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In the field of molecular dynamics Poisson’s equation with open boundary conditions plays a major
role. One issue that arises when this equation is solved numerically is the infinite size of the domain.
This prevents a direct solution so that other concepts have to be considered. Within this paper a method
is discussed that uses hierarchical coarsened grids to overcome this problem. Special attention has to
be paid to the discretization at the grid interfaces. A finite volume approach has been used for that. The
resulting set of linear equations is solved using a fast adaptive composite grid algorithm. Emphasis
is put on the implementation of the method on the STI Cell Broadband Engine, a modern multi core
processor, that is powerful in floating point operations and memory bandwidth. Code optimization
techniques are applied as well as parallelization of the code to get maximum performance on this
processor. For validation of the performance test runs are executed and the runtime is analyzed in
detail.

1 Introduction

Molecular dynamics (MD) are a classical application field for computer simulation. The underlying model is
well–known, relatively simple and straightforward to implement. Nowadays it becomes feasible to simulate not
only small systems, but also bigger setups of thousands or millions of particles. MD methods can be improved
in two directions: making algorithms faster without loss of accuracy or developing properties that reflect natural
situations better without making algorithms slower. However, still the goal of computing ensembles at the edge of
macroscopic level, is quite a challenge because the number of molecules in a milliliter of fluid is bigger by several
orders of magnitude than the number of particles that can be simulated.
A common problem in MD is the solution of the potential equation in free space. Besides the high computational
effort that is demanded for the simulation of PDEs in general, the infinite size of the domain forbids a direct
numerical solution. Hence, the problem has to be modeled in a finite way. After an introduction of the governing
equation with its boundary conditions section 2 discusses possible approaches.
While at the moment standard processors have two or four cores, one chip is available on the mass market that has
nine ones in total: the Cell Broadband Engine (Cell/BE). Section 3 deals with considerations that are required to
utilize all of its computational power, focusing on parallelization techniques. Besides that some special features
that have to be considered are mentioned.
To draw a conclusion about the outcome of this effort, section 4 deals with test cases that were run on the Cell/BE.
The presented results that can be taken again as improvements for future implementations. Finally, an outlook to
those improvements is given and tasks for future research are shown.

2 Modeling Poisson’s Equation with Open Boundary Conditions

This section introduces Poisson’s equation with open boundary conditions and explains how they affect the numer-
ical solution. An approach for dealing with the open b.c.s, finite hierarchical grid coarsening, is provided. Finally
the particular multigrid method that is used to solve the posed problem is presented.

2.1 Poisson’s Equation in Molecular Dynamics

Essentially in molecular dynamics Newton’s second law is numerically solved for each particle. Therefore pairwise
interactions have to be computed between all of them what takes O(N2) operations for N particles. In the case of
long–range interactions (e. g. gravitation, Coulomb’s potential) none of these interactions can be neglected without
making a notable error. Therefore another approach has to be chosen to calculate the interactions accurate with
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lower computational effort, ideally with O(N) operations. Basically there are two different ways for achieving
that: Tree–based methods and grid–based ones, e. g. described in [10]. In the following, a grid–based method will
be used. From potential theory it is known that the acting forces can be derived from a global potential Φ that is
given as function of the particle positions. The governing equation for Φ is also known as Poisson’s equation and
given as

∆Φ(x) = − 1
ε0

ρ(x), (1)

with the dielectric constant ε0 and charge density ρ(x) at position x ∈ R3. ∆ is the Laplace operator. In case
of point–shaped particles at positions x1, x2, . . . xN , ρ(x) is a superposition of the Dirac impulses δi(x): ρ(x) =∑N

i=1 δ(x− xi). For numerical simulation this right–hand side is impractical to handle since it is not smooth and
may cause big errors. The impulses are approximated usually by smooth functions with similar properties, e. g.
Gaussian distributions or spline functions. Also more advanced smoothing methods like the Zenger correction
described in [8] were developed for that purpose. From here, sufficient smoothness of the right–hand side is
assumed and f(x) will denote the smooth right–hand side.

2.2 Open Boundary Conditions

One special class of boundary conditions in MD are the so–called open ones. These conditions correspond to the
case when particles are moving within a bounded area with long–range interactions. The charges of the molecules
are inside the area, whereas the induced field is unbounded and its influence cannot be neglected without making
a significant error. This problem can be formulated as

∆Φ(x) = f(x), x ∈ R3,

with Φ(x) → 0 for ‖x‖ → ∞,
(2)

with the restriction that supp(f) ⊂ Ω is a bounded subset of R3. This is a generalization of zero Dirichlet boundary
conditions at infinity. An analog discrete formulation of this problem is given as

∆hΦ(x) = f(x), x ∈ {x|x = h · z, z ∈ Z3},
with Φ(x) → 0 for ‖x‖ → ∞,

(3)

where h > 0 is the grid size of the discretization and ∆h is a discrete Laplace operator. This discrete system
still consists of an infinite number of equations. Therefore, further modifications are applied to make the problem
computable on a finite machine. There are different approaches to this problem which will be explained in the next
subsection.

2.3 Previous Solvers

From the infinite discrete problem (3) there exist different ways to solve it numerically:

1. Observe a finite subvolume Ω of R3 and develop an approximation for setting the boundary conditions
explicitly. This method was introduced by O. Buneman in [2] for the two-dimensional case. He solved the
discrete problem (3) analytically, i. e. for the five point Laplace operator ∆h. Later, R. Burkhart extended
the model for the 3D case in [3]. For the application of particle simulation, a multipole expansion can be
used. This was introduced by Sutmann and Steffen in [4]. The main drawback of this method is again the
computational complexity: For N unknowns, the overall time complexity calculates as O(N

5
3 ). However,

the optimal one of the whole algorithm should be O(N).

2. Solve the problem on an infinitely large hierarchically coarsened grid. For practical reasons, the process is
stopped after a finite number of growing steps and the boundary conditions are set to zero on the coarsest
grid. This was used by Washio and Oosterlee in [12]. They have chosen a grid extension rate α for each grid
and have proved that the results are accurate within order O(h2) for infinite coarsening with extension rate
α > 2

2
3 . Though, for finite coarsening an error estimation is not given.

In the following, a model that is a combination of both approaches will be considered.
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2.4 Used Model

Problem (3) will be solved on an finitely large hierarchically coarsened grid with setting the boundary conditions
explicitly on using an approximation formula. This technique was introduced by M. Bolten in [1] and is a combi-
nation of the previous two possibilities. The advantages of both are combined: Bolten proved that the error is of
orderO(h2) for this method. If the number of boundary points of the coarsest grid is considered to be constant the
computational complexity is O(N). In more detail the model looks as follows: Let the problem (2) be given with
Ω = [− 1

2 ; 1
2 ]3 and supp(f) ⊂ Ω. Now a numerical solution of this problem is the subject of interest. The problem

is discretized on Ω as regular grid with grid size h in each direction and the Laplace operator ∆ is discretized as

7–point stencil: ∆h =

 0 0 0
0 1 0
0 0 0

 ,

 0 1 0
1 −6 1
0 1 0

 ,

 0 0 0
0 1 0
0 0 0

. The resulting problem is a special case

of (3).

1. Let α ∈ (1; 2) be the extension rate. The grid is extended using the following properties: The finest grid is
defined as discretization of domain Ω1 with mesh size h, where

Ω1 :=
[
−β1

2
,−β1

2

]3

,

β1 ≥ α, (4)
h1 := h.

This is only an enlargement of the original domain with same grid size.

2. The extension is now done iteratively in combination with a grid coarsening up to level l with parameters

Ωk :=
[
−βk

2
,−βk

2

]3

,

βk ≥ αk, (5)
hk := 2(k−1)h

for k ∈ {2, 3, . . . , l}. The βk are used to fix corresponding grid points on grid levels (l − 1) and l. The
discrete set of grid points at level k is defined as Gk := {x ∈ Ωk|x = k ·z, z ∈ Z}. Analog to the continuous
problem, let δGk := Gk ∩ δΩk be the boundary of grid k in the discrete case. An example for the layout of
an three–level extended 2D–grid is given in figure 1 (1).

3. After the lth extension of the grid, the boundary values are set explicitly on the boundary δGl. For each
boundary point xδ ∈ δGl the potential is given as

Φ(xδ) =
1
4π

∫∫∫
Ω1

f(y)
‖y − xδ‖2

dy (6)

for the continuous case. In the discrete problem the potential for each boundary point zδ ∈ δGl has to be
computed via numerical integration:

Φ(zδ) =
h3

4π

∑
zfine∈G1

f(zfine)
‖zfine − zδ‖2

. (7)

4. The boundary condition are distributed from Gk to δGk−1 in a conservative way, i. e.a special scheme is used
at the interfaces between two grids. To ensure the conservation requirement, a conservative finite volume
discretization is done. A 2D example for the structure of an interface is given in figure 1 (2).

In principle higher error order than O(h2) could be achieved with enhanced discretization schemes. For solving
the discretized PDE, a linear solver is required. The structure of the problem enforces the implementation of a
multigrid method since this method can gain profit from the introduced grid hierarchy while keeping the overall
time complexity limited to O(N).
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Figure 1: (1) Structure of a Three–Level Extended 2D–Grid. Here, Ω1 = Ω ∪ δΩ1, Ω2 = Ω1 ∪ δΩ2 and Ω3 =
Ω2 ∪ δΩ3. (2) 2D Interface between Grids: A corresponding coarse grid point to boundary point (x, y)
exists (a), does not exist (b). In the latter case the value at the virtual grid point (x + 2h, y) has to be
interpolated from surrounding coarse grid points

2.5 Used Multigrid Solver

An appropriate multigrid algorithm has to be adapted to the open–boundary Poisson problem: The function Φ has
to be set on the coarsest grid for the boundary points — see step 3 of the previous subsection. As a consequence,
a full approximation scheme (FAS) was used since this method works with a restriction of the original equation.
The method of choice is a variation of a FAS that already takes into account the coarsening structure: The fast
adaptive composite grid method (FAC), introduced in chapter 9 of [13]. The FAC method will be run in several
V-cycles. Special about the FAC is the applied restriction: Consider two grids, the fine at level k−1 and the coarse
at level k. The residual rk−1 is computed as rk−1 = fk−1 − ∆hk−1Φk−1. It is then restricted to grid level k

as rk = Îhk

hk−1
rk−1 for all grid points which are elements of both grids. Additionally, the function Φk−1 is also

restricted as Φk = Îhk

hk−1
Φk−1. The right–hand side on the coarser grid is calculated as ∆hk

Φk + rk for all points,
that are elements of the fine grid. In the prolongation step a correction term ek is prolongated back to the fine grid
as ek−1 = I

hk−1
hk

ek. Then new value for Φk−1 is calculated as Φk−1 + ek−1.
Some more parameters have to be chosen for the multigrid method: kernels for restriction and prolongation as well
as a smoother. In the proposed solver a under–relaxing Jacobi smoother is used for pre– and post–smoothing as
well as for solving problem on the coarsest grid. The restriction is done by a direct injection, while for prolongation
trilinear interpolation is performed.

3 Implementation and Performance Optimization

Within this section first the features of the Cell/BE are described briefly. This is required since the optimal de-
velopment of software for the Cell/BE highly depends on understanding the underlying hardware. Furthermore, it
shows how the parallel implementation of a multigrid method is done and what paradigms were used within the
development process.

3.1 Architectural Overview over the Cell Broadband Engine

The first implementation of the CBEA, the so-called Cell Broadband Engine, is used e. g. in the Sony PlaystationTM

3 game console and IBM’s QS20 and QS21 blades. Its organization is depicted in Fig. 2 [5, 6]: The backbone of
the chip is a fast ring bus—the Element Interconnect Bus (EIB)—connecting all units on the chip and providing a
throughput of up to 204.8 GFlop/s in total when running at 3.2 GHz. A PowerPC–based general purpose core—
the Power Processor Element (PPE)—is primarily used to run the operating system and control execution, but has
only moderate performance compared with other general purpose cores. The Memory Interface Controller (MIC)
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can deliver data with up to 25.6 GB/s from Rambus XDR memory and the Broadband Engine Interface (BEI)
provides fast access to I/O devices or a coherent connection to other Cell processors. The computational power
resides in eight Synergistic Processor Elements (SPEs), simple but very powerful co-processors consisting of three
components: Synergistic Execution Unit (SXU), Local Storage (LS), and Memory Flow Controller (MFC).

The SXU is a custom Single Instruction Multiple Data (SIMD) only vector engine with a set of 128 128-bit-wide
registers and two pipelines. It operates on 256 kB of its own LS, a very fast, low-latency memory. SXU and LS
constitute the Synergistic Processor Unit (SPU), which has a dedicated interface unit, connecting it to the outside
world: the primary use of the MFC is to asynchronously copy data between LS and main memory or the LS of
other SPEs using Direct Memory Access (DMA). It also provides communication channels to the PPE or other
SPEs and is utilized by the PPE to control execution of the associated SPU. Each SPE can be seen as a very simple
computer performing its own program, but dependent on and controlled by the PPE.

The Cell/BE is able to perform 204.8 GFlop/s using fused–multiply–adds in single precision (not counting the
abilities of the PPE), but is limited regarding double precision. Only six SPEs are available under Linux running
as a guest system on the Sony PlaystationTM 3, what reduces the maximum performance there accordingly to
153.6 GFlop/s. The newer PowerXCell 8i [7], used in IBM’s QS22 blades, differs from the older Cell/BE by
SPEs with higher performance in double precision (12.8 instead of 1.8 GFlop/s each) and a converter that allows
connecting DDR2 memory to the MIC.

Figure 2: Schematic view of the STI Cell Broadband Engine.

While standard PowerPC software and compilers can be executed on the PPE’s computation unit (the PowerPC
Processor Unit, PPU), software must be adapted to take advantage of the SPEs, whose SXUs use their own in-
struction set. The basic approach to write CBEA-enhanced software is to separately implement the parts running
on PPE and the SPEs, where libraries and language extensions help in issuing and waiting for DMA transfers, and
doing the communication and synchronization between the different agents.

3.2 Parallelization approach

The multigrid method that has been introduced in section 2 shall run at maximal speed on the Cell/BE. The
key technique for gaining speed is to parallelize the algorithm on the SPEs and it shall be the main focus within
the rest of this section. This SPE–level parallelization uses multi–threading via POSIX threads, while in–thread
parallelization is done via the SIMD capabilities of the Cell/BE. Additional effort is taken to speed up the execution
of the computational kernels. For understanding the parallelization approach a good starting point are the used data
structures.

Data Layout and Line–wise Processing The underlying data structure for the grids are simply 3D arrays. In
C arrays are stored in row major order, i.e. the last index of a D-dimensional array is the one with subsequent
elements in memory. So it should be the one to be increased in the innermost loop when iterating over all elements
of the array. In the developed program the convention for 3-D arrays is that the first index denotes the position
in x–direction, the second one in y–direction and the third one in z–direction. So the third index is iterated in
the innermost loop of all functions. Line–wise processing means therefore iteration over z while fixing y and x.
Since the SXU executes only SIMD commands, the total length of the array in z–direction has to be a multiple

5



of 4—eventually dummy elements have to be inserted at the end of each line. To fulfill alignment properties even
more dummy elements may be necessary.

Domain Decomposition The paradigm of line–wise processing leads directly to the chosen approach for dis-
tributing data to several SPEs: Domain decomposition. It is assumed that one line of data fits into the local store
of an SPE. This is no restriction for the proposed test cases; on the PlaystationTM 3 as well as on the QS20 the
grid size is limited by the available main memory. The data is distributed line by line to the SPEs. For reasons
of simplicity this distribution is done in blocks a priori. This static work distribution is sufficient for the multigrid
algorithm since the number of operations per grid point is not only known before, but also constant over all the
grid points.

Double Buffering On the Cell/BE, the programmer has to initiate all load and store operations. For this purpose,
the SPU intrinsics mfc_get(...), mfc_put(...) are used to activate the DMA transfer.

1. mfc_get(target_ls, source_ea, length, tag, ...) is used to copy length bytes from
the effective address (main memory) tsource_ea to the local store address target_ls of the SPE. The
tag is an identifier for the MFC transfer and can be a number between 0 and 31 (32 available data channels).

2. Analog mfc_get(source_ls, target_ea, length, tag, ...) is used to copy data from the
local store of the SPE to the main memory. A group tag is also specified here.

These DMA transfers have a certain latency that is relatively high and therefore will slow down the program
execution. An elegant way to hide the latencies is to use a double buffering scheduling strategy: For each data
line that is required from main memory two buffers are allocated in the local store. While one is filled, the data
in the second one can already be manipulated and vice versa. The same holds also for writing operations: While
the content of one buffer is copied to the memory, data can be written to the second one by the user. However,
scheduling has to be done carefully to ensure that transfers are finished when the data is needed and no dead locks
are caused. When accessing the first line, loading will delay the execution since the required data is not loaded in
advance, whereas for all following lines it is loaded in advance. Analog, storing of the last data line will cause a
delay.

center

north

south

west east

north
north

north
west

north
east

data required for current line

data required for next line

data required for both of them

x

y

z

Figure 3: Lines of Domain required for Jacobi Stencil

Local Operators The multigrid method can be parallelized easily by domain decomposition because the opera-
tors that are applied onto the data are local ones. That includes the Jacobi operator which is used as smoother, the
Laplace operator which calculates the residual, the prolongation and the restriction operator. Local means in this
context that those operators have only read dependencies on a small area within the whole domain and the results
are only written to a small area. Assuming line–wise processing, also neighboring lines have to be loaded for every
operation on the domain. This is shown in figure (3) for the Jacobi operator: Besides the center line also the north,
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south, west and east data lines are required. Furthermore, the two purple lines can be reused when processing the
next one so three ones (marked blue: north–north, north–west and north–east) must be loaded from memory.

Multi–Threading of the Program The Cell Software Development Kit (cellsdk) offers the possibility of multi–
threaded programs. The framework for each application on the Cell/BE is a PPE program, that is used for initial-
ization, thread creation and cleanup afterward. Threads can be created on the PPE using the POSIX thread library
(pthreads). These PPE threads give control to one SPE and then sleep until control returns from the SPE. For this
purpose, one SPE context has to be created for each utilized SPE. A binary image containing the SPE program
has to be loaded, then the execution of this program with optional parameters is triggered. The corresponding PPE
thread is sent to sleep until the SPE program is finished.
Additionally, synchronization of the different threads is required to insure the data consistency. Hence, synchro-
nization points are introduced after each Jacobi iteration, coarsening and interpolation step. The cellsdk offers
libsync, a library that provides variables for inter–process communication. Since the synchronization is a cheap
function call and the load is quite good balanced, this locking communication is preferred over dealing with over-
lapping domains in the Jacobi solver.

SIMDization of the Kernels Every SPE provides 128 SIMD registers of 128 bit each. Using these registers
is crucial for efficient execution of the program. The compiler does not create vectorized programs from stan-
dard code, but special vector data types have to be chosen for the operands. For floating point data this is the
vector float type which contains four 32 bit floats. For these data types adapted operations (e. g. logical,
arithmetic, shifting, shuffling) must be used. All the numerical kernels (Jacobi, Laplace operator, restriction and
prolongation) were completely SIMDized within the program code. In case that array dimensions are not multiples
of 4, the last vector in each line contains one or more entries which are simply ignored. Furthermore, the offset
from one grid to the next may not be a multiple of 4. This plays a role in the injection method: Values injected
on the coarse grid have to be shifted within the vector float. The results are shuffled within the regarding
vectors afterward.
The SPEs have a bad performance in predicting branches and each misprediction will cause a break in the pipeline.
Therefore, branches in the computation kernels are eliminated. This is possible in all kernels of the multigrid
method, but quite tricky for the treatment of the interfaces between coarse and fine grid.

4 Tests and Results

The pivotal question is what the outcome of the applied effort in terms of computational performance is. In order to
find out performance tests were executed on both the PlaystationTM 3 and the IBM Cell Blade QS20. In principle,
the processors are identical on both, so the same code can be executed with two exceptions: The number of
available SPEs is 6 on the PlaystationTM 3, but 8 on the QS20, and the overall memory size of the PlaystationTM 3
is 256 MB, while the QS20 has got 1 GB of main memory. This restricts the maximal problem size on the PS3, i.e.
bigger grid sizes are only tested on the QS20. It turned out that the speed on both the QS20 and the PS3 is fairly
the same, so within this section the results on the QS20 are shown only. Numerical results were already presented
in [1], so the focus in this paper is on the computational speed.
The first test showed that only half of the theoretical bandwidth of the Cell/BE could be reached. Given a closer
look the reason was identified to be the improper alignment of data. Hence, in a second step the tests were re–run
with adapted code that operates on data that is 128 byte aligned both in main memory and local store of the SPE.
The results show that much higher bandwidth can be achieved. Finally, tests were performed using both of the
Cell/BEs on the QS20 and both available memory buses, forcing interleaved memory scheduling. This a technique
that spreads subsequent logical addresses to different physical memory banks, so the refreshing time, each of those
banks takes after an access, is hidden, when large subsequent data blocks are transferred between processor and
main memory. If this scheduling is forced on the QS20, it enables both memory buses for the executed program
and doubles the theoretical peak to 50 GB/s in theory. For the interleaved case, SPE threads are assigned to both
Cell processors on the blade, while in the other cases only one of them is used.
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4.1 Calculation of the Performance Measures

Runtime analysis was done exemplary for the Jacobi Solver and conclusions are drawn for the limiting factor of
performance. This is done by comparing the achieved performance measures memory bandwidth and floating point
operations per second to the theoretical peak values on the Cell/BE. These measures are computed directly from
the runtime, which is calculated via gettimeofday() C function calls that are injected at the synchronization
points of the program. The measurements are accurate down to microseconds and are averaged over 10 test runs
each. Timing for one Jacobi iteration was considered to be typical for all computational kernels because all of
them were implemented using the same optimization techniques.
The floating-point performance of the Jacobi solver is computed directly from runtime: For every inner grid point
a fixed number of floating point operations has to be done: 10 operations per point. So, the overall number of
operations per Jacobi iteration calculates as #op = (size − 1)3 · 10, where size is the number of cells in one
dimension. The floating point performance Pflop is given for elapsed time t as Pflop = #op

t .
The memory bandwidth of the Jacobi solver is calculated in a similar way. Consider figure 3 again: Per line that is
processed, 3 lines had to be loaded while processing the previous one, i. e. north, east and west w.r.t. the processed
line. Additionally, one line of the right hand side has to be loaded and one result line has to be stored: Altogether
#mem = 5 · 4byte = 20byte of data are transferred per inner grid point. So, the memory performance calculates
as Pmem = #mem

t for elapsed runtime t.

4.2 Results for Unaligned Arrays

The floating point performance that has been computed from runtimes for different problem sizes depending on
the number of SPE threads is visualized in figure 4 regarding the left y–axis. The maximal achieved performance
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Figure 4: Floating Point and Memory Performance of Jacobi Smoother for Unaligned Arrays

is 7 GFlop/s, whereas around 200 GFlop/s are possible. This means, the peak performance reached in the Jacobi
solver is below 4% of the theoretical one. This low value can be excluded as limiting factor.
The graph corresponding to the utilized memory bandwidth is contained in figure (4), regarding the right hand y–
axis (the bandwidth scaling is identical to that of the floating point performance in the used performance model).
The theoretical peak performance is 25.6 GB/s, whereas the achieved one is maximal 12.8 GB/s.
Even this maximal bandwidth can be reached only for the biggest tested grid size and a sufficient number of
threads. The performance drops significantly in all the other cases. The scaling of the performance, depending
on the number of threads, is good for 2 and 3 threads, where the performance is doubled and tripled, but is not
effective for more than 4 threads. At least, performance is not dropping for these cases. The memory bandwidth
seems to be the limiting factor of the speed for the Jacobi solver. Because no consideration was given to proper
alignment each DMA transfer is split up to two ines, which gives a 50% drop in bandwidth performance.

4.3 Results for Aligned Arrays

The tests were repeated with properly aligned arrays and the performance measures are shown in figure 5. Analog
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Figure 5: Floating Point and Memory Performance of Jacobi Smoother with 128 byte Alignment

to the previous subsection, the floating point performance is not the limiting factor, the maximal achieved one is
around 6.5% of the theoretical peak performance. The more interesting measure is the memory bandwidth again.
The highest memory bandwidth within this test case was 22.7 GB/s, which is 88% of the theoretical peak. Other
measurements, e.g. in [11] affirm, that this is the maximum reachable bandwidth for scientific computation codes
on the Cell/BE.
In contrast to the previous results, where maximum performance was only reached for the biggest grid size 2563,
in the aligned case the performance of the medium grid sizes 1283 and 1923 is almost identical. Only for the
643 grid, the performance drops by roughly 20 percent. Independent of the problem size, the performance scales
almost linear up to 6 threads, until the peak in memory bandwidth is reached. For the small test case it is even
better for 7 and 8 threads also, since this peak is not reached.
Altogether, the alignment can be identified as crucial factor for performance on the CBE and the bandwidth is
the limiting factor for the proposed multigrid method. This could be overcome by developing a more advanced
load/store strategy, that minimizes memory access. So, higher floating point performance could be gained.

4.4 Results for Interleaved Memory

Finally, measurements were made with properly aligned arrays (compare the previous subsection) and an inter-
leaved memory strategy as explained. To get an impression of the achieved performance, in figure 6 the floating
point and memory performance are displayed. Like in the previous test cases the floating point operations do not
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Figure 6: Floating Point and Memory Performance of Jacobi Smoother with Interleaving

limit the performance. The maximal one is 14.3 GFlop/s, i.e. 7% of the theoretical peak performance. Regarding
memory bandwidth, the behavior is similar to that in the previous case: The utilized bandwidth is scaling almost
linear with the number of threads, in this case up to eight ones, which is better than before. The memory perfor-
mance is in the same order of magnitude for the grid sizes 1283, 1923 and 2563, being only lower for 643.
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The maximal achieved memory bandwidth is 26.7 GB/s, being better than in the previous subsection, but rela-
tively low compared to around 50 GB/s that are possible with interleaved memory in theory. However, interleaved
memory gives additional performance on the QS20 at the price of occupying more resources.

5 Conclusion

A parallel FAC method could be implemented successfully on the Cell/BE. The main effort within this implemen-
tation was the proper design of data sets and structures as well as scheduling memory transfer operations. These
are tasks which are done to a major part by either the compiler or the processor itself (e. g. cache hierarchies,
out–of–order execution) on other modern architectures. It was shown that the hardware limits of the Cell/BE can
be reached if advanced programming techniques are applied, however, a deeper understanding of the underlying
hardware properties is required to achieve that. A higher floating point performance could be gained if the overall
parallelization model is revisited and data locality techniques like advanced blocking developed in part III of [9]
are applied. Another future goal is to extend the discussed simulation model to higher error orders. For this pur-
pose the discretization at grid interfaces is a key criterion. From algorithmic view it is also still an open question
how these interfaces should be handled for more complex stencils. At the moment methods for hierarchical grid
coarsening are developed to make the implementation easier without affecting the accuracy, respectively feasible
for higher order accuracy.
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