Parallel Preconditioning in the Analysis of Anisotropic Diffusion Simulation with
the Human Brain Diffusion Tensor MRI Data

Ning Kang? Jun Zhang
Laboratory for High Performance Scientific Computing ananpater Simulation,

Department of Computer Science,

University of Kentucky,
Lexington, KY 40506-0046, USA

and
Eric S. Carlsort
Department of Chemical Engineering,
University of Alabama,
P. O. Box 870203,

Tuscaloosa, AL 35487-0203, USA

Abstract mance than the banded-block-diagonal preconditioner.

We conduct simulations for the 3D unsteady state
anisotropic diffusion process in the human brain by dis- 1. |ntroduction
cretizing the governing diffusion equation on Cartesiaid gr
and adopting a high performance differential-algebraic
equation (DAE) solver, the parallel version of implicit
differential-algebraic (IDA) solver, to tackle the resol
large scale system of DAEs. Parallel preconditioning tech-
nigues including sparse approximate inverse and banded-
block-diagonal preconditioners are used with the GMRES ~ . . . i
method to accelerate the convergence rate of the iterative UMY the random motion of Water mo!eculef inall three di-
solution. We then investigate and compare the eﬁiciencymer,],s'ons’ usually referred to.as dn‘fuspn or"Brownian mo-
and effectiveness of the two parallel preconditioners. The :Jll?fpus[egls ig-lt—i-s'\gstle;e:(;jr?t:r:?ne 'r;fclgrmztf&sggfg?z‘gev::tﬁlie
computational results of the diffusion simulations on a-par brain white matter. into intri?:ate tr?ree-dimensional Ee)
allel supercomputer show that the sparse approximate in- ' P

verse preconditioning strategy, which is robust and efficie §entat(|jonstof tth.e ftlssue?. Thgs’ |ttt(;]anbbe. ekaI](.)t'ted t(t)tlflsuad
with good scalability, gives a much better overall perfor- 1€ and extract information aboutthe brain white matteran

nerve fibers by using fiber traces, which has raised promises
for a better understanding of the fiber tract anatomy of the
*The research work of this author was supported by the U.Salbep ;man brain. In combination with functional MRI, it might

ment of Energy Office of Science under grant DE-FG02-02ER45%- . .
mail: nkangzgcsr‘uwedu. g also be used to study the connectivity between different

TThe research work of this author was supported in part by e Na- parts of the brain, which is useful for functional and mor-
tional Science Foundation under grants CCR-9988165, CTFR%B2, and phological research on the brain [2].

ACR-0202934, in part by the U.S. Department of Energy Offic8aience - ; ; _
under grant DE-FG02-02ER45961, in part by the Kentucky réeieand A number of fiber tracking algorithms have been devel

Engineering Foundation under grant KSEF-02-264-RED-@0art by oped Since_the appearance of DT'MR|-_ In [3] a variety of
the Japan Research Organization for Information Sciend&achnology these algorithms are described and reviewed. As the mea-

The solution of the general unsteady state anisotropic
diffusion equation can be used in the development of im-
proved approaches for the analysis of diffusion tensor mag-
netic resonance imaging (DT-MRI). DT-MRI is an exten-
sion of conventional MRI with the added capability of mea-

(RIST), and in part by the University of Kentucky Researchuittee. sured quantity in DT-MRI is water diffusion, an intuitive
E-mail: jzhang@cs.uky.edu, URL: hitp:/lwww.cs.uky.edjzhang. way to understand the diffusion data is to spread a virtual
$The research work of this author was supported by the U.Saibep . . .
ment of Energy Office of Science under grant DE-FG02-02ER45E- concentration peak of water [8], or to specify a starting

mail: ecarlson@bama.ua.edu. point for tractography where a seed is diffused [4]. This

Figure 1. An axial slice of a diffusion tensor
volume. It shows the diffusion tensor compo-
nents, corresponding to the diffusion tensor
matrix D.

approach makes use of the full information contained in the
diffusion tensor and it is not dependent upon a point to point
eigenvalue/eigenvector computation along a trajectbns t

in that sense hopefully is more robust. It is also intuitvel
related to underlying physio-chemical process [16]. The

due to conservation of mass, is governed by

ocC

ot

wheret is the independent time variable. This equation says
that over the time, the rate of change in concentration is
proportional to the divergence of the flux.

Equation (1) could be very difficult to solve under the
circumstance of the human brain for a few reasons. First,
since the brain structure is heterogeneous where anigotrop
requires full tensor representation, the second orderscros
derivatives must be calculated. Second, the diffusion ten-
sor changes drastically between adjacent small regions in
the brain tissues. Thus, fine gridding must be used to avoid
a crude approximation to the true geometry of interesting
structures and this leads to large systems of equations. The
third challenge we have to face is that time plays a crucial
role in the real environment, such as clinical diagnosis, su
gical planning, and neurosurgery [17]. In the sense to be
practical, the solution must meet the real-time constsaint
and achieves good reliability and robustness as well.

Simulations of anisotropic diffusion in a human brain
have been studied in [11], in which several standard pre-

=V . (DV0), (2)

diffusion process and related transport mechanisms in theconditioning techniques based on incomplete LU (Lower-

brain are discussed in detail in [12].

Anisotropic systems exhibit a preferential flow direction
while isotropic systems have no preference. According to
Fick’s first law, the flux,J, has magnitude proportional
to the concentration gradienf/C, and is directed oppo-
site toVC, i.e., J = —dVC, where the proportionality
constantd is the diffusion coefficient. In the presence of
anisotropy, the flow field does not follow the concentration
gradient directly, for the material properties also affiitt
fusion. Therefore, the diffusion tensdp, is introduced to
fully describe the molecular mobility along each direction

Upper) factorizations of the coefficient matrix are complare
in a sequential environment. However, the ILU schemes
are not suitable for parallel environments. In order to
perform diffusion simulations over the whole brain with
sufficient accuracy and acceptable computational time and
memory cost, a parallel implementation of the solution pro-
cedure is considered in this paper. The coefficient matrix
is distributed to different processors with the scheme of
row-wise block striping. We then exploit general purpose
modules from the ACTS Toolkit [1], which includes high
performance differential-algebraic-equation (DAE) syst

and the correlation between these directions. Thus, the ﬂUXso|Vers, as the primary integration tools. For the largéesca

is given as/ = — DV and the diffusion tensor is

Dzw Dmy Dzz
D=\ Dy, Dy, D,, |,
Dzz Dzy Dzz

where the subscriptsz, zy, xz, etc., denote the values of
the individual coefficients in the matrix that can be seen as
the influence from directions in the input (being the concen-
tration) on the various directions in the output (being the
flux). Unlike the standard MRI data which has one value
at each voxel, the DT-MRI data has 9 values at each voxel.
Figure 1 shows an axial slice of a diffusion tensor volume
data from a human brain. For the brain system on which we
are focusing, the tensor is symmetric.

sparse linear system arising from each integration step, th
Krylov subspace method, preconditioned GMRES, is used
and a number of highly efficient and robust parallel pre-
conditioners are applied as well to achieve speedy solsition
with good accuracy.

The remainder of the paper is organized as follows. Sec-
tion 2 concisely describes the DAE integration solver as
well as its parallel implementation scheme. The parallel
preconditioning techniques are discussed in Section 3. In
Section 4, we conduct a number of numerical experiments
and compare the performance of these preconditioners. The
final concluding remarks are given in Section 5.

2. Differential-algebr aic-equation solver

Essentially, we are seeking to solve an unsteady state dif-

fusion equation in an anisotropic medium based on the mea-

sured diffusion tensab. The anisotropic diffusion process,

Since the tensor data set used in our current simulation is
measured and processed on a Cartesian mesh, we discretize

the 3D diffusion Equation (1) on Cartesian grid using finite wherea = a, 0/ h.,, Which changes whenever the step size
difference approximation. The central difference in space or the BDF method order changes. During the course of
and backward differentiation formula in time are applied to integrating the system, the IDA solver imposes tolerances
approximate the spatial derivative and time derivativeger ~ on the computed local truncation errors at ik time step

in Equation (1), respectively. by using weighted root-mean-square (wrms) norm.

On the boundaries of the heterogeneous system, we as- For the solution of large scale linear system (4),
sume that it is insulated, i.e(DVC) - n = 0, which cor- only scaled preconditioned GMRES method, denoted as
responds to the Neumann condition. This condition meansSPGMR, is available in the parallel version of the IDA
that the normal part of the gradient of the concentration on solver. When solving the linear system (4), a preconditione
the boundary is zero. No material diffuses outside of the matrix P must be supplied and need be constructed to ap-
boundary. A 3D Gaussian function is selected to be the proximate.J, which leads to an inexpensive linear system
initial distribution profile of the water concentration inet solution, and then factored and used for as many time steps
brain. as possible.

The discretization of the Equation (1) and its bound- The parallel version of IDA uses a vector module in its
ary conditions on the Cartesian grid generates a largepackage to achieve parallelism and the MPI (Message Pass-
scale system of semi-explicit differential-algebraic &qu ing Interface) library for all interprocessor communioati

tions (DAESs) with the form The vector module contains a set of mathematical opera-
tions on/N-vectors (V-dimensional vectors), including vec-
E(t, f,f') =0,) tor linear combinations, vector norms, scalar productd, an

so forth. By separating these operations from the rest of
where f and f' are N-dimensional vectors corresponding the code, all operations in IDA with significant potential
to the discretized values af' and 9C/dt. In this pa- for parallel computation are isolated. Because the paralle
per, we consider using a high performance DAE solver in- form of IDA is intended for an SPMD programming model
cluded in the ACTS Toolkit, IDA, which stands for Implicit ith distributed memory, allV-vectors are identically dis-

Differential-Algebraic solver. we first briefly overvieweh tripyted across processors such that each processor is solv
algorithms used in IDA for solving DAEs, then take a l0ok jng a contiguous subset of the DAE system.

at how it is implemented in parallel. See [5, 6, 10, 14] for
more detalils.

The IDA solver uses the backward differentiation for-
mula (BDF) method to approximate the time derivative in
(2), implemented in a variable order, variable step form. ~ We can rewrite the linear system (4) as
The application of BDF to the DAE system (2) leads to a
nonlinear algebraic system to be solved at each time step, Az =, (6)
which is

3. Parallé preconditioning techniques

where, A is the system Jacobian matrix in (5}, =
k flmA _ plm) g — —cG| ,(lm)]. The sparse linear system
G(fn) = F(tn,fn, hy! Zan,ifn—i) =0, (3 (6) needs to be solved at each Newton iteration by way of
=0 the scaled preconditioned GMRES method. As mentioned
before, preconditioning of the linear iteration is essanti
and beneficial for both robustness and efficiency.

The first parallel preconditioning technique under our in-
vestigation is a class of sparse approximate inverse (SAI)
preconditioners. The SAI preconditioner, as its name im-
plies, is an approximation td !, the inverse of matrixd.
Both its construction and its application in the iteratiokus
tion, which requires nothing but matrix-by-vector prodjct
fr(bmﬂ) — fT(lm) _ cJ_lG[f,(lm)], (4) allow a large degree of parallelism. Another class of pre-

conditioners that we are interested in is the block-diagona
preconditioning, which is also suitable for the parallelar
tecture. In this paper, close attention is paid to the banded
block-diagonal (BBD) preconditioners.

Spar seapproximateinver se preconditioners. The SAI

oG OF OF preconditioning technique discussed here is based on the

J of W + aa_fn () idea of the least squares (Frobenius norm) minimization [9]

wheref,, is the calculated approximation {{t¢,,) and the
step size i, = tp — tn—1. an4,4 = 0,1,--- ,k, are the
coefficients of the BDF method, which are uniquely deter-
mined by the order ok and the step size at the previous
times. IDA solves the nonlinear system (3) by a modified
version of Newton iteration method. This results in a linear
system for each Newton correction, given by

WherefT(Lm) is themth approximation tof,, ¢ is a constant
chosen to speed up the rate of convergence of the iteration
andJ is some approximation to the system Jacobian

usinga priori sparsity patterns [7]. We seek to approximate Each of these subdomains is then assigned to one of the
the inverse of a matri¥l (usually sparse) by a sparse ma- M processors to be used to solve the PDE system (in our
trix P, such thatAP = I in some sense, whetkis the case, the DAE system) in parallel. Corresponding to the
identity matrix. In the case of the right SAI precondition- domain decomposition and distribution of the system over
ing being used here, we strive to minimigl P — I|| in the processors, there is a decomposition of the solution
the Frobenius norm, i.e|,AP — I||r, to makeAP =~ I, vectorsf and f' of the DAE system (2) inta\/ disjoint
in order to achieve fast convergence with a reasonable costblocks f,, and f/,. Also, the functionF'(¢, f, f') is de-
Since the Frobenius norm of a square matrix is defined bycomposed into block#,, correspondingly, and the block
Al = Zé\’jzl |ai;|2, we have F,,, depends not only o_(y_‘m, _f,’n) but alsp on the solution

’ vector components residing in neighboring blocks. Thus we

N N haveF(t, f, f') = [Fi, F», ..., Fir]* and each of the blocks
|[AP — I]|% = Z (AP — I)e;||3 = Z lAp; — e;l13, F,, is uncoupled from the others. The preconditioner asso-
j=1 j=1 ciated with this decomposition is
(7
wherep; ande; are thejth column of the matrixP and P = diag[Py, Pa, ..., Py, 9)
that of the identity matrix, respectively. The solution of _ _ .
the minimization function (7) can be decoupled if¥oin- whereP,, is the difference quotient of
dependent least squares problems L oF,, aaFm 0
min | Ap; —ejlla, j=1,2,... . 8) " Ofm Ofh

The preconditioner matrix is taken to be banded with up-
per and lower half-bandwidths defined as the number of
nonzero diagonals above and below the main diagonal, re-
spectively.

The solution of the complete preconditioned linear sys-
tem Px = b is equivalent to solving each of the equations

Itis apparent that inherent parallelism lies in the solutid
(8) in that each colump; of P can be computed indepen-
dently of one another. Thus the approximate invérad A
can be constructed by solving (8) in parallel.

Under the consideration of the algorithm complexity and
the computational and memory cost, it is desirable fhat
a sparse matrix and has a good sparsity pattern, i.e., a good
distribution of nonzeros in the matrix. There are quite a few
heuristic strategies proposed to specify a good sparsity pa
tern for the matrixP, in botha priori way and adaptive way
[7, 9]. Here, we are interested in the method of building a
prescribed sparsity pattern so that the SAI can be yielded
immediately by minimizing (7). For PDE problems, as in . .
our case, the sparsified patterns of the original matroan 4. Numerical experiments
be employedh priori as effective SAI patterns. Here “spar-
sified” means that certain small entriesdére dropped be- In this section, we present numerical results for the per-
fore its sparsity pattern is extracted. Once we get a sparsit formance of SAl and BBD preconditioners on the simula-
pattern for the sparse approximate invesét can be com- tion of the anisotropic diffusion in the human brain. The
puted by solving the minimization problem (8). Detailed resolution of the diffusion tensor MRI data se128x 128 x
discussions abouat priori sparsity patterns and approaches 16 with each voxel size being5 x 2.5 x 7.5 mm? defined
of deriving the SAI matrix can be found in [7, 9]. on the Cartesian mesh. Natural ordering is used toward the

Block-diagonal preconditioners. In general, this class points in the Cartesian grid. The numerical tests are con-
of preconditioners is based on the block Jacobi methodducted on a 32-processor (HP PA-RISC 8700 processors
where a preconditioner can be derived by a partitioning of running at 750 MHz) subcomplex of an HP superdome su-
the variables. The basic idea is to isolate the precondition percomputer at the University of Kentucky. Each processor
ing so that it is local to each processor. In fact, on paral- has two gigabytes local memory. During the experiments,
lel computers it is natural to let the partitioning coincide four processors are used for numerical simulations unless
with the division of the variables over the processors. & th otherwise indicated explicitly. The total integration &ris
following paragraphs, we briefly describe the construction 10* seconds. The sparse linear systems are solved by GM-
of the banded-block-diagonal (BBD) preconditioners [10], RES(20) with restarts no more than 10.
which is closely related to the DAE system (2). The construction of SAI preconditioners with priori

First, the spatial domain of the computational PDE prob- sparsity pattern in our numerical tests involves two drogpi
lem is subdivided intoM non-overlapping subdomains. tolerances; andr. The first one;, is used to sparsify

Ppxy = b, (11)

which can be done by a banded LU factorizatioryf fol-
lowed by a banded backsolve. Obviously, both procedures
can be performed completely in parallel far=1, ..., M.

| n | m | spar | iter | setup | solve | total | | w1 [wy | spar | iter | setup | solve | total |
0.5 0.0 0.055] 168 13.27| 44.46] 75.78 3] 3]0.384] 206] 8.32[54.10[80.53
0.1 0.108| 99| 17.45| 30.31| 63.36 5 140 | 11.16| 37.15| 66.40
0.01 0.155| 88| 23.50| 31.96| 67.63 6 201 | 12.48| 52.47| 83.08
0.005 0.185| 85| 27.20| 33.68| 70.86 7 133 | 14.03| 36.07| 68.29
10-3 0.268| 82| 37.91| 39.06| 81.29 9 141 | 16.16| 37.41| 71.72
104 0.304| 76| 42.89| 40.37| 85.23 4 40494 199 10.17| 56.34| 84.73
0.0 1.000| 74| 59.32| 40.21| 104.44 5 181 | 11.56| 50.98| 80.70
05| 107 |0.055| 168 15.13| 44.28| 77.56 6 208 | 12.86 | 58.33| 89.27
0.05 0.110| 99| 19.76| 27.67| 65.62 7 134 | 14.36| 38.84| 71.40
0.01 0.143| 89| 24.55| 25.77| 68.62 9 141 | 16.79| 40.28| 75.16
1073 0.144| 87| 26.35| 25.40| 69.92 5| 5| 0.604| 188 11.97| 56.72| 86.76
0.0 0.144| 87| 28.78| 25.23| 72.20 6 208 | 13.23| 62.65| 94.31
0.0 0.5] 0.055] 168 20.95| 43.54| 82.64 7 134| 14.71| 41.57| 74.35
0.005| 0.055| 148 | 21.15| 39.31| 78.77 9 177| 17.39| 53.72) 89.27
0.0005| 0.110| 97 | 24.94| 27.36| 70.43 6| 6|0.713| 208| 13.74| 65.81| 97.52
1074 | 0.144| 87| 28.78| 25.23| 72.20 7 135| 15.14| 43.90| 77.00
0.005 0.1 0.055| 168 | 16.73| 44.35| 79.33 9 181 | 18.03| 58.01) 94.08
0.005| 0.055| 148 | 16.65| 39.25| 74.18 7| 70823 170| 15.76| 58.24| 91.99
1073 | 0.105| 99| 20.31| 27.71| 66.13 8 133 | 17.08| 46.88| 81.90
10~* | 0.144| 87| 25.26| 25.42| 69.12 9 181 | 18.29| 61.66| 98.02
103 0.1 0.055| 168 18.11| 45.25| 81.56
0.005| 0.055| 148 | 18.22| 39.14| 75.50 Table 2. Performance data of BBD precondi-
1073 | 0.105| 99| 21.68| 27.73| 67.63 tioners with varying w; and ws.
107% | 0.144| 87| 26.35| 25.40| 69.92

Table 1. Performance data of SAI precondi-
tioners with varying 7 and ».

the coefficient matrix4 in (6) to extract its sparsity pattern.
Once an SAI matrixP is computed according to the spar-
sity pattern ofA, we drop small entries oP with respect

to 7». The resulting matrix? becomes the preconditioner
for Equation (6). When constructing BBD preconditioners,

CPU time to solve preconditioned systems by GMRES iter-
ations;total gives the total CPU time in seconds for solving
the DAE problem, including the time for doing initializatio
(almost constant in every case) which is not reported.

Table 1 shows the performance results obtained by us-
ing the SAI preconditioner, with two dropping tolerances
71 and7,. We can see that the SAI preconditioner con-
verges in all the cases. Whes is fixed, with the decrease
of 7, it takes more time to construct the preconditioner, as

we also have to choose two parameters for use in its COm-shown in the colummetup. Since more entries are kept

puting procedure. The first oneds, used in the difference
guotient approximation, such th#,, in Equation (11) is
computed as a matrix with bandwid?hx w; + 1. Then,
the second parameters, is applied taP,, such that it only
retains bandwidtl2 x wy + 1. Here, the upper and lower

in the sparsity pattern with the reduction®mf the conver-
gence performance of the GMRES method gets better with
less iterations in the column a@fer, but with the price of
more memory consumed, as specified by ¢per values.
The CPU time spent in solving the problem, as in entries of

half-bandwidths are treated to be the same since our ”neartotaL is gett|ng |arger when we choose a smaller dropping

system is structured with equal half-bandwidths.

tolerancer; with a fixedr,, exceptin the case af = 0.5,

In the tables containing numerical results, the notationswhich has a much larger number of iterations than the rest

of 11, 1, wy, andw, are just explained in the previous para-
graph;spar means the sparsity ratio, which is derived from

of the cases, resulting in more time in the iteration phase,
because of its less accurate sparse approximate inverse. We

the number of nonzero entries in the preconditioner matrix notice that whenr, is set to be0, with 7, getting closer

divided by that of the Jacobian matri¢er shows the total

down to0, the iteration timesolve, tends to increase rather

number of scaled preconditioned GMRES iterations during than decrease, as seen in the ease 10~%. Itimplies that

the course of integrationsetup is the CPU time in sec-
onds to construct the preconditionessjve measures the

the threshold value; plays an important role in the CPU
time cost of the iteration procedure.

The second scenario being analyzed here is to see the efthe selection ofv; andws.
fects on computational costs of choosing differentwhen
71 Sets fixed. As we mentioned, is a dropping threshold,
i.e., small entries will be eliminated from the computed SAI

32r

matrix with respect ta. From the lower half of Table 1, 28 | 4 oab
it is apparent that the SAI preconditioner is getting a bet- Ideal
ter accuracy with the value af, going down, which leads 24¢

to increased sparsity ratiepar, and an improved conver-

gence behavior, as revealed by the reduced number of iter- 2
ations,iter, and iteration timesolve. However, it has to §1e—
pay the price for the rising cost to construct a higher qualit &
preconditioner, shown by thetup column with the time 12¢

running longer, since more entries are kept and computed
in the preconditioner. Therefore, it is difficult feotal to
manifest a monotonic decrease or increase along with
since we have to deal with the tradeoff between either mak-
ing the SAI preconditioner as precise as possible to reduce 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

the iteration time but with the price of more construction NUMber of Processors

expense, or spending less time in the construction step but 200

with the risk of needing more computational efforts to do

iterations. The last remark we point out is that when the o SAl K X
180 —— BBD |

value ofr, gets down td) with = keeping unchanged, the
iteration time,solve, bounces up if» reache9), instead of
declining further. The reason is that no element is dropped
from the computed SAI matrix which has a lot of entries
with small magnitudes. Thus a large portion of the CPU
time is wasted on doing computations for these small ele-
ments during the iteration step, where little is gained.sThi
results in a longer time for the solution to get converged.

Number of Iterations
= =
=~ oY
o o

T

-

N

o
T

The numerical results of applying the BBD precondi-

tioners are contained in Table 2. The definition of the two 100rea—a—sa) ;
parameters; andws, tells us that they are both the half-

bandwidth of matrices, where, is for matrices used in O 4 & 12 16 220 2 28
the difference quotient approximation and is the half- Number of Processors

bandwidth for the actual BBD preconditioner employed

during iterations. Thus the sparsity ratio only depends Figure 2. Scalability comparisons of the SAl

onw, and largerw, means more entries in the precondi- and BBD preconditioners. Parameters are se-

tioner matrix. Table 2 gives a clear picture that the con- lected as, for SAl, = = 0.05, » = 0.001; for
struction cost of the BBD preconditioners goes up along BBD, wi =8, ws = 5.

with the increase ofv, as well asw;, which is reflected

in the setup column. However, from the values of the

number of iterations and the time for iterations illustcate When making comparisons between data in Table 1 and
in columns ofiter and solve, we could not see a consis- in Table 2, we found that the SAl preconditioner has a much
tently improved convergence behavior here with changes ofmore predictable behavior than the BBD preconditioner.
half-bandwidths. The reason may lie in the construction Further observation reveals that with appropriate choices
of banded structure of the preconditioner matrix, where the of parameters, the SAI case has a higher construction cost
GMRES method thus the iterative solution is very sensitive than the BBD case, while the BBD case delivers a poorer
to the availability of some specific entries. Thereforeaitc convergence performance than in the case of SAI. Thus the
be concluded from Table 2 that it will be difficult for us to SAI produces a higher quality preconditioner with a better
expect a better convergence rate even if more entries are reaccuracy than BBD, although suffering from more compu-
tained in the matrix for difference quotient approximation tational efforts. Roughly speaking, though, the total CPU
and the final preconditioner matrix. This leads to a fact that time spent under the SAI preconditioner seems to be less
the convergence behavior is sometimes unpredictable withthan the BBD preconditioner in our current testing cases.

By comparing the data in thear columns, we can see that Acknowledgments
the SAI preconditioners need much less storage space than

the BBD preconditioners do. This study was funded by the U.S. Department of Energy

Further comparison between the SAI and BBD precon- Office of Science_ under_the _proj(_ect “Devel_opment ofa H_igh
ditioners is made by comparing its scalability, as shown in Pérformance Anisotropic Diffusion Equation Solver Using
Figure 2. The bottom plot gives curves for the number of it- the ACTS Toolkit” (DE-FG02-02ER45961). The first two
erations versus the number of processors. When the numbeuthors would like to acknowledge DOE's support of their
of processors increases frohto 32, the number of itera- ~ attending the ACTS Workshop, organized by Drs. Tony
tions of the BBD preconditioner changes a lot, displaying an Prummond and Osni Marques, at the Lawrence Berkeley
oscillating curve. This phenomenon is due to the fact that, National Laboratory, in September 2002. We would also
as the number of processors grows larger, the number Oﬁlke_ to thank Dr. Daniel Gem_bns, at Institute for Me_d|C|ne,
independent computational subdomains increases and it bedlich Research Center, Jilich, Germany, for providire t
comes more difficult to keep these subdomains from havingdiffusion tensor data set.
predominantly local coupling. So the performance of the
BBD preconditioner is significantly affected by the num- References
ber of processors used. On the contrary, the SAI precon-
ditioner presepts a _much bett_er and desired behavior, wherefl] The DOE ACTS (Advanced CompuTational Software)
the number of iterations remains constant, fully independe collection web site: http://acts.nersc.gov/, 2003.
on the number of processors. The top plot of Figure 2 shows
speedup curves for both preconditioners. Since we are inter[2] D. Le Bihan, J. F. Mangin, C. Poupon, C. A. Clark, S.
ested in the robustness and performance of preconditioners Pappata, N. Molko, and H. Chabriat, Diffusion tensor
and the preconditioned iterative solver, the time valuguse imaging: concepts and applicatiod, Magnetic Reso-
in calculating the speedup for this plot is only the summa- nance Imaging13:534-546, 2001.
tion of the preconditioner construction time and iteration])])
time. It can be seen from the plot that both preconditioners[3] A- B- M. Bjornemo, White Matter Fiber Tracking Us-
have good speedup results, close to linear. We also notice 1N Diffusion Tensor MRIMaster's Thesis, Linkoping
that there exists superlinear speedups for the BBD precon- University, Sweden, 2002.
ditioqer. This can be attributed to th.e caching effects. Mvhe [4] P. G. Batchelor, D. L. G. Hill, F. Calamante, and D.
we dispatch the problem onto multiple processors, the sub-
p_roblen_ws are obviously a frac_tion of the origina_ll problem the full diffusion tensor from MRI, Information Pro-
size. With a smal_ler problem size, we are most likely to get cessing in Medical Imagind.7th International Confer-

a higher cache hit rate, and the result, even after consider- ence, IPMI'01, June 2001, UC Davies, USA. Published

ing the communication time, is still better than the time on by SpringerLecture Notes in Computer Science 2082
a single processor with more cache misses. bp 121_133’

Atkinson, Study of connectivity in the brain using

[5] K. E. Brenan, S. L. Campbell, and L. R. Pet-
zold, Numerical Solution of Initial-Value Problems in
Differential-Algebraic EquationsSIAM, Philadelphia,
PA, 1996.

5. Summary and remarks

P. N. Brown, A. C. Hindmarsh, and L. R. Petzold,
Using Krylov methods in the solution of large-scale
differential-algebraic systemsSIAM J. Sci. Comput.
15:1467-1488, 1994,

Two classes of preconditioners, SAl and BBD, are ap- [6]
plied in numerical tests to carry out simulations of the
anisotropic diffusion process in the human brain. Our test
results show that the SAI preconditioners basea qmiori

sparsity pattern provides a more robust and efficient paral-m E. Chow, A priori sparsity patterns for Parallel sparse

lel preconditioning technique than the BBD precondition- approximate inverse preconditionersSIAM J. Sci.
ers. The tests also illustrate that the best performandeof t Comput, 21:1804-1822, 2000.

preconditioners can be obtained by choosing optimum val-

ues for their corresponding parameters.andr in SAl, [8] D. Gembris, H. Schumacher, and D. Suter, Solving the
andw; andw. in BBD, which have direct and distinct in- diffusion equation for fiber tracking in the living human
fluences on the quality and the construction expense of pre- brain, Proc. of the International Society for Magnetic
conditioners, the convergence rate of iterative solutiand Resonance Medicine (ISMRM}1529, Glasgow, Scot-

the total computational efforts. land, April 2001.

[9] M. J. Grote and T. Huckle, Parallel preconditioning
with sparse approximate inverseSJAM J. Sci. Com-
put, 18:838-853, 1997.

[10] A. C. Hindmarsh and A. G. Taylor, User Docu-
mentation for IDA, a Differential-Algebraic Equation
Solver for Sequential and Parallel Computetd NL
Report UCRL-MA-136910, Center for Applied Scien-
tific Computing, LLNL, Livermore, CA, 1999.

[11] N. Kang, J. Zhang, and E. S. Carlson, Perfor-
mance of ILU preconditioning techniques in simulating
anisotropic diffusion in the human braifruture Gen-
eration Computer Systeni® appear).

[12] C. Nicholson, Diffusion and related transport mech-
anism in brain tissueReports on Progress in Physjcs
64:815-884, 2001.

[13] Y. Saad,lterative Methods for Sparse Linear Systems
PWS Publishing Company, Boston, MA, 1996.

[14] The SUNDIALS software package web site:
http://acts.nersc.gov/sundials/.

[15] Y. Saad and M. H. Schultz, GMRES: A generalized
minimal residual algorithm for solving honsymmetric
linear systemsSIAM J. Sci. Stat. Compui:856-869,
1986.

[16] I. Vorisek and E. Sykova, Evolution of anisotropic
diffusion in the developing rat corpus callosuinNeu-
rophysiol, 78:912-919, 1997.

[17] S. K. Warfield, F. Talos, A. Tei, A. Bharatha, A.
Nabavi, M. Ferrant, P. M. Black, F. A. Jolesz, and R.
Kikinis, Real-time registration of volumetric brain MRI
by biomechanical simulation of deformation during im-
age guided neurosurger@omputing and Visualization
in Scienceb:3-11, 2002.

