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Abstract

In this paper Local Fourier Analysis (LFA) for multigrid methods on triangular grids is extended
to the case of systems of PDEs. In particular, it is performed for the problem of planar elasticity,
although its application to other systems is straightforward. Analogously to the scalar case, this
analysis is based on an expression of the Fourier transform in new coordinate systems, both in space
and in frequency variables, associated with reciprocal bases. LFA is particularly valuable for systems
of PDEs, since it is often much more difficult to identify the correct multigrid components than for
a scalar problem. For the discrete elasticity operator obtained with linear finite elements, different
collective smoothers like three-color smoother and some zebra-type smoothers are analyzed. LFA
results for these smoothers are presented.

1 Introduction

Planar elasticity models the displacements of an elastic body Ω ⊂ R
2, subject to a force density f ,

with respect to its original configuration. These displacements are described by means of a vector
function u = (u, v), which is the solution of the following system of equations

Lu = −μΔu − (λ + μ)grad(div u) = f , in Ω,

where Δ is the vector Laplace operator, λ and μ are the so-called Lamè’s coefficients, and f = (f1, f2) ∈
(L2(Ω))2. Here, a discretization by linear finite elements of this elasticity operator is considered,

Lh =
(

Lu,u
h Lu,v

h
Lv,u

h Lv,v
h

)
=
(

−(λ + 2μ)(∂xx)h − μ(∂yy)h −(λ + μ)(∂xy)h
−(λ + μ)(∂xy)h −μ(∂xx)h − (λ + 2μ)(∂yy)h

)
.

The algebraic linear equation system arising from this discretization will be solved by means of a
geometric multigrid algorithm, due to the fact that these methods are among the most efficient numer-
ical algorithms for solving this kind of systems. In geometric multigrid, a hierarchy of grids must be
proposed. For an irregular domain, it is very common to apply regular refinement to an unstructured
input grid; in this way, a hierarchy of globally unstructured grids is generated that is suitable for use
with geometric multigrid. So, we are interested in the framework of hierarchical hybrid grids (HHG)
which was presented in [1]. The coarsest mesh is assumed rough enough in order to fit the geometry
of the domain. Once this coarse triangulation is given, each triangle is divided into four congruent
triangles connecting the midpoints of their edges, and so forth until the mesh has the desired fine scale
to approximate the solution of the problem. In this way, a nested hierarchy of grids is obtained.

As it is well-known, the construction of an efficient multigrid method is strongly dependent on the
choice of its components, which have to be selected so that they efficiently interplay with each other.
Especially, the choice of a suitable smoother is an important feature for the design of an efficient
multigrid method. In this paper, a linear interpolation has been chosen, the restriction operator has
been taken as its adjoint and the discrete operator corresponding to each mesh results from the direct
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discretization of the problem. Moreover, collective three-color smoother and some collective line-wise
smoothers of zebra-type are proposed as relaxing methods.

In order to choose suitable components for a multigrid method, LFA is used, due to its being
a powerful tool for the design of efficient multigrid methods. This analysis is mainly based on the
Fourier transform and was introduced by Brandt [2]. A good introduction can be found in the books
by Trottenberg et al. [4] and Wienands and Joppich [5]. This technique has been widely used in the
framework of discretizations on rectangular grids, and recently a generalization to triangular grids
has been proposed in [3]. The key fact for carrying out this generalization is to write the Fourier
transform using coordinates in non-orthogonal bases fitting the new structure of the grid. In order
to extend LFA to the case of the planar elasticity system, a new expression of the Fourier transform
for vector functions is considered. To study multigrid methods in the framework of HHG, the LFA
proposed here is applied to each input triangle in such a way that the global behavior of the method
will depend on the quality of the chosen local components.

The organization of the paper is as follows. In Section 2, the way in which LFA is performed,
particularly for the case of the considered smoothers, is explained. In Section 2.1, the new expression
of the Fourier transform is presented and some concepts necessary for the development of LFA are
introduced. Section 2.2 explains the performance of LFA smoothing analysis for three-color and zebra-
type smoothers, and two-grid analysis is described in Section 2.3. Finally, in Section 3, some LFA
results are presented in order to choose the components of the multigrid algorithm which are more
suitable for different grid geometries.

2 Fourier analysis

2.1 General definitions

A non-orthogonal unitary basis of R
2 is established: {e′1, e′2} with 0 < γ < π being the angle between

the vectors of the basis. It is also considered its reciprocal basis {e′′1 , e′′2}, i.e., (e′i, e
′′
j ) = δij , 1 ≤ i, j ≤ 2,

where (·, ·) is the usual inner product in R
2 and δij is the Kronecker’s delta, see Figure 1. The

coordinates of a point in these bases, {e′1, e′2} and {e′′1 , e′′2}, are y′ = (y′1, y
′
2) and y′′ = (y′′1 , y′′2 ),

respectively, just like y = (y1, y2) in the canonical basis {e1, e2}.
 

 

 

 
 

 

 
 

Figure 1: Reciprocal bases in R
2.

By applying the changes of variables x = F(x′) and θ = G(θ′′) to the usual Fourier transform
formula, the Fourier transform and its corresponding back transformation formula with coordinates
in a non-orthogonal basis, result in the following

û(G(θ′′)) =
sin γ

2π

∫
R2

e−iG(θ′′)·F(x′)u(F(x′)) dx′, u(F(x′)) =
1

2π sin γ

∫
R2

eiG(θ′′)·F(x′)û(G(θ′′)) dθ′′.
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Since the new bases are reciprocal bases, the inner product G(θ′′) · F(x′) is given by θ′′1x′
1 + θ′′2x′

2.
Using previous expressions, a discrete Fourier transform for non-rectangular grids can be introduced.
With this purpose, a uniform infinite grid Gh = {x′ = (x′

1, x
′
2) |x′

i = kihi, ki ∈ Z, i = 1, 2}, is defined,
where h = (h1, h2) is a grid spacing. Now, for a vector grid function uh, the discrete Fourier transform
and its back Fourier transformation can be defined by

ûh(θ′′) =
h1h2 sin γ

2π

∑
x′∈Gh

e−i(θ′′1 x′
1+θ′′2 x′

2)uh(x′), uh(x′) =
1

2π sin γ

∫
Θh

ei(θ′′1 x′
1+θ′′2 x′

2)ûh(θ′′)dθ′′, (1)

where θ′′ = (θ′′1 , θ′′2) ∈ Θh = (−π/h1, π/h1]×(−π/h2, π/h2] are the coordinates of the point θ′′1e
′′
1+θ′′2e

′′
2

in the frequency space. Considering the scalar Fourier modes, ϕh(θ′′,x′) = eiθ′′1 x′
1 eiθ′′2 x′

2 , their vector
counterparts are ϕh(θ′′,x′) :=

(
ϕh(θ′′,x′), ϕh(θ′′,x′)

)t
, with x′ ∈ Gh, and θ′′ ∈ Θh. They give rise to

the Fourier space, F(Gh) = span{ϕh(θ′′, ·) | θ′′ ∈ Θh}. From (1), it follows that each discrete function
uh(x′) ∈ (l2h(Gh))2 can be written as a formal linear combination of the Fourier modes, which are
linearly independent discrete functions.

 

 

 

 

 

 

Figure 2: Regular triangular grid on a fixed coarse triangle T and its extension to an infinite grid.

Let Th be a regular triangular grid on a fixed coarse triangle T ; see left picture of Figure 2. Th is
extended to the infinite grid Gh given before, where e′1 and e′2 are unit vectors indicating the direction
of two of the edges of T , and such that Th = Gh

⋂
T , see right picture of Figure 2. Neglecting

boundary conditions and/or connections with other neighboring triangles of the coarsest grid, the
discrete problem Lhuh = fh can be extended to the whole grid Gh. As it is well-known, vector Fourier
modes ϕh(θ′′,x′) are formal eigenfunctions of the discrete operator Lh. More precisely, it is fulfilled

Lhϕh(θ′′,x′) = L̃h(θ′′)ϕh(θ′′,x′) =

(
L̃u,u

h (θ′′) L̃u,v
h (θ′′)

L̃v,u
h (θ′′) L̃v,v

h (θ′′)

)
ϕh(θ′′,x′),

where matrix L̃h(θ′′) is the Fourier symbol of Lh.
Using standard coarsening, high and low frequency components on Gh are distinguished, in the way
that the subset of low frequencies is Θ2h = (−π/2h1, π/2h1]× (−π/2h2, π/2h2], and the subset of high
frequencies is Θh \ Θ2h.
For simplicity in notation, in the following we will use x = (x1, x2) and θ = (θ1, θ2) as the coordinate
vectors in the bases {e′1, e′2} and {e′′1 , e′′2}, respectively.

2.2 Smoothing analysis

In Fourier smoothing analysis, the influence of a smoothing operator on the high-frequency error
components is investigated. An ideal coarse grid operator which annihilates the low-frequency error
components and leaves the high-frequency components unchanged is assumed. This paper focuses on
the analysis of three-color smoother and different variants of zebra-type smoothers because, like other
multicolor-type relaxations, their analysis is a bit different from that of standard smoothers, due to
the fact that Fourier modes are no longer their eigenfunctions.
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2.2.1 Smoothing analysis for three–color smoother

To apply three-color smoother, first the infinite grid must be split into three disjoint subgrids, each of
them associated with a different color, as shown in Figure 3, so that the unknowns of the same color
have no direct connection with each other,

RED POINTS 

BLACK POINTS 

GREEN POINTS 

Figure 3: Three-color smoother.

Gi
h = {x = (x1, x2) |xj = kjhj , kj ∈ Z, j = 1, 2, k1 + k2 = i (mod 3)}, i = 0, 1, 2.

The complete three-color smoothing operator is given by the product of three partial operators,
Sh(ω) = S2

h(ω)S1
h(ω)S0

h(ω). In each partial relaxation step, only the grid points of Gi
h are processed,

whereas the remaining points are not treated, that is,

Si
h(ω)vh(x) =

{
[(Ih − ωD−1

h Lh)vh](x), x ∈ Gi
h,

vh(x), x ∈ Gh\Gi
h,

where Dh is the diagonal part of the discrete operator Lh, Ih is the identity operator and ω is a
relaxation parameter.
This smoother couples certain Fourier modes and therefore, we consider an appropriate decomposition
of the Fourier space given by

F(Gh) = ⊕F3(θ00), F3(θ00) = span{ϕh(θ00, ·),ϕh(θ11, ·),ϕh(θ22, ·)}, (2)

where θαα = (θ00 − 2πα
3 h−1)(mod 2πh−1), α = 0, 1, 2, h−1 = (h−1

1 , h−1
2 ) and Fourier frequencies θ00

are taken into an L–shaped region as depicted in Figure 4

θ00 ∈ Λ3 =
((

− π

3h1
,

π

h1

]
×
(
− π

3h2
,

π

h2

])
\
((

π

3h1
,

π

h1

]
×
(

π

3h2
,

π

h2

])
.

With this decomposition, it is obtained that operators Si
h(ω) leave invariant the subspaces F3(θ00).

In particular, for operator S0
h, for example, the following equality is fulfilled,

S0
h(ω)

⎛⎝ ϕh(θ00, ·)
ϕh(θ11, ·)
ϕh(θ22, ·)

⎞⎠ =
1
3

⎛⎝ A00(θ00, ω) A11(θ00, ω) A22(θ00, ω)
A00(θ11, ω) A11(θ11, ω) A22(θ11, ω)
A00(θ22, ω) A11(θ22, ω) A22(θ22, ω)

⎞⎠⎛⎝ ϕh(θ00, ·)
ϕh(θ11, ·)
ϕh(θ22, ·)

⎞⎠ , (3)

with

Aα′α′(θαα, ω) =
{

λαα(ω) + 2I, if α′ = α,
λαα(ω) − I, otherwise,

where I is the (2×2)-identity matrix and λαα(ω) is the (2×2)–matrix λαα(ω) = Ĩh−ωD̃−1
h (θαα)L̃h(θαα).

Formula (3) gives us the expression of the Fourier representation of the partial operator S0
h in the sub-

space F3(θ00), denoted by Ŝ0
h(θ00, ω). In an analogous way, it is possible to obtain the corresponding
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Figure 4: Three–dimensional minimal invariant harmonic subspaces for three–color smoother.

representations of S1
h and S2

h, denoted by Ŝ1
h(θ00, ω) and Ŝ2

h(θ00, ω), respectively, which are composed
of matrices Bα′α′(θαα, ω) and Cα′α′(θαα, ω) given in the following way

Bα′α′(θαα, ω)=

⎧⎨⎩
λαα(ω) + 2I, if α′ = α,

e−2πi/3λαα(ω) + (e2πi/3 + 1)I, if α′ = α + 1 (mod 3),
e2πi/3λαα(ω) + (e−2πi/3 + 1)I, if α′ = α + 2 (mod 3),

Cα′α′(θαα, ω)=Bα′α′(θαα, ω).

The mean smoothing factor, for ν consecutive sweeps, is μ(Sh(ω), ν) = supθ00∈Λ3{ ν

√
ρ(Q̂(θ00)Ŝν

h(θ00, ω))},
where Q̂(θ00) is a projection matrix, which annihilates the low–frequency error components and leaves
the high–frequency ones unchanged, given by Q̂(θ00) = diag{P(θ00),P(θ11),P(θ22)}, where P(θαα)
is the (2 × 2)–null matrix when θαα ∈ Θ2h, and the (2 × 2)–identity matrix otherwise.

2.2.2 Smoothing analysis for zebra-type smoothers

Zebra-type smoothers consist of two half steps. In the first half-step, odd lines are processed, whereas
even lines are relaxed in the second step, in which the updated approximations on the odd lines are
used. For triangular grids, three different zebra smoothers can be defined on a triangle as shown
in Figure 5. They will be denoted as zebra-red, zebra-black and zebra-green smoothers, since they
correspond to each of the vertices of the triangle.

2 

1 

1 

1 

1 

1 

2 

2 

2 

R 

G B 

2 

1 

1 

1 

1 

1 

2 

2 

2 

R 

B G 

2 

1 

1 

1 

1 

1 

2 

2 

2 

R 

B G 

Figure 5: Zebra line smoothers: approximations at points marked by 1 are updated in the first half-step
of the relaxation, those marked by 2 in the second.

In order to perform these smoothers, a splitting of the grid Gh into two different subsets Geven
h and

Godd
h is necessary. For each of the zebra smoothers these subgrids are defined in a different way, and

the corresponding distinction between them is specified in Table 1. Thus, these three smoothers SzR
h ,
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Relaxation Geven
h Godd

h

Zebra-red k2 even k2 odd
Zebra-black k1 even k1 odd
Zebra-green k1 + k2 even k1 + k2 odd

Table 1: Characterization of subgrids Geven
h and Godd

h for different zebra smoothers.

SzB
h and SzG

h are defined by the product of two partial operators. For example, if zebra-red smoother
is considered, SzR

h = SzR−even
h · SzR−odd

h where SzR−even
h is in charge of relaxing the points in Geven

h

and SzR−odd
h is responsible for the points in Godd

h . For this zebra-red smoother, it is fulfilled

SzR−even
h ϕh(θ,x)=

{
A(θ)ϕh(θ,x), x ∈ Geven

h

ϕh(θ,x), x ∈ Godd
h

, SzR−odd
h ϕh(θ,x)=

{
ϕh(θ,x), x ∈ Geven

h

A(θ)ϕh(θ,x), x ∈ Godd
h

,

where A(θ) is a (2 × 2)-matrix.
These relaxation operators couple Fourier components, in particular they leave invariant certain low-
dimensional subspaces of the Fourier space, which are two-dimensional ones. However, for the conve-
nience of the two-grid analysis, the following four-dimensional subspaces, which are called spaces
of 2h-harmonics are considered, F4(θ00) = span{ϕh(θ00, ·),ϕh(θ11, ·),ϕh(θ10, ·),ϕh(θ01, ·)}, with
θ00 = (θ00

1 , θ00
2 ) ∈ Θ2h, and θ11, θ10 and θ01 defined by

θij = θ00 − (i sign(θ00
1 )π/h1, j sign(θ00

2 )π/h2), i, j ∈ {0, 1}. (4)

It is obvious that the 2h-harmonics generate the whole Fourier space F(Gh) = ⊕F4(θ00), and thus,
since these subspaces remain invariant under the application of zebra-type smoothers, a block Fourier
representation of the smoothing operator which permits an easy calculation of smoothing factors can
be obtained. Hence, Fourier representation of the operator based on the 2h-harmonics reads

ŜzR
h (θ) = ŜzR−even

h (θ) · ŜzR−odd
h (θ),

with

ŜzR−even
h (θ) =

1
2

⎛⎜⎜⎝
A(θ00) + I 0 0 A(θ01) − I

0 A(θ11) + I A(θ10) − I 0
0 A(θ11) − I A(θ10) + I 0

A(θ00) − I 0 0 A(θ01) + I

⎞⎟⎟⎠ ,

ŜzR−odd
h (θ) =

1
2

⎛⎜⎜⎝
A(θ00) + I 0 0 −A(θ01) + I

0 A(θ11) + I −A(θ10) + I 0
0 −A(θ11) + I A(θ10) + I 0

−A(θ00) + I 0 0 A(θ01) + I

⎞⎟⎟⎠ ,

where 0 is the (2 × 2)-null matrix, and θ = θ00 ∈ Θ2h. Analogously, Fourier representations of the
zebra-black and zebra-green smoothers can be obtained.

2.3 Two-grid analysis

In order to investigate the interplay between relaxation and coarse grid correction, which is crucial for
an efficient multigrid method, it is convenient to perform a two-grid analysis which takes into account
the effect of transfer operators. Let um

h be an approximation of uh. The error em = um
h − uh is

transformed by a two-grid cycle as em+1 = M2h
h em, where M2h

h = Sν2
h K2h

h Sν1
h is the two-grid operator,

K2h
h = (Ih − Ph

2h(L2h)−1R2h
h Lh) the coarse grid correction operator and Sh is a smoothing operator

on Gh with ν1 and ν2 indicating the number of pre– and post–smoothing steps respectively. In the
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definition of K2h
h , L2h is the coarse grid operator and Ph

2h, R2h
h are transfer operators from coarse

to fine grids and vice versa. The two–grid analysis is the basis for the classical asymptotic multigrid
convergence estimates, and the spectral radius ρ(M2h

h ) of the operator M2h
h indicates the convergence

factor of the multigrid method.
In order to guarantee that nonsingular Fourier symbols L̃h(θ) and L̃2h(2θ) are taken, we restrict our
considerations to Θ̃2h = Θ2h \Ψ, where

Ψ = {θ00 ∈ Θ2h | det(L̃2h(2θ00)) = 0, or det(L̃h(θij)) = 0, i, j ∈ {0, 1}}.

As it is well-known, the coarse grid correction operator K2h
h leaves the four–dimensional subspace of

2h–harmonics F4(θ00) invariant for an arbitrary Fourier frequency θ00 ∈ Θ̃2h. The same invariance
property holds for many well–known smoothers, like zebra-type smoothers. Therefore, the two–grid
operator M2h

h = Sν2
h K2h

h Sν1
h also leaves the 2h–harmonic subspaces invariant, and as a consequence it

is equivalent to a block-diagonal matrix, consisting of (8 × 8)–blocks, denoted by

M̂2h
h (θ00) = (Ŝh(θ00))ν2K̂2h

h (θ00)(Ŝh(θ00))ν1 ,

with θ00 ∈ Θ̃2h and where the Fourier representation of the relaxation method is an (8 × 8)-matrix,
Ŝh(θ), and the block-matrix representation of the coarse grid correction in the subspace F4(θ00) is
given by K̂2h

h (θ) = Îh − P̂h
2h(θ)(L̂2h(θ))−1R̂2h

h (θ)L̂h(θ) ∈ C
8×8, being Îh, L̂2h(θ), L̂h(θ), R̂2h

h (θ) and
P̂h

2h(θ) the Fourier representations in F4(θ00) of the operators involved in the coarse grid correction.
As a consequence, the spectral radius ρ(M2h

h ) can be calculated by means of the spectral radius of
(8 × 8)–matrices, so it is possible to determine the asymptotic two–grid convergence factor as:

ρ2grid = ρ(M2h
h ) = max

θ00∈Θ̃2h

ρ(M̂2h
h (θ00)). (5)

However, this is not true for three–color smoother, which leads us to consider another subdivision of
the Fourier space to be explained next.

2.3.1 Two–grid analysis for three–color smoother

In the case of three–color smoother, the following decomposition of the Fourier space is considered
F(Gh) = ⊕F12(θ00), where F12(θ00) = F3(θ00

00) ⊕F3(θ11
00) ⊕F3(θ10

00) ⊕F3(θ01
00), where

θ00
00 = θ00 ∈ Λ12 =

((
− π

3h1
,

π

3h1

]
×
(
− π

3h2
,

π

3h2

])
\
((

0,
π

3h1

]
×
(

0,
π

3h2

])
,

θ11
00,θ

10
00,θ

01
00 are the three frequencies associated with θ00

00 by means of (4) and the subspace F3(θij
00) is

generated as in (2). In Figure 6, the location of the twelve different frequencies θij
αα and the L–shaped

region Λ12 is displayed.
As has been shown previously, F3(θij

00) are invariant under Si
h(ω), and the matrix representation

of S0
h(ω) in this space is a (6 × 6)–matrix which has the following form

Âij(θ00, ω) =
1
3

⎛⎜⎝ Aij
00(θ

ij
00, ω) Aij

11(θ
ij
00, ω) Aij

22(θ
ij
00, ω)

Aij
00(θ

ij
11, ω) Aij

11(θ
ij
11, ω) Aij

22(θ
ij
11, ω)

Aij
00(θ

ij
22, ω) Aij

11(θ
ij
22, ω) Aij

22(θ
ij
22, ω)

⎞⎟⎠
t

,

with

Aij
α′α′(θij

αα, ω) =
{

λij
αα(ω) + 2I, if α′ = α,

λij
αα(ω) − I, otherwise,

where λij
αα(ω) = Ĩh − ωD̃−1

h (θij
αα)L̃h(θij

αα).
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Figure 6: Twelve–dimensional minimal invariant harmonic subspaces.

For the partial smoothing operators S1
h(ω) and S2

h(ω) we have the matrices B̂ij(θ00, ω) and
Ĉij(θ00, ω), whose coefficients are computed as in the case of the smoothing analysis. Consequently,
F12(θ00) are invariant for three–color smoother, and the matrix representation of Si

h(ω) and Sh(ω) in
this subspace are the following (24 × 24)–matrices:

Ŝ0
h(θ00, ω) = diag{Â00(θ00, ω), Â11(θ00, ω), Â10(θ00, ω), Â01(θ00, ω)},

Ŝ1
h(θ00, ω) = diag{B̂00(θ00, ω), B̂11(θ00, ω), B̂10(θ00, ω), B̂01(θ00, ω)},

Ŝ2
h(θ00, ω) = diag{Ĉ00(θ00, ω), Ĉ11(θ00, ω), Ĉ10(θ00, ω), Ĉ01(θ00, ω)},

Ŝh(θ00, ω) = Ŝ2
h(θ00, ω)Ŝ1

h(θ00, ω)Ŝ0
h(θ00, ω).

With regard to the coarse grid correction operator K2h
h , it leaves subspaces F12(θ00) invariant. It

turns out that the matrix representation of K2h
h in this subspace is the following (24 × 24)–matrix:

K̂2h
h (θ00) =

⎛⎜⎜⎝
K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

⎞⎟⎟⎠ ,

where Kij is the block diagonal matrix Kij = diag{c0,ij , c1,ij , c2,ij}, being cα,ij the (2 × 2)-block
situated in the position (i, j) of matrix K̂2h

α,h(θαα), which is built in the following way

K̂2h
α,h(θαα) = Îh − P̂h

2h(θαα)(L̂2h(θαα))−1R̂2h
h (θαα)L̂h(θαα) ∈ C

8×8.

In order to ensure that nonsingular Fourier symbols are taken, instead of Λ12 the following space
is considered, Λ̃

12
= Λ12 \ {θ00 ∈ Λ12|det(L̃2h(2θ00

αα)) = 0, or det(L̃h(θij
αα)) = 0, i, j ∈ {0, 1}}.

And thus, the asymptotic convergence factor for ν1 pre–smoothing and ν2 post–smoothing steps of
three–color smoother can be defined as

ρ2grid = ρ(M2h
h ) = sup

θ00∈Λ̃
12

ρ(M̂2h
h (θ00)) = sup

θ00∈Λ̃
12

ρ(Ŝν1
h (θ00, ω)K̂2h

h (θ00)Ŝν2
h (θ00, ω)).

3 Fourier analysis results

As is well-known, elasticity operator has the property of being invariant under Euclidean motions.
Thus, if we consider a rotation by angle θ, elasticity operator L satisfies L(Ru) = R(Lu), where R is
the rotation matrix given by

R =
(

cos θ − sin θ
sin θ cos θ

)
.
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As a consequence, it is easy to see that L̃R,h = R L̃hRt, where L̃h and L̃R,h are the LFA symbols
of the discrete operators associated with two grids, one obtained by rotating the other. Thus, it is
fulfilled that these LFA symbols are similar and therefore LFA results obtained for these two grids are
completely identical.
Due to this property it is possible to restrict the analysis to triangles that sit on the x-axis of the
Cartesian coordinate system. Therefore, in this section Local Fourier Analysis is applied to a dis-
cretization of the elasticity operator by linear finite elements on a regular triangulation of a general
triangle, in order to investigate how the grid–geometry has influence on the properties of multigrid
methods.
This section focuses on analyzing different smoothers for the posed problem, while the components
of the coarse–grid correction are taken as the standard ones as we have mentioned before. One of
the proposals here is the three–color smoother. In order to support the choice of this smoother as a
good option for some geometries, some results obtained comparing it with the point-wise Gauss-Seidel
are presented. These results appear in Table 2, where their two–grid convergence factors ρ and also
the experimentally measured W–cycle convergence factors, denoted by ρh and obtained with a zero
right-hand side and a random initial guess, are shown in order to observe that convergence factors
are very well predicted by LFA. These factors are computed for an equilateral triangle, and it can be
observed that three-color smoother provides the best convergence factors between the two smoothers.

Gauss–Seidel Three–color smoother
ν1, ν2 ρ ρh ρ ρh

1, 0 0.516 0.506 0.422 0.422
1, 1 0.257 0.255 0.173 0.172
2, 1 0.172 0.172 0.097 0.095
2, 2 0.113 0.113 0.073 0.072

Table 2: Two–grid convergence factors ρ and measured W–cycle convergence rates ρh for equilateral
triangles.

However, the three–color smoother is not robust over all angles, that is, the highly satisfactory
factors obtained for equilateral triangles worsen when one of the angles of the triangle is small. This
behavior can be seen in Table 3, where smoothing and two-grid factors obtained with this smoother
are shown for some representative triangles.

Equilateral Isosceles (75o) Isosceles (85o)
ν1, ν2 μν1+ν2 ρ μν1+ν2 ρ μν1+ν2 ρ

1, 0 0.503 0.422 0.811 0.814 0.976 0.977
1, 1 0.253 0.173 0.657 0.661 0.954 0.955
2, 1 0.127 0.097 0.533 0.536 0.932 0.934
2, 2 0.064 0.073 0.432 0.435 0.911 0.913

Table 3: LFA smoothing and two–grid factors for different triangles with three-color smoother.

To overcome this difficulty, three zebra-type smoothers, associated with the three vertices of the
triangle, are proposed. These zebra–type smoothers are preferred to the lexicographic block–line
Gauss–Seidel smoothers because, despite having the same computational cost, they are more suitable
for parallel implementation and their two-grid convergence factors are better, as we can see in Table
4 for an isosceles triangle with common angle 85o. Each of these zebra–type smoothers are highly
efficient when the angle corresponding to the vertex of its color is sufficiently small. This is shown in
Table 5, where smoothing and two-grid factors for some representative triangles are shown.

As a final remark, it is observed that, depending on the geometry of the triangles, it is possible
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Lexicographic line-wise smoother Zebra–type smoother
ν1, ν2 ρ ρh ρ ρh

1, 0 0.333 0.331 0.143 0.142
1, 1 0.151 0.145 0.071 0.069
2, 1 0.094 0.094 0.047 0.046
2, 2 0.063 0.062 0.036 0.034

Table 4: LFA two–grid convergence factors and measured W–cycle convergence rates ρh for isosceles
triangles with common angle 85o.

Equilateral Isosceles (75o) Isosceles (85o)
ν1, ν2 μν1+ν2 ρ μν1+ν2 ρ μν1+ν2 ρ

1, 0 0.535 0.404 0.387 0.165 0.265 0.143
1, 1 0.226 0.164 0.096 0.072 0.053 0.071
2, 1 0.104 0.088 0.034 0.047 0.034 0.047
2, 2 0.049 0.067 0.025 0.035 0.025 0.036

Table 5: LFA smoothing and two–grid factors for equilateral and isosceles triangles with zebra–type
smoother.

to improve the convergence factors of three-color and zebra-type smoothers by means of a relaxation
parameter, whereas for the point-wise Gauss-Seidel and lexicographic line-wise smoothers there is no
improvement. For instance, in the case of equilateral triangles the obtained convergence factor for
three-color smoother is about 0.422, and it can enhance to 0.303 taking a damped parameter ω = 1.1.

4 Conclusions

A Local Fourier Analysis for multigrid methods on triangular grids for the problem of planar elasticity
has been presented. Analogously to the scalar case, the key point of this analysis is to introduce an
expression of the Fourier transform in new coordinate systems, both in space and in frequency variables,
associated to reciprocal bases. This analysis makes highly accurate predictions of the performance of
a multigrid algorithm and as a consequence, also the choice of the adequate components of the method
for a given problem. In this paper LFA has been applied to study the planar elasticity system, and
with the help of this analysis a three-color smoother and some zebra-type smoothers are proposed to
obtain an efficient multigrid algorithm to solve this problem.
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