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Abstract. We propose and test a new two-level nonlinear additive Schwarz preconditioned inexact Newton
algorithm(ASPIN). The two-level nonlinear preconditioner combines a local nonlinear additive Schwarz precon-
ditioner and a global linear coarse preconditioner. This approach is more attractive than the two-level method
introduced in [6, 14] which is nonlinear on both levels. Since the coarse mesh function evaluation only requires
to solve a linear coarse system rather than a nonlinear coarse system derived from the discretization of original
partial differential equations, the overall computational cost can be reduced considerately. Our parallel numer-
ical results based on a driven cavity incompressible flow problem show that the new two-level ASPIN is nearly
scalable with respect to the number of processors, the fine mesh size, and Reynolds number provided that the
coarse mesh size is fine enough.
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1. Introduction. We focus on the parallel numerical solution of large, sparse nonlinear
systems of equations arising from the finite element or finite difference discretization of non-
linear partial differential equations. Such systems appear in many computational science and
engineering applications, such as the simulation of fluid flows [4, 18]. Several classes of tech-
niques are available, for example [3, 7, 15], including Newton type methods, multigrid type
methods, nonlinear Krylov subspace type methods, and continuation type methods. However,
for some difficult problems, such as incompressible Navier-Stokes equations with high Reynolds
number (Re), none of the methods works well, except the continuation method, which is often
too slow to be considered practical. In this paper, we develop a general nonlinear precondition-
ing technique that is fast, robust and scalable for solving nonlinear systems of equations. Our
nonlinearly preconditioned method is based on the inexact Newton method with backtracking
technique(INB). Briefly speaking, let

F (x∗) = 0(1.1)

be a nonlinear system of equations and x(0) a given initial guess. Assume x(k) is the current
approximate solution. Then a new approximate solution x(k+1) of (1.1) can be computed by
first find an inexact Newton direction s(k) satisfying

||F (x(k))− F ′(x(k))s(k)||2 ≤ ηk||F (x(k))||2,

then obtain x(k+1) with x(k+1) = x(k) − λ(k)s(k), where the parameter λ(k) is computed via
backtracking. In INB, the scalar ηk is often called the “forcing term”, which determines how
accurately the Jacobian system needs to be solved by some iterative methods, such as a Krylov
subspace type method, GMRES [17]. If the forcing terms are chosen small enough, the algorithm
reduces to the exact Newton algorithm. The scalar λ(k) is selected so that

f(x(k) − λ(k)s(k)) ≤ f(x(k))− αλ(k)∇f(x(k))T s(k),(1.2)
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where the merit function f is defined as ||F (x)||22/2. Here, a line search technique [7] is employed
to determine the step length λ(k) and the parameter α is used to assure that the reduction of f
is sufficient.

Although INB has the desirable property of local fast convergence, like other nonlinear
iterative methods, INB is very fragile. It converges rapidly for a well-selected set of parameters
(for example, certain initial guess, certain range of Re), but diverges if we slightly change some
of the parameters. On the other hand, it may converge well at the beginning of the iterations,
then suddenly stall for no apparent reason. In [5, 6, 11, 12] some nonlinear preconditioning
methods were developed, and the Newton convergence becomes not sensitive to these unfriendly
parameters if INB is applied to a nonlinearly preconditioned system

F(x∗) = 0(1.3)

instead. Here the word “preconditioner” refers to the fact that systems (1.1) and (1.3) have the
same solution and the new system (1.3) is better conditioned, both linearly and nonlinearly. The
preconditioner is constructed using a nonlinear additive Schwarz method. To a certain extend,
the robustness problem is solved since the methods converge for all Reynolds numbers and all
mesh sizes, but the parallel scalability remains an issue. To improve the processor scalability,
a two-level method was then proposed in [6], which works well if the number of processors is
not large. For large number of processors, the nonlinear coarse solver takes too much CPU
and communication times. In this paper, we suggest a combined linear and nonlinear additive
Schwarz preconditioner and show that using a linear coarse solver we can maintain the nonlinear
robustness and reduce the nonlinear complexity considerably.

The paper is organized as follows. In Section 2, we discuss a two-level nonlinear ad-
ditive Schwarz preconditioned inexact Newton algorithm and introduce a new linear coarse
solver, which plays the central role in the scalability of the algorithm. We also describe two-
dimensional steady-state incompressible Navier-Stokes equations and their finite element dis-
cretization, which is taken as an example to illustrate the applicability of the method. Then,
in Section 3, we present some numerical results obtained on a parallel computer for a lid-driven
cavity flow problem. Particularly, we focus on the parallel linear and nonlinear scalability of the
method. Finally, Section 4 presents some concluding remarks.

2. Nonlinear preconditioning algorithms. In this section, we describe a two-level non-
linear preconditioner based on a combination of local nonlinear additive Schwarz preconditioners
and a global linear coarse preconditioner. The local nonlinear preconditioners make the method
more robust in the sense that the method converges for a wide range of Reynolds numbers and
mesh sizes, and the linear coarse preconditioner makes the method more scalable in the sense
that the number of iterations does not depend much on the number of parallel processors. This
is very important for solving large scale problems on massively parallel computers.

2.1. A model problem. Although our method should work for general nonlinear systems
of equations, we restrict our discussion on a two-component system(velocity and pressure) re-
sulting from the finite element discretization of incompressible Navier-Stokes equations. The
generalization to other multi-component problems is straightforward. Consider steady-state
incompressible Navier-Stokes equations in the primitive variable form [10, 16]: u · ∇u − 2ν∇ · ε(u) +∇p = 0 in Ω,

∇ · u = 0 in Ω,
u = g on Γ,

(2.1)

where u is the velocity, p is the pressure, ν = 1/Re is the dynamic viscosity, and ε(u) =
1/2(∇u + (∇u)T ) is the symmetric part of the velocity gradient. The pressure p is determined
up to a constant. To make p unique, we impose an additional condition

∫
Ω

p dx = 0. To discretize
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(2.1), we use a stabilized Q1 − Q1 finite element method ([2, 8]). For simplicity, we consider
only a uniform square mesh T h = {K}. Let V h and Ph be a pair of finite element spaces for
the velocity and pressure, given by

V h = {v ∈ (C0(Ω) ∩H1(Ω))2 : v |K ∈ Q1(K)2, K ∈ Th }
Ph = {p ∈ C0(Ω) ∩ L2(Ω) : p|K ∈ Q1(K), K ∈ Th}.

The weighting and trial velocity function spaces V h
0 and V h

g are

V h
0 = {v ∈ V h : v = 0 on Γ} and V h

g = {v ∈ V h : v = g on Γ}.

Similarly, let the finite element space Ph
0 be both the weighting and trial pressure function

spaces:

Ph
0 =

{
p ∈ Ph :

∫
Ω

p dx = 0
}

.

Following [8], the stabilized finite element method for steady-state incompressible Navier-
Stokes equations reads: Find uh ∈ V h

g and ph ∈ Ph
0 , such that

B(uh, ph; v , q) = 0 ∀(v , q) ∈ V h
0 × Ph

0(2.2)

with

B(u , p; v , q) = ((∇u) · u , v) + (2νε(u), ε(v))− (∇ · v , p)− (∇ · u , q)+∑
K∈Th

((∇u) · u +∇p, τ((∇v) · v −∇q))K + (∇ · u , δ∇ · v)

We use the stability parameters δ and τ as suggested in [8]. The stabilized finite element
formulation (2.2) can be written as a nonlinear algebraic system

F (x) = 0,(2.3)

which is often large, sparse, and highly nonlinear when the value of Reynolds number is large.
The vector x corresponds to the nodal values of uh = (uh

1 , uh
2 ) and ph in (2.2).

2.2. Subdomain partition, and one-level nonlinear preconditioner. To define par-
allel Schwarz type preconditioners [19] we need to partition the finite element mesh T h intro-
duced in the previous section. Let {Ωh

i , i = 1, ...., N} be a non-overlapping subdomain partition
whose union covers the entire domain Ω and its mesh T h. We use T h

i to denote the collection
of mesh points in Ωh

i . To obtain overlapping subdomains, we expand each subdomain Ωh
i to

a larger subdomain Ωh,δ
i with the boundary ∂Ωh,δ

i . Here δ is an integer indicating the degree
of overlap. We assume that ∂Ωh,δ

i does not cut any elements of T h. Similarly, we use T h,δ
i to

denote the collection of mesh points in Ωh,δ
i .

Now, we define the subdomain velocity space as

V h
i = {vh ∈ V h ∩ (H1(Ωh,δ

i ))
2

: vh = 0 on ∂Ωh,δ
i }

and the subdomain pressure space as

Ph
i = {ph ∈ Ph ∩ L2(Ωh,δ

i ) : ph = 0 on ∂Ωh,δ
i \Γ},

On the physical boundaries, we impose Dirichlet conditions according to the original equa-
tions (2.1). On the artificial boundaries, we assume both u = 0 and p = 0. Similar boundary
conditions were used in [13].
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Let Ri : V h×Ph → V h
i ×Ph

i be a restriction operator, which returns all degrees of freedom
(both velocity and pressure) associated with the subspace V h

i × Ph
i . Ri is an 3ni × 3n matrix

with values of either 0 or 1, where n and ni are the total number of mesh points in T h and T h,δ
i ,

respectively, and
∑N

i=1 3ni ≥ 3n. Note that for Q1 −Q1 elements, we have three variables per
mesh point, two for the velocity and one for the pressure. Then, the interpolation operator RT

i

can be defined as the transpose of Ri. The multiplication of Ri (and RT
i ) with a vector does

not involve any arithmetic operation, but does involve communication in a distributed memory
parallel implementation. Using the restriction operator, we define the subdomain nonlinear
function Fi : R3n → R3ni as

Fi = RiF.

We next define the subdomain mapping functions, which in some sense play the role of
subdomain preconditioners. For any given x ∈ R3n, Ti(x) : R3n → R3ni is defined as the
solution of the following subspace nonlinear systems,

Fi(x−RT
i Ti(x)) = 0, for = 1, ..., N.(2.4)

Throughout this paper, we always assume that (2.4) is uniquely solvable. Using the subdo-
main mapping functions, we introduce a new global nonlinear function,

F (1)(x) =
N∑

i=1

RT
i Ti(x),(2.5)

which we refer to as the nonlinearly preconditioned F (x). The one-level additive Schwarz inexact
preconditioned Newton algorithm (ASPIN(1)) is defined as: Find the solution x∗ of (2.3) by
solving the nonlinearly preconditioned system,

F (1)(x) = 0,(2.6)

using INB with an initial guess x(0). As shown in [5, 11], an approximation of the Jacobian of
F (1) takes the form

J (1)(x) ≈
N∑

i=1

J−1
i J(x),(2.7)

where J is the Jacobian of the original function F (x) and Ji = RiJRi
T .

2.3. A parallel linear coarse component for the nonlinear preconditioner. The
one-level ASPIN is robust, but not linearly scalable with respect to the number of processors.
Some coarse preconditioner is required to couple the subdomain preconditioners. One such coarse
preconditioner is proposed and tested in [6] and [14]. The nonlinear coarse system is obtained by
the discretization of original nonlinear partial differential equations on a coarse mesh. Although,
in general, solving the coarse systems is easier than the fine systems, a Newton-Krylov-Schwarz
method sometimes is not good enough to converge the coarse system. Therefore, ASPIN(1) is
used to solve the coarse system in [6, 14]. To evaluate the coarse function at certain point, one
needs to solve a set of nonlinear systems of equations. Although the ASPIN(1) based coarse
solver provides good mathematical properties, such as helping speed up the convergence of the
linear iterative method, the computational cost to solve many coarse systems is usually high
in practice. Numerical experiments [14] show that the ASPIN(1) based coarse solver work fine
only for the moderate number of processors, for the large number of processors, a more efficient
coarse solver is needed.
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Here we introduce a new coarse system, which is linear, and the system is constructed by
a linearization of the nonlinear coarse system mentioned above, using a Taylor approximation.
The coarse function evaluation only requires the solution of a linear system, and hence the
computational cost is reduced considerably. More precisely, we assume there exists a finite
element mesh T H covering the domain Ω. The two meshes T H and T h do not have to be nested.
For the purpose of parallel computing, the coarse mesh is partitioned into non-overlapping
subdomains {ΩH

i } and overlapping subdomains {ΩH,δ
i }. The corresponding sets of mesh points

are denoted by {T H
i }, and {T H,δ

i }. For the simplicity of our software implementation, we assume
a non-overlapping partition to be nested. In other words, we must have

Ωh
i = ΩH

i

for i = 1, . . . , N , even though the corresponding sets of mesh points do not have to be nested;
i.e.,

T h
i 6= T H

i .

This also means that the same number of processors is used for both the fine and coarse mesh
problems. If the overlap is taken into account, in general,

Ωh,δ
i 6= ΩH,δ

i , and T h,δ
i 6= T H,δ

i .

As in the fine mesh case, we can also define the restriction and extension operators Rc
i and

(Rc
i )

T for each coarse subdomain. On the coarse mesh T H , we can define finite element subspaces
similar to the ones defined on the fine meshes, and discretize the original Navier-Stokes equations
to obtain a nonlinear system of equations,

F c(x∗c) = 0(2.8)

We assume that the coarse solution x∗c of (2.8) is determined through a pre-processing step.
We denote Jc as the Jacobian matrix of the coarse mesh function F c. Similar to the fine mesh,
on the coarse subdomains, we obtain the coarse Jacobian submatrices

Jc
i = (Rc

i )J
c(Rc

i )
T , i = 1, . . . , N.

We next define the coarse-to-fine and fine-to-coarse grid transfer operators. Let {φH
j (x), j =

1, . . . ,m} be the finite element basis functions on the coarse grid, where m is the total number of
coarse grid points in T H . We define an 3n× 3m matrix Ih

H , the coarse-to-fine extension matrix,
as

Ih
H = [E1 E2 · · ·En]T ,

where the block matrix Ei of size 3× 3m is given by

Ei =

 (eh
H)i 0 0
0 (eh

H)i 0
0 0 (eh

H)i


and the row vector (eh

H)i of length m is given by

(eh
H)i =

[
φH

1 (xi), φH
2 (xi), . . . φH

m(xi)
]
, xi ∈ T h

for i = 1, . . . , n. A global coarse-to-fine extension operator Ih
H can be defined as the transpose

of IH
h .
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To define the coarse function T0 : R3n → R3n, we introduce a projection T c : R3n → R3m

as the solution of the linearize coarse system

F c(x∗c) + Jc(x∗c)(T
c(x)− x∗c) = IH

h F (x),(2.9)

for any given x ∈ R3n. Note that the left hand side of (2.9) is a first order Taylor approximation
of F c(x) at the exact coarse mesh solution, x∗c .

Since F c(x∗c) = 0, we rewrite (2.9) as

T c(x) = x∗c + (Jc(x∗c))
−1IH

h F (x),

provided that Jc(x∗c) is nonsingular. It is easy to see that T c(x∗) can be computed without
knowing the exact solution x∗ of F , and T c(x∗) = x∗c . Then the coarse function can be defined
as

T0(x) = Ih
H(T c(x)− T c(x∗)) = Ih

H(Jc(x∗c))
−1IH

h F (x)

and its derivative is given by

∂T0(x)
∂x

= Ih
H(Jc(x∗c))

−1IH
h J(x).(2.10)

We introduce a new nonlinear function

F (2)(x) = T0(x) +
N∑

i=1

RT
i Ti(x),

and combining (2.10) and (2.7), we obtain an approximation of Jacobian of F (2) in the form

J (2)(x) ≈

{
Ih
H(Jc(x∗c))

−1IH
h +

N∑
i=1

[
RT

i (Ji(x))−1Ri

]}
J(x).

The two-level additive Schwarz preconditioned inexact Newton algorithm with a linear
coarse solver (ASPIN(2)) is defined as: Find the solution x∗ of (2.3) by solving the nonlin-
early preconditioned system

F (2)(x) = 0,(2.11)

using INB with an initial guess x(0). Details of ASPIN(2) is given below.
Let x(0) be an initial guess and x(k) the current approximate solution. Then a new approx-

imate solution x(k+1) can be computed by the ASPIN(2) algorithm as follows:
Step 1: Evaluate the nonlinear residual F (2)(x) at x(k) through the following steps:

1. Find w
(k)
0 by solving the linearize coarse mesh problem

Jc(x∗c)zc = IH
h F (x(k))(2.12)

using a Krylov-Schwarz method with a left preconditioner,
P−1 =

∑N
i=1(R

c
i )

T (Jc
i )−1Rc

i and the initial guess zc = 0.
2. Find w

(k)
i = Ti(x(k)) by solving in parallel, the local nonlinear systems

Gi(w) ≡ Fi(x
(k)
i − w) = 0(2.13)

using Newton method with backtracking and the initial guess w = 0.
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3. Form the global residual

F (2)(x(k)) = Ih
Hw

(k)
0 +

N∑
i=1

RT
i w

(k)
i .

Step 2: Check the stopping condition on ||F (2)(x(k))||2. If ||F (2)(x(k))||2 is small enough, stop,
otherwise, continue.

Step 3: Evaluate pieces of the Jacobian matrix J (2)(x) of the preconditioned system that are
needed in order to multiply (2.14) below with a vector in the next step. This includes
Ji and its sparse LU factorization.

J (2) ≈

{
Ih
H(Jc(x∗c))

−1IH
h +

N∑
i=1

[
RT

i (Ji(x(k)))−1Ri

]}
J(x(k)).(2.14)

Step 4: Find an inexact Newton direction s(k) by solving the following Jacobian system approx-
imately using a Krylov subspace method

J (2)s(k) = F (2)(x(k))(2.15)

in the sense that

||F (2)(x(k))− J (2)(x(k))s(k)||2 ≤ ηk||F (2)(x(k))||2(2.16)

for some ηk ∈ [0, 1).
Step 5: Scale the search direction s(k) ← smax

||s(k)||2
s(k) if ||s(k)||2 ≥ smax.

Step 6: Compute a new approximate solution

x(k+1) = x(k) − λ(k)s(k),

where λ(k) is a damping parameter determined by the standard backtracking procedure.

3. Numerical results. In this section, we consider a two-dimensional lid-driven cavity flow
problem [9] as a benchmark for evaluating the performance of ASPIN. Particularly, we study the
linear and nonlinear scalability of the methods. We use PETSc [1] for the parallel implementation
and obtain all numerical results on a cluster of workstations. Only machine independent results
are reported here in this paper. In our implementation, after ordering the mesh points, we
number unknown nodal values in the order of uh

1 , uh
2 , and ph at each mesh point. The mesh

points are grouped subdomain by subdomain for the purpose of parallel processing. Regular
checkerboard partitions are used for our experiments. The number of subdomains is always the
same as the number of processors, np. At the fine mesh level, we use the standard backtracking
technique [7] for both global and local nonlinear problems. The global nonlinear iteration is
stopped if the condition ||F (2)(x(k))||2 ≤ 10−6||F (2)(x(0))||2 is satisfied, and the local nonlinear
iteration on each subdomain is stopped if the condition ||Gi(w

(k)
i,l )||2 ≤ 10−4||Gi(w

(k)
i,0 )||2 is

satisfied. We use a restarted GMRES(200) for solving the global Jacobian systems (2.15).
The global linear iteration is stopped if the relative tolerance ||F (2)(x(k)) − J (2)(x(k))s(k)||2 ≤
10−6||F (2)(x(k))||2 is satisfied. During local nonlinear iterations, a direct sparse solver, LU
decomposition, is employed for solving each local Jacobian system. At the coarse mesh level,
we use a restarted GMRES(200) method with a left overlapping Schwarz preconditioner to
solve the coarse systems (2.12). The stopping criterion for the coarse mesh problem is that the
condition ||IH

h F (x(k)) − Jc(x∗c)zc||2 ≤ 10−10||IH
h F (x(k))||2 is satisfied. We use the overlapping

size, δ = 2 for both the fine and coarse systems. As suggested in [11], we include the re-scaling
of the search direction s(k) in Step 5 if ||s(k)||2 ≥ smax to enhance the robustness of ASPIN for
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Table 3.1
ASPIN(2): Varying the coarse mesh size for different values of Reynolds number. Fine mesh: 128 × 128.

The number of processors np=16.

coarse mesh Re = 103 3× 103 5× 103 8× 103 104

Number of global nonlinear iterations
16× 16 8 11 11 14 17
20× 20 9 9 11 13 14
32× 32 8 9 11 10 12
40× 40 8 9 9 10 11
64× 64 8 10 9 11 11

Average number of global linear iterations
16× 16 58 74 94 111 122
20× 20 50 66 75 89 103
32× 32 45 52 59 64 68
40× 40 43 50 54 60 60
64× 64 42 49 52 55 65

solving incompressible flows. This step also reduces the number of line search steps since the
evaluation of nonlinearly preconditioned function is expensive. All numerical results reported
here are based on the optimal choice of the parameter smax which results in the smallest number
of global nonlinear iterations.

We first study the effect of the coarse mesh size on the global nonlinear iterations and
the global linear iterations of ASPIN(2) for different values of Reynolds number. In this set of
numerical experiments, all results are obtained using a fixed fine mesh 128×128 on 16 processors,
and the coarse mesh size is varied from 16×16 to 80×80. Table 3.1 shows that to apply two-level
methods on the moderate number of processors, the coarse mesh has to be sufficiently fine, say
40× 40 in this case. For this particular case, the numbers of global nonlinear iterations, as well
as global linear iterations, are not very sensitive with the increase of Reynolds number.

To study the parallel scalability of ASPIN(2) with respect to the number of processors, we
use a fixed fine mesh 128 × 128 and a coarse mesh 40 × 40. For comparison purposes, we
also include the results obtained using ASPIN(1). Table 3.2 shows that by adding a coarse
preconditioner, not only the global linear iterations is reduced significantly as we increase the
number of processors from 4 to 64, but also the global nonlinear iterations is improved especially
for high Reynolds number flows. Table 3.3 shows the mesh scalability of ASPIN(2). Now we
increase the fine mesh size from 128 × 128 to 512 × 512 on 64 processors, and we use a fixed
coarse mesh 64×64 for all test cases. We see that the coarse mesh of size 64×64 works fine only
for first two small meshes(128× 128 and 256× 256). The global linear iterations increase quite
a bit for the largest mesh(512× 512). For a fully scalable algorithm, one may need to increase
the coarse mesh size as well, when the fine mesh size and the number of processors increase.
The optimal coarse mesh size also depends mildly on the Reynolds number.

In the next set of numerical experiments, instead of using a zero vector as the initial guess,
we employ the interpolation of the coarse mesh solution, Ih

Hx∗c , as the initial guess. Here we
refer to the two-level ASPIN with the new initial guess as ASPIN(2’). Note that no additional
cost is needed for this new selection of the initial guess since we need x∗c for the nonlinear
function evaluation anyway. However, with this small modification, we see a much better overall
performance of the two-level ASPIN. We rerun the same test cases presented in Table 3.3 using
ASPIN(2’) and the results are shown in Table 3.4. Obviously ASPIN(2’) performs better than
ASPIN(2). ASPIN(2’) requires only about half of the global nonlinear and linear iterations than
ASPIN(2).

4. Concluding remarks. We presented a new two-level ASPIN algorithm and its ap-
plication to incompressible Navier-Stokes equations. The two-level nonlinear preconditioner is
constructed by using a local nonlinear overlapping Schwarz domain decomposition and a global
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Table 3.2
ASPIN(1) and ASPIN(2): Varying the number of processors. Fine mesh size: 128× 128. Coarse grid size:

40× 40.

np Re = 103 3× 103 5× 103 8× 103 104

ASPIN(1)
Number of global nonlinear iterations

2× 2 = 4 9 10 13 19 19
4× 4 = 16 9 12 12 16 18
8× 8 = 64 10 15 14 19 19

Average number of global linear iterations
2× 2 = 4 67 69 71 73 74
4× 4 = 16 127 128 133 137 140
8× 8 = 64 395 394 400 497 655

ASPIN(2)
Number of global nonlinear iterations

2× 2 = 4 9 9 11 10 12
4× 4 = 16 8 9 9 10 11
8× 8 = 64 8 9 12 12 14

Average number of global linear iterations
2× 2 = 4 33 40 40 40 46
4× 4 = 16 43 50 54 60 60
8× 8 = 64 49 62 61 78 79

Table 3.3
ASPIN(2): Varying the fine mesh size for different values of Reynolds number. Coarse mesh size: 64× 64.

The number of processors np = 64

fine mesh Re = 103 3× 103 5× 103 8× 103 104

Number of global nonlinear iterations
128× 128 8 9 10 11 10
256× 256 8 11 12 13 14
512× 512 9 11 14 15 19

Average number of global linear iterations
128× 128 50 61 70 87 94
256× 256 63 82 85 93 94
512× 512 90 134 171 144 111

linear coarse solver. We obtained some encouraging numerical results for moderate number of
processors. We show that the new two-level ASPIN maintains the fast convergence and robust-
ness properties of the one-level ASPIN. In addition, if the coarse mesh size is fine enough the
new algorithms provide better nonlinear and linear scalability with respect to the number of
processors. To show the applicability of ASPIN for larger problems, more applications with
complex geometry and using larger number of processors need to be tested in the future.
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Table 3.4
ASPIN(2’): Varying the fine mesh size for different values of Reynolds number. Coarse mesh size: 64×64.

The number of processor np = 64.

fine mesh Re = 103 3× 103 5× 103 8× 103 104

Number of global nonlinear iterations
128× 128 3 4 5 5 6
256× 256 3 4 5 6 7
512× 512 4 5 6 7 8

Average number of global linear iterations
128× 128 26 28 30 35 36
256× 256 31 34 38 43 48
512× 512 48 49 51 56 60

cations in computational fluid dynamics, Int. J. Numer. Meth. Fluids, 40 (2002), pp. 1463-1470.
[7] J. Dennis and R. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations,

SIAM, Philadelphia, 1996.
[8] L. P. Franca and S. L. Frey, Stabilized finite element method: II. The incompressible Navier-Stokes

equation, Comput. Methods Appl. Mech. Engrg., 99 (1992), pp. 209-233.
[9] U. Ghia, K. N. Ghia, and C. T. Shin, High-Re solution for incompressible flow using the Navier- Stokes

equations and the multigrid method, J. Comput. Phy., 48 (1982), pp. 387-411.
[10] M. D. Gunzburger, Finite Element Methods for Viscous Incompressible Flows, Academics Press, New

York, 1989.
[11] F.-N. Hwang and X.-C. Cai, A parallel nonlinear additive Schwarz preconditioned inexact Newton algo-

rithm for incompressible Navier-Stokes equations, 2003. (submitted)
[12] F.-N. Hwang and X.-C. Cai, Improving robustness and parallel scalability of Newton method through

nonlinear preconditioning, Proceedings of the 15th International Conference on Domain Decomposition
Methods, 2003. (submitted)

[13] A. Klawonn and L. F. Pavarino, Overlapping Schwarz method for mixed linear elasticity and Stokes
problems, Comput. Methods Appl. Mech. Engrg., 165 (1998), pp. 233-245.

[14] L. Marcinkowski and X.-C. Cai, Parallel performance of some two-level ASPIN algorithms, Proceedings
of the 15th International Conference on Domain Decomposition Methods, 2003. (to appear)

[15] J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.
[16] J. N. Reddy and D. K. Gartling, The Finite Element Method in Heat Transfer and Fluid Dynamics,

CRC Press, Florida, 2000.
[17] Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsysmetric

linear system, SIAM J. Sci. Stat. Comp., 7 (1986), pp. 856-869.
[18] J. N. Shadid, R. S. Tuminaro, and H. F. Walker, An inexact Newton method for fully coupled solution of

the Navier-Stokes equations with heat and mass transport, J. Comput. Phys., 137 (1997), pp. 155-185.
[19] B. Smith, P. Bjørstad, and W. Gropp, Domain Decompostion: Parallel Multilevel Methods for Elliptic

Partial Differential Equations, Cambridge University Press, Combridge, 1996.


