
Parallel Preconditioning in the Analysis of Anisotropic Diffusion Simulation with
the Human Brain Diffusion Tensor MRI Data

Ning Kang
�
, Jun Zhang

�

,
Laboratory for High Performance Scientific Computing and Computer Simulation,

Department of Computer Science,
University of Kentucky,

Lexington, KY 40506-0046, USA
and

Eric S. Carlson
�

Department of Chemical Engineering,
University of Alabama,

P. O. Box 870203,
Tuscaloosa, AL 35487-0203, USA

Abstract

We conduct simulations for the 3D unsteady state
anisotropic diffusion process in the human brain by dis-
cretizing the governing diffusion equation on Cartesian grid
and adopting a high performance differential-algebraic
equation (DAE) solver, the parallel version of implicit
differential-algebraic (IDA) solver, to tackle the resulting
large scale system of DAEs. Parallel preconditioning tech-
niques including sparse approximate inverse and banded-
block-diagonal preconditioners are used with the GMRES
method to accelerate the convergence rate of the iterative
solution. We then investigate and compare the efficiency
and effectiveness of the two parallel preconditioners. The
computational results of the diffusion simulations on a par-
allel supercomputer show that the sparse approximate in-
verse preconditioning strategy, which is robust and efficient
with good scalability, gives a much better overall perfor-

�
The research work of this author was supported by the U.S. Depart-

ment of Energy Office of Science under grant DE-FG02-02ER45961. E-
mail: nkang2@csr.uky.edu.�

The research work of this author was supported in part by the U.S. Na-
tional Science Foundation under grants CCR-9988165, CCR-0092532, and
ACR-0202934, in part by the U.S. Department of Energy Office of Science
under grant DE-FG02-02ER45961, in part by the Kentucky Science and
Engineering Foundation under grant KSEF-02-264-RED-002,in part by
the Japan Research Organization for Information Science and Technology
(RIST), and in part by the University of Kentucky Research Committee.
E-mail: jzhang@cs.uky.edu, URL: http://www.cs.uky.edu/� jzhang.�

The research work of this author was supported by the U.S. Depart-
ment of Energy Office of Science under grant DE-FG02-02ER45961. E-
mail: ecarlson@bama.ua.edu.

mance than the banded-block-diagonal preconditioner.

1. Introduction

The solution of the general unsteady state anisotropic
diffusion equation can be used in the development of im-
proved approaches for the analysis of diffusion tensor mag-
netic resonance imaging (DT-MRI). DT-MRI is an exten-
sion of conventional MRI with the added capability of mea-
suring the random motion of water molecules in all three di-
mensions, usually referred to as diffusion or “Brownian mo-
tion” [3]. DT-MRI renders the information about how water
diffuses in tissues containing a large number of fibers, like
brain white matter, into intricate three-dimensional repre-
sentations of the tissues. Thus, it can be exploited to visual-
ize and extract information about the brain white matter and
nerve fibers by using fiber traces, which has raised promises
for a better understanding of the fiber tract anatomy of the
human brain. In combination with functional MRI, it might
also be used to study the connectivity between different
parts of the brain, which is useful for functional and mor-
phological research on the brain [2].

A number of fiber tracking algorithms have been devel-
oped since the appearance of DT-MRI. In [3] a variety of
these algorithms are described and reviewed. As the mea-
sured quantity in DT-MRI is water diffusion, an intuitive
way to understand the diffusion data is to spread a virtual
concentration peak of water [8], or to specify a starting
point for tractography where a seed is diffused [4]. This

Figure 1. An axial slice of a diffusion tensor
volume. It shows the diffusion tensor compo-
nents, corresponding to the diffusion tensor
matrix � .

approach makes use of the full information contained in the
diffusion tensor and it is not dependent upon a point to point
eigenvalue/eigenvector computation along a trajectory, thus
in that sense hopefully is more robust. It is also intuitively
related to underlying physio-chemical process [16]. The
diffusion process and related transport mechanisms in the
brain are discussed in detail in [12].

Anisotropic systems exhibit a preferential flow direction
while isotropic systems have no preference. According to
Fick’s first law, the flux, � , has magnitude proportional
to the concentration gradient,�� , and is directed oppo-
site to �� , i.e., � � ���� , where the proportionality
constant� is the diffusion coefficient. In the presence of
anisotropy, the flow field does not follow the concentration
gradient directly, for the material properties also affectdif-
fusion. Therefore, the diffusion tensor,� , is introduced to
fully describe the molecular mobility along each direction
and the correlation between these directions. Thus, the flux
is given as� � ���� and the diffusion tensor is

� �
�
� �		 �	
 � 	�

�
	 �

 �
�
� �	 � �
 � ��

�

 �

where the subscripts��, �� , �� , etc., denote the values of
the individual coefficients in the matrix that can be seen as
the influence from directions in the input (being the concen-
tration) on the various directions in the output (being the
flux). Unlike the standard MRI data which has one value
at each voxel, the DT-MRI data has 9 values at each voxel.
Figure 1 shows an axial slice of a diffusion tensor volume
data from a human brain. For the brain system on which we
are focusing, the tensor is symmetric.

Essentially, we are seeking to solve an unsteady state dif-
fusion equation in an anisotropic medium based on the mea-
sured diffusion tensor� . The anisotropic diffusion process,

due to conservation of mass, is governed by
� �� � � � � ���� � � (1)

where
�
is the independent time variable. This equation says

that over the time, the rate of change in concentration is
proportional to the divergence of the flux.

Equation (1) could be very difficult to solve under the
circumstance of the human brain for a few reasons. First,
since the brain structure is heterogeneous where anisotropy
requires full tensor representation, the second order cross
derivatives must be calculated. Second, the diffusion ten-
sor changes drastically between adjacent small regions in
the brain tissues. Thus, fine gridding must be used to avoid
a crude approximation to the true geometry of interesting
structures and this leads to large systems of equations. The
third challenge we have to face is that time plays a crucial
role in the real environment, such as clinical diagnosis, sur-
gical planning, and neurosurgery [17]. In the sense to be
practical, the solution must meet the real-time constraints
and achieves good reliability and robustness as well.

Simulations of anisotropic diffusion in a human brain
have been studied in [11], in which several standard pre-
conditioning techniques based on incomplete LU (Lower-
Upper) factorizations of the coefficient matrix are compared
in a sequential environment. However, the ILU schemes
are not suitable for parallel environments. In order to
perform diffusion simulations over the whole brain with
sufficient accuracy and acceptable computational time and
memory cost, a parallel implementation of the solution pro-
cedure is considered in this paper. The coefficient matrix
is distributed to different processors with the scheme of
row-wise block striping. We then exploit general purpose
modules from the ACTS Toolkit [1], which includes high
performance differential-algebraic-equation (DAE) system
solvers, as the primary integration tools. For the large scale
sparse linear system arising from each integration step, the
Krylov subspace method, preconditioned GMRES, is used
and a number of highly efficient and robust parallel pre-
conditioners are applied as well to achieve speedy solutions
with good accuracy.

The remainder of the paper is organized as follows. Sec-
tion 2 concisely describes the DAE integration solver as
well as its parallel implementation scheme. The parallel
preconditioning techniques are discussed in Section 3. In
Section 4, we conduct a number of numerical experiments
and compare the performance of these preconditioners. The
final concluding remarks are given in Section 5.

2. Differential-algebraic-equation solver

Since the tensor data set used in our current simulation is
measured and processed on a Cartesian mesh, we discretize

the 3D diffusion Equation (1) on Cartesian grid using finite
difference approximation. The central difference in space
and backward differentiation formula in time are applied to
approximate the spatial derivative and time derivative terms
in Equation (1), respectively.

On the boundaries of the heterogeneous system, we as-
sume that it is insulated, i.e.,�� �� � � � � �

, which cor-
responds to the Neumann condition. This condition means
that the normal part of the gradient of the concentration on
the boundary is zero. No material diffuses outside of the
boundary. A 3D Gaussian function is selected to be the
initial distribution profile of the water concentration in the
brain.

The discretization of the Equation (1) and its bound-
ary conditions on the Cartesian grid generates a large
scale system of semi-explicit differential-algebraic equa-
tions (DAEs) with the form

� �� � � � � � � � � � (2)

where� and � � are� -dimensional vectors corresponding
to the discretized values of� and

� � �� �. In this pa-
per, we consider using a high performance DAE solver in-
cluded in the ACTS Toolkit, IDA, which stands for Implicit
Differential-Algebraic solver. we first briefly overview the
algorithms used in IDA for solving DAEs, then take a look
at how it is implemented in parallel. See [5, 6, 10, 14] for
more details.

The IDA solver uses the backward differentiation for-
mula (BDF) method to approximate the time derivative in
(2), implemented in a variable order, variable step form.
The application of BDF to the DAE system (2) leads to a
nonlinear algebraic system to be solved at each time step,
which is

� ��� � 	 �
�� � �� � ��
� ����� �� �� ����� � � � (3)

where�� is the calculated approximation to� ��� � and the
step size is�� � �� � ���
. �� �� � � � � � � � � � � � � � are the
coefficients of the BDF method, which are uniquely deter-
mined by the order of� and the step size at the previous
times. IDA solves the nonlinear system (3) by a modified
version of Newton iteration method. This results in a linear
system for each Newton correction, given by

� ���
�� � � �� �� � �� �
� �� �� �� � � (4)

where� �� �� is the th approximation to�� , � is a constant
chosen to speed up the rate of convergence of the iteration,
and� is some approximation to the system Jacobian

� �
��
� � �

��
� � ! �

��
� � � � (5)

where� � �� �� ��� , which changes whenever the step size
or the BDF method order changes. During the course of
integrating the system, the IDA solver imposes tolerances
on the computed local truncation errors at the"th time step
by using weighted root-mean-square (wrms) norm.

For the solution of large scale linear system (4),
only scaled preconditioned GMRES method, denoted as
SPGMR, is available in the parallel version of the IDA
solver. When solving the linear system (4), a preconditioner
matrix # must be supplied and need be constructed to ap-
proximate� , which leads to an inexpensive linear system
solution, and then factored and used for as many time steps
as possible.

The parallel version of IDA uses a vector module in its
package to achieve parallelism and the MPI (Message Pass-
ing Interface) library for all interprocessor communication.
The vector module contains a set of mathematical opera-
tions on� -vectors (� -dimensional vectors), including vec-
tor linear combinations, vector norms, scalar products, and
so forth. By separating these operations from the rest of
the code, all operations in IDA with significant potential
for parallel computation are isolated. Because the parallel
form of IDA is intended for an SPMD programming model
with distributed memory, all� -vectors are identically dis-
tributed across processors such that each processor is solv-
ing a contiguous subset of the DAE system.

3. Parallel preconditioning techniques

We can rewrite the linear system (4) as

$� � % � (6)

where,
$

is the system Jacobian matrix in (5),� �� ���
�� � � �� �� , % � �� � �� �� �� �. The sparse linear system
(6) needs to be solved at each Newton iteration by way of
the scaled preconditioned GMRES method. As mentioned
before, preconditioning of the linear iteration is essential
and beneficial for both robustness and efficiency.

The first parallel preconditioning technique under our in-
vestigation is a class of sparse approximate inverse (SAI)
preconditioners. The SAI preconditioner, as its name im-
plies, is an approximation to

$�
, the inverse of matrix
$

.
Both its construction and its application in the iterative solu-
tion, which requires nothing but matrix-by-vector products,
allow a large degree of parallelism. Another class of pre-
conditioners that we are interested in is the block-diagonal
preconditioning, which is also suitable for the parallel archi-
tecture. In this paper, close attention is paid to the banded-
block-diagonal (BBD) preconditioners.

Sparse approximate inverse preconditioners. The SAI
preconditioning technique discussed here is based on the
idea of the least squares (Frobenius norm) minimization [9],

usinga priori sparsity patterns [7]. We seek to approximate
the inverse of a matrix

$
(usually sparse) by a sparse ma-

trix # , such that
$# � �

in some sense, where
�

is the
identity matrix. In the case of the right SAI precondition-
ing being used here, we strive to minimize�$# � � � in
the Frobenius norm, i.e.,�$# � � �� , to make

$# � �
,

in order to achieve fast convergence with a reasonable cost.
Since the Frobenius norm of a square matrix is defined by�$ �� � ���� ���
 �	 �� �
, we have

�$# � � �
� � ����
 ��
$# � � ��� �

 � ����
 �

$� � � �� �

 �
(7)

where
� � and �� are the
 th column of the matrix# and

that of the identity matrix
�
, respectively. The solution of

the minimization function (7) can be decoupled into� in-
dependent least squares problems� ���� �$� � � �� �
 �
 � � � � � ����� � (8)

It is apparent that inherent parallelism lies in the solution of
(8) in that each column

� � of # can be computed indepen-
dently of one another. Thus the approximate inverse# of

$
can be constructed by solving (8) in parallel.

Under the consideration of the algorithm complexity and
the computational and memory cost, it is desirable that# is
a sparse matrix and has a good sparsity pattern, i.e., a good
distribution of nonzeros in the matrix. There are quite a few
heuristic strategies proposed to specify a good sparsity pat-
tern for the matrix# , in botha priori way and adaptive way
[7, 9]. Here, we are interested in the method of building a
prescribed sparsity pattern so that the SAI can be yielded
immediately by minimizing (7). For PDE problems, as in
our case, the sparsified patterns of the original matrix

$
can

be employeda priori as effective SAI patterns. Here “spar-
sified” means that certain small entries of

$
are dropped be-

fore its sparsity pattern is extracted. Once we get a sparsity
pattern for the sparse approximate inverse# , it can be com-
puted by solving the minimization problem (8). Detailed
discussions abouta priori sparsity patterns and approaches
of deriving the SAI matrix can be found in [7, 9].

Block-diagonal preconditioners. In general, this class
of preconditioners is based on the block Jacobi method
where a preconditioner can be derived by a partitioning of
the variables. The basic idea is to isolate the precondition-
ing so that it is local to each processor. In fact, on paral-
lel computers it is natural to let the partitioning coincide
with the division of the variables over the processors. In the
following paragraphs, we briefly describe the construction
of the banded-block-diagonal (BBD) preconditioners [10],
which is closely related to the DAE system (2).

First, the spatial domain of the computational PDE prob-
lem is subdivided into� non-overlapping subdomains.

Each of these subdomains is then assigned to one of the� processors to be used to solve the PDE system (in our
case, the DAE system) in parallel. Corresponding to the
domain decomposition and distribution of the system over
the processors, there is a decomposition of the solution
vectors� and � � of the DAE system (2) into� disjoint
blocks �� and � �� . Also, the function

� �� � � � � �� is de-
composed into blocks

�� correspondingly, and the block�� depends not only on��� � � �� � but also on the solution
vector components residing in neighboring blocks. Thus we
have

� �� � � � � �� � ��
 � �
 � ���� �� ��
and each of the blocks�� is uncoupled from the others. The preconditioner asso-

ciated with this decomposition is

� ���� �#
 � #
 � ���� #� � � (9)

where#� is the difference quotient of

�� �
���� �� ! �

���� � �� � (10)

The preconditioner matrix is taken to be banded with up-
per and lower half-bandwidths defined as the number of
nonzero diagonals above and below the main diagonal, re-
spectively.

The solution of the complete preconditioned linear sys-
tem# � � % is equivalent to solving each of the equations

#� �� � %� � (11)

which can be done by a banded LU factorization of#� fol-
lowed by a banded backsolve. Obviously, both procedures
can be performed completely in parallel for � � � ����� .

4. Numerical experiments

In this section, we present numerical results for the per-
formance of SAI and BBD preconditioners on the simula-
tion of the anisotropic diffusion in the human brain. The
resolution of the diffusion tensor MRI data set is��� ���� ��� with each voxel size being� � � � � � ! � " defined
on the Cartesian mesh. Natural ordering is used toward the
points in the Cartesian grid. The numerical tests are con-
ducted on a 32-processor (HP PA-RISC 8700 processors
running at 750 MHz) subcomplex of an HP superdome su-
percomputer at the University of Kentucky. Each processor
has two gigabytes local memory. During the experiments,
four processors are used for numerical simulations unless
otherwise indicated explicitly. The total integration time is��# seconds. The sparse linear systems are solved by GM-
RES(20) with restarts no more than 10.

The construction of SAI preconditioners witha priori
sparsity pattern in our numerical tests involves two dropping
tolerances$
 and $
 . The first one,$
, is used to sparsify

$
 $
 �� 	� ���� ����� ���� � ���	 �
0.5 0.0 0.055 168 13.27 44.46 75.78
0.1 0.108 99 17.45 30.31 63.36

0.01 0.155 88 23.50 31.96 67.63
0.005 0.185 85 27.20 33.68 70.86���" 0.268 82 37.91 39.06 81.29���# 0.304 76 42.89 40.37 85.23

0.0 1.000 74 59.32 40.21 104.44
0.5 ���# 0.055 168 15.13 44.28 77.56

0.05 0.110 99 19.76 27.67 65.62
0.01 0.143 89 24.55 25.77 68.62���" 0.144 87 26.35 25.40 69.92
0.0 0.144 87 28.78 25.23 72.20

0.0 0.5 0.055 168 20.95 43.54 82.64
0.005 0.055 148 21.15 39.31 78.77

0.0005 0.110 97 24.94 27.36 70.43���# 0.144 87 28.78 25.23 72.20
0.005 0.1 0.055 168 16.73 44.35 79.33

0.005 0.055 148 16.65 39.25 74.18���" 0.105 99 20.31 27.71 66.13���# 0.144 87 25.26 25.42 69.12���" 0.1 0.055 168 18.11 45.25 81.56
0.005 0.055 148 18.22 39.14 75.50���" 0.105 99 21.68 27.73 67.63���# 0.144 87 26.35 25.40 69.92

Table 1. Performance data of SAI precondi-
tioners with varying $
 and $
 .

the coefficient matrix
$

in (6) to extract its sparsity pattern.
Once an SAI matrix# is computed according to the spar-
sity pattern of

$
, we drop small entries of# with respect

to $
 . The resulting matrix# becomes the preconditioner
for Equation (6). When constructing BBD preconditioners,
we also have to choose two parameters for use in its com-
puting procedure. The first one is�
, used in the difference
quotient approximation, such that#� in Equation (11) is
computed as a matrix with bandwidth� � �
 ! �. Then,
the second parameter,�
, is applied to#� such that it only
retains bandwidth� � �
 ! �. Here, the upper and lower
half-bandwidths are treated to be the same since our linear
system is structured with equal half-bandwidths.

In the tables containing numerical results, the notations
of $
, $
 , �
, and�
 are just explained in the previous para-
graph;�

� 	� means the sparsity ratio, which is derived from
the number of nonzero entries in the preconditioner matrix
divided by that of the Jacobian matrix;���� shows the total
number of scaled preconditioned GMRES iterations during
the course of integration;����� is the CPU time in sec-
onds to construct the preconditioners;���� � measures the

�
 �
 �� 	� ���� ����� ���� � ���	 �
3 3 0.384 206 8.32 54.10 80.53
5 140 11.16 37.15 66.40
6 201 12.48 52.47 83.08
7 133 14.03 36.07 68.29
9 141 16.16 37.41 71.72
4 4 0.494 199 10.17 56.34 84.73
5 181 11.56 50.98 80.70
6 208 12.86 58.33 89.27
7 134 14.36 38.84 71.40
9 141 16.79 40.28 75.16
5 5 0.604 188 11.97 56.72 86.76
6 208 13.23 62.65 94.31
7 134 14.71 41.57 74.35
9 177 17.39 53.72 89.27
6 6 0.713 208 13.74 65.81 97.52
7 135 15.14 43.90 77.00
9 181 18.03 58.01 94.08
7 7 0.823 170 15.76 58.24 91.99
8 133 17.08 46.88 81.90
9 181 18.29 61.66 98.02

Table 2. Performance data of BBD precondi-
tioners with varying �
 and �
 .

CPU time to solve preconditioned systems by GMRES iter-
ations;

���	 � gives the total CPU time in seconds for solving
the DAE problem, including the time for doing initialization
(almost constant in every case) which is not reported.

Table 1 shows the performance results obtained by us-
ing the SAI preconditioner, with two dropping tolerances$
 and $
 . We can see that the SAI preconditioner con-
verges in all the cases. When$
 is fixed, with the decrease
of $
, it takes more time to construct the preconditioner, as
shown in the column����� . Since more entries are kept
in the sparsity pattern with the reduction of$
, the conver-
gence performance of the GMRES method gets better with
less iterations in the column of����, but with the price of
more memory consumed, as specified by the�� 	� values.
The CPU time spent in solving the problem, as in entries of���	 �, is getting larger when we choose a smaller dropping
tolerance$
 with a fixed$
 , except in the case of$
 � � � ,
which has a much larger number of iterations than the rest
of the cases, resulting in more time in the iteration phase,
because of its less accurate sparse approximate inverse. We
notice that when$
 is set to be

�
, with $
 getting closer

down to
�
, the iteration time,���� �, tends to increase rather

than decrease, as seen in the case$
 � ���#. It implies that
the threshold value$
 plays an important role in the CPU
time cost of the iteration procedure.

The second scenario being analyzed here is to see the ef-
fects on computational costs of choosing different$
 , when$
 sets fixed. As we mentioned,$
 is a dropping threshold,
i.e., small entries will be eliminated from the computed SAI
matrix with respect to$
 . From the lower half of Table 1,
it is apparent that the SAI preconditioner is getting a bet-
ter accuracy with the value of$
 going down, which leads
to increased sparsity ratio,�

� 	�, and an improved conver-
gence behavior, as revealed by the reduced number of iter-
ations,����, and iteration time,���� �. However, it has to
pay the price for the rising cost to construct a higher quality
preconditioner, shown by the����� column with the time
running longer, since more entries are kept and computed
in the preconditioner. Therefore, it is difficult for

���	 � to
manifest a monotonic decrease or increase along with$
 ,
since we have to deal with the tradeoff between either mak-
ing the SAI preconditioner as precise as possible to reduce
the iteration time but with the price of more construction
expense, or spending less time in the construction step but
with the risk of needing more computational efforts to do
iterations. The last remark we point out is that when the
value of$
 gets down to

�
with $
 keeping unchanged, the

iteration time,���� �, bounces up if$
 reaches
�
, instead of

declining further. The reason is that no element is dropped
from the computed SAI matrix which has a lot of entries
with small magnitudes. Thus a large portion of the CPU
time is wasted on doing computations for these small ele-
ments during the iteration step, where little is gained. This
results in a longer time for the solution to get converged.

The numerical results of applying the BBD precondi-
tioners are contained in Table 2. The definition of the two
parameters�
 and�
 tells us that they are both the half-
bandwidth of matrices, where�
 is for matrices used in
the difference quotient approximation and�
 is the half-
bandwidth for the actual BBD preconditioner employed
during iterations. Thus the sparsity ratio only depends
on �
 and larger�
 means more entries in the precondi-
tioner matrix. Table 2 gives a clear picture that the con-
struction cost of the BBD preconditioners goes up along
with the increase of�
 as well as�
, which is reflected
in the ����� column. However, from the values of the
number of iterations and the time for iterations illustrated
in columns of���� and ���� �, we could not see a consis-
tently improved convergence behavior here with changes of
half-bandwidths. The reason may lie in the construction
of banded structure of the preconditioner matrix, where the
GMRES method thus the iterative solution is very sensitive
to the availability of some specific entries. Therefore, it can
be concluded from Table 2 that it will be difficult for us to
expect a better convergence rate even if more entries are re-
tained in the matrix for difference quotient approximation
and the final preconditioner matrix. This leads to a fact that
the convergence behavior is sometimes unpredictable with

the selection of�
 and�
 .

0 4 8 12 16 20 24 28 32
0

4

8

12

16

20

24

28

32

Number of Processors

S
p
e
e
d
u
p

SAI
BBD
Ideal

0 4 8 12 16 20 24 28 32
80

100

120

140

160

180

200

Number of Processors

N
u
m

b
e
r

o
f
It
e
ra

ti
o
n
s

SAI
BBD

Figure 2. Scalability comparisons of the SAI
and BBD preconditioners. Parameters are se-
lected as, for SAI, $
 � � �� , $
 � � ��� �; for
BBD, �
 � �, �
 � .

When making comparisons between data in Table 1 and
in Table 2, we found that the SAI preconditioner has a much
more predictable behavior than the BBD preconditioner.
Further observation reveals that with appropriate choices
of parameters, the SAI case has a higher construction cost
than the BBD case, while the BBD case delivers a poorer
convergence performance than in the case of SAI. Thus the
SAI produces a higher quality preconditioner with a better
accuracy than BBD, although suffering from more compu-
tational efforts. Roughly speaking, though, the total CPU
time spent under the SAI preconditioner seems to be less
than the BBD preconditioner in our current testing cases.

By comparing the data in the�
� 	� columns, we can see that

the SAI preconditioners need much less storage space than
the BBD preconditioners do.

Further comparison between the SAI and BBD precon-
ditioners is made by comparing its scalability, as shown in
Figure 2. The bottom plot gives curves for the number of it-
erations versus the number of processors. When the number
of processors increases from� to ��, the number of itera-
tions of the BBD preconditioner changes a lot, displaying an
oscillating curve. This phenomenon is due to the fact that,
as the number of processors grows larger, the number of
independent computational subdomains increases and it be-
comes more difficult to keep these subdomains from having
predominantly local coupling. So the performance of the
BBD preconditioner is significantly affected by the num-
ber of processors used. On the contrary, the SAI precon-
ditioner presents a much better and desired behavior, where
the number of iterations remains constant, fully independent
on the number of processors. The top plot of Figure 2 shows
speedup curves for both preconditioners. Since we are inter-
ested in the robustness and performance of preconditioners
and the preconditioned iterative solver, the time value used
in calculating the speedup for this plot is only the summa-
tion of the preconditioner construction time and iteration
time. It can be seen from the plot that both preconditioners
have good speedup results, close to linear. We also notice
that there exists superlinear speedups for the BBD precon-
ditioner. This can be attributed to the caching effects. When
we dispatch the problem onto multiple processors, the sub-
problems are obviously a fraction of the original problem
size. With a smaller problem size, we are most likely to get
a higher cache hit rate, and the result, even after consider-
ing the communication time, is still better than the time on
a single processor with more cache misses.

5. Summary and remarks

Two classes of preconditioners, SAI and BBD, are ap-
plied in numerical tests to carry out simulations of the
anisotropic diffusion process in the human brain. Our test
results show that the SAI preconditioners based ona priori
sparsity pattern provides a more robust and efficient paral-
lel preconditioning technique than the BBD precondition-
ers. The tests also illustrate that the best performance of the
preconditioners can be obtained by choosing optimum val-
ues for their corresponding parameters,$
 and $
 in SAI,
and�
 and�
 in BBD, which have direct and distinct in-
fluences on the quality and the construction expense of pre-
conditioners, the convergence rate of iterative solutions, and
the total computational efforts.

Acknowledgments

This study was funded by the U.S. Department of Energy
Office of Science under the project “Development of a High
Performance Anisotropic Diffusion Equation Solver Using
the ACTS Toolkit” (DE-FG02-02ER45961). The first two
authors would like to acknowledge DOE’s support of their
attending the ACTS Workshop, organized by Drs. Tony
Drummond and Osni Marques, at the Lawrence Berkeley
National Laboratory, in September 2002. We would also
like to thank Dr. Daniel Gembris, at Institute for Medicine,
Jülich Research Center, Jülich, Germany, for providing the
diffusion tensor data set.

References

[1] The DOE ACTS (Advanced CompuTational Software)
collection web site: http://acts.nersc.gov/, 2003.

[2] D. Le Bihan, J. F. Mangin, C. Poupon, C. A. Clark, S.
Pappata, N. Molko, and H. Chabriat, Diffusion tensor
imaging: concepts and application,J. Magnetic Reso-
nance Imaging, 13:534-546, 2001.

[3] A. B. M. Bjornemo, White Matter Fiber Tracking Us-
ing Diffusion Tensor MRI, Master’s Thesis, Linkoping
University, Sweden, 2002.

[4] P. G. Batchelor, D. L. G. Hill, F. Calamante, and D.
Atkinson, Study of connectivity in the brain using
the full diffusion tensor from MRI, Information Pro-
cessing in Medical Imaging, 17th International Confer-
ence, IPMI’01, June 2001, UC Davies, USA. Published
by Springer,Lecture Notes in Computer Science 2082,
pp. 121-133.

[5] K. E. Brenan, S. L. Campbell, and L. R. Pet-
zold, Numerical Solution of Initial-Value Problems in
Differential-Algebraic Equations, SIAM, Philadelphia,
PA, 1996.

[6] P. N. Brown, A. C. Hindmarsh, and L. R. Petzold,
Using Krylov methods in the solution of large-scale
differential-algebraic systems,SIAM J. Sci. Comput.,
15:1467-1488, 1994.

[7] E. Chow, A priori sparsity patterns for Parallel sparse
approximate inverse preconditioners,SIAM J. Sci.
Comput., 21:1804-1822, 2000.

[8] D. Gembris, H. Schumacher, and D. Suter, Solving the
diffusion equation for fiber tracking in the living human
brain, Proc. of the International Society for Magnetic
Resonance Medicine (ISMRM), 9:1529, Glasgow, Scot-
land, April 2001.

[9] M. J. Grote and T. Huckle, Parallel preconditioning
with sparse approximate inverses,SIAM J. Sci. Com-
put., 18:838-853, 1997.

[10] A. C. Hindmarsh and A. G. Taylor, User Docu-
mentation for IDA, a Differential-Algebraic Equation
Solver for Sequential and Parallel Computers, LLNL
Report UCRL-MA-136910, Center for Applied Scien-
tific Computing, LLNL, Livermore, CA, 1999.

[11] N. Kang, J. Zhang, and E. S. Carlson, Perfor-
mance of ILU preconditioning techniques in simulating
anisotropic diffusion in the human brain,Future Gen-
eration Computer Systems(to appear).

[12] C. Nicholson, Diffusion and related transport mech-
anism in brain tissue,Reports on Progress in Physics,
64:815-884, 2001.

[13] Y. Saad,Iterative Methods for Sparse Linear Systems,
PWS Publishing Company, Boston, MA, 1996.

[14] The SUNDIALS software package web site:
http://acts.nersc.gov/sundials/.

[15] Y. Saad and M. H. Schultz, GMRES: A generalized
minimal residual algorithm for solving nonsymmetric
linear systems,SIAM J. Sci. Stat. Comput., 7:856-869,
1986.

[16] I. Vorisek and E. Sykova, Evolution of anisotropic
diffusion in the developing rat corpus callosum,J. Neu-
rophysiol., 78:912-919, 1997.

[17] S. K. Warfield, F. Talos, A. Tei, A. Bharatha, A.
Nabavi, M. Ferrant, P. M. Black, F. A. Jolesz, and R.
Kikinis, Real-time registration of volumetric brain MRI
by biomechanical simulation of deformation during im-
age guided neurosurgery,Computing and Visualization
in Science, 5:3-11, 2002.

