — 7 >20 (>20) 1.52 (2.29) 0.84 (0.73)
4096 S&S BottomUp(4) MinDiag 6 >20 (13) 2.01 (3.68) 0.67 (0.38)
4096 S&S BottomUp(4) 0.5 6 16 (12) 2.00 (3.75) 0.48 (0.35)

Table 7. Unstructured Planar Graph

Aggr, the best convergence factor is achieved by choosing s = 3 (triangles). The aggregation is
calculated in the first and fourth cycles only. Table 7 summarizes the results.

While the basic aggregation method requires more than 20 cycles to converge in all problems,
it is clear that the S&S method is far better, especially with F-cycles, which seem to yield mesh-
independent convergence throughout. In all the 1D problems, the S&S method is very efficient,
and the 2D performance is good, though occasional difficulties are encountered.

The bottom-up approach seems very promising, though substantial research is yet required.
Clearly, the use of a constant s is not a good general choice, and the tradeoff of small s (good
convergence, high complexity) versus large s needs to be explored.

As for the stretching parameter, the results indicate that using the minimal diagonal element,
thus retaining positive matrices, is not scalable in general. Using d = 0.5 yields good properties
in these tests. This aspect requires further investigation. Note that making this parameter too
high might make the spectral radius of some coarse grid operators larger than one, which may
compromise convergence (as squaring the operator will generate a positive eigenvalue bigger than
1.) An adaptive choice for this parameter may prove to be best.
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4. Conclusions and Future Work

We introduce a novel Square and Stretch multigrid method for computing the principal eigenvec-
tor of column stochastic matrices. The S&S method exhibits far better convergence properties than
the basic aggregation algorithm and is only slightly more complicated. The new method involves
squaring the fine grid operator and then stretching its spectrum as part of the coarse operator
construction. Numerical tests show that the new method performs very well in 1D problems and
is also quite effective in 2D when bigger aggregates are collected.

The novel bottom-up aggregation method has introduces new ideas, starting with that of matching
the nodes to aggregates in an order opposite to their strength or dominance. Also, classifying the
candidate aggregates by their total weights and edges without giving extra meaning to the seed
seems effective and deserves further study. Currently, this procedure may be of relatively high
complexity (though still linear) when searching big aggregates, but it is not necessary to calculate
the aggregations in every cycle—twice during the entire set of cycles suffice.

Lastly, the stretching parameter d is of high importance, and by choosing it adaptively in some
way at each level we might improve the method significantly.

Overall, although further research is clearly necessary, the performance is already quite promising,
and it seems competitive with respect to the smoothed aggregation approach presented in [5],
though a reliable comparison requires optimizing both approaches.

It is likely that the S&S method can be extended to other types of matrices quite easily. A
hint of that is indicated in the experiments where the coarse grid operators do not remain column
stochastic and yet their coarse grid problems are still solved with the same efficiency. Future
application to the solution of sparse linear systems is also envisaged.
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