SPARSE APPROXIMATE INVERSES AND TARGET MATRICES *
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Abstract. If P has a prescribed sparsity and minimizes the Frobenius norm ||I — PA||p it is
called a sparse approximate inverse of A. It is well known that the computation of such a matrix P
is via the solution of independent linear least squares problems for the rows separately (and therefore
in parallel). In this paper we consider the choice of other norms, and introduce the idea of ‘target’
matrices. A target matrix, T, is readily inverted and thus forms part of a preconditioner when
||T — PA|| is minimized over some appropriate sparse matrices P. The use of alternatives to the
Frobenius norm which maintain parallelizability whilst discussed in early literature does not appear
to have been exploited.
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1. Introduction. We consider the derivation of algebraic preconditioners for
large, sparse, linear systems Az = b. The construction of sparse approximate inverse
preconditioners by

min ||[I — PA|| <0r min ||I—AP||> (1.1)
PeSp PeSp

has been considered in [Ben73], [KY86], [CDG92],[GHI7],[GS98] where ||.|| is widely
taken to be the Frobenius norm ||.||r and Sp denotes a set of matrices with prescribed
sparsity pattern, i.e. for a set of indices Ip C {(3,5) : 1 < 4,5 < n} we have that
Sp ={P € R*™ : P;; = 0for(i,j) ¢ Ip} where n is the dimension of A. For
this norm the construction of P can be broken down so that each row (or column)
is calculated by the solution of an independent small least squares problem, meaning
that all rows can be computed in parallel. In the notation of the work we will introduce
in this paper, we reinterpret (1.1) as constructing P such that the product PA (or
AP) targets the identity. We need not restrict ourselves to the identity but can instead
consider:

min ||T'— PA|| (or min ||T — AP||)
PecSp PcSp

i.e. find a preconditioner P such that PA (or AP) targets T (which we term the
‘target’ matrix), whereby our preconditioned system becomes T—!PA. This approach
requires that the action of T—! is readily available. Easy parallelization is preserved
when a target matrix, T, is employed.

Sparse approximate inverse preconditioners were introduced by Benson [Ben73],
and developed to include a dynamic method of choosing Sp by Cosgrove, Diaz, and
Griewank [CDG92], Grote and Huckle [GH97], and Gould and Scott [GS98]. The
underlying idea was further developed to find P in factored form by Kolotilina and
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Yeremin [KY93]. Computing approximate inverses using other methods has also re-
ceived attention: Benzi and Tuma construct a factored form of approximate inverse
by a method of A-biconjugation [BMT96], [BT98], [BMT99], whereas Chow and Saad
use sparse-sparse iterations in their procedure [CS98]. We refer the survey [BT99]
which compares these preconditioners.

In this paper we consider the use of target matrices and reconsider the use of
alternative norms. In section 2 we will comment on the choice of norm, discussing
Frobenius H—norms (generalized Frobenius norms) defined by

| B||%, 4 =< B, B >p,u = trace (BHBT) (1.2)

where H is symmetric positive definite. These were introduced in this context by
Kolotilina and Yeremin in [KY86] and described by Axelsson in [Axe96], p.322. In
particular we will consider minimization in ||.||f 4-: which can be achieved without
explicit knowledge of A~! and requires n independent small linear solves. In sections
3 and 4 we will introduce two types of target matrix. Firstly a target with a specified
sparsity pattern, and secondly a specific target matrix. We give results for the former
in section 3 and for the latter in section 5 where we in particular show its use as an
optimal preconditioner for low Peclet number advection-diffusion problems. Finally
we draw some conclusions.

2. Frobenius H—Norms. In the Frobenius H —norm we construct our ‘approx-
imate inverse’ (or more appropriately the multiplicative part of our preconditioner),
P, and our target matrix, T', by minimizing ||T' — PA||r,s (as defined in (1.2)), which
can be decomposed row-wise as follows.

n
min||T — PA|[p =Y min|lt; — pjAl7 g

Jj=1

where ¢; and p; represent the jth rows of T and P respectively. Note that for H = I
this is the usual Frobenius norm. There are many possibilities for H, but an interesting
one which we would like to highlight is the use of the inverse of A. Curiously we are
able to minimize with respect to this norm without any explicit knowledge of the
inverse itself, and moreover the construction of a preconditioner with respect to this
norm is cheaper than using the basic Frobenius norm. Though identified by Kolotilina
and Yeremin, and Axelsson this observation has not been widely exploited.

We show two versions of why the construction of the preconditioner in the Frobe-
nius A~ 'norm becomes so easy. The first is that used by Kolotilina and Yeremin.
Consider

min ||T— PA|lr.z = pmin Fa(P) (2.1)

where
Fy(P) = trace(THTT) = Y P[(AHTT) ;i + (AHTT");i] + ) Pyj(AHAT) ;4 Py,
i i,j:k
Thus we can find the minimum by finding the stationary points for each p;;, (¢,5) €
Ip. i.e. solve for (i,j5) € Ip:
OFu(P)

o =—(THTA");; — (THAT);; + (PAHTAT);; + (PAHAT);; =0  (2.2)
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For the case when H = A~!, when A is symmetric positive definite, this gives us
that:

T;j = (PA)i;  for(i,j) € Ip (2.3)

i.e. Tyj = Py Agj for (i,7) € Ip where * represents the row containing the elements
in Ip. Thus calculating a row of P is equivalent to solving a small, dense, symmetric
square system which just contains the rows and columns of A which correspond to the
sparsity pattern of the required row of P. This can be achieved by using a Cholesky
factorization for example. Figure 2.1 highlights the elements of A which are needed
to form this system.

: im il
min I - 1 Hpll A

p'-'S Emm =R -1
F A

Fic. 2.1. Diagram showing how the rows and columns of A are selected to find the
preconditioner with respect to the A~ norm. The darkest entries are those of the required
small square matriz.

A second way of thinking about this problem is in terms of best approximations.
When A is symmetric positive definite solving (2.1) can be considered as finding
P € Sp such that PA is the ‘best approximation’ to T'in ||.||p 4-1 from the set SpA,
ie.

<T—-PAVA>ps-1=0 forV e Sp
<T—PA,V>F’1=0 forV e Sp
<T,V >p1r =< PAYV >p1 forV e Sp

ie. take V = E;; for(i,j) € Ip where we use the ‘delta’ blocks E;; as the basis
functions, i.e. E;; has one element in the (i, j) position equal to 1 and zeros elsewhere,
and consider P = Z(m) c1p PrsErs. S0 we obtain

< T, Ez'j >pr = < Z pTSETSA, E,'j> for (l,j) elp
(ry8)Elp FI
Tij = Z Prs (0irAsj) for (i,5) € Ip
(r,s)€lp
Tij = (PA)i; for (4,j) € Ip

which we find is identical to equation (2.3). This view is an adaptation of the work of
Guillaume, Huard and Le Calvez from [GHLCO03] where they consider block constant
approximate inverses in a similar fashion.

The above are calculations necessary to produce a left preconditioner, and we will
use this version in the remainder of the paper. However, it is just as straight forward
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to find a right preconditioner. To do this it is natural to consider the ‘dual’ Frobenius
H —norm which is defined by

|Allp, = [trace (ATHA)]1/2.

The ||.||r,4-1 norm can also be used when choosing the sparsity pattern dynami-
cally, for details see [Hol03]. In this paper we restrict ourselves to choosing a sparsity
pattern a priori, namely that of the transpose of A.

When we wish to solve a system which is not symmetric, our choice of H should
not rely on A but on the symmetric part of A. Rather than using the A~'norm we
consider the A=' + A=Tnorm. Note that this choice of H will be positive definite for
positive real A. Substituting into equation (2.2) we obtain

(T(ATAT +1))yy = (P(A+ AT))y;  for(i,j) € Ip (2.4)

which unfortunately includes A~'. However, since we are constructing an approximate
inverse T~'P ~ A~! we can use T~'P in (2.4) to obtain

(T(T~*PAT + 1))y =~ (P(A+ AT));;  for (i, j) € Ip

We will use this form for the non-symmetric advection diffusion problems in section 5.

3. Using Target Matrices with Specified Sparsity Patterns. We consider
two ways to use target matrices. In the first we merely choose a sparsity pattern for
T in a similar manner as that in which a (usually different) sparsity pattern is chosen
for P, and minimize over the possible choices for each. i.e.

|T = PA||> = min min ||T — PA|]?
PeSp TeSr

n
=Z min mln t; —p;A 2
3. i It =i

In order for us to have a viable preconditioner we need to be able to cheaply solve
systems involving T'. Options available include for instance banded, triangular, and
Hessenberg matrices.

In order not to obtain a trivial result one has to choose a normalization for T'. As
we consider this an extension of the approximate inverse technique we have normalized
by setting the diagonal entries to be 1, though there are other options available. Then,
where in the j** row there is a non-zero entry in the i** position of T' (where i # )
we can set t;(i) = ), pj(k)ar;. That is we make t; — p;A zero in these positions.
Therefore to minimize over S; and Sp; we merely remove these columns from ¢; and
A and then solve the resulting smaller problem.

Unfortunately for this version of the target, the Frobenius A~'norm is not appli-
cable as it requires the solution of a square system initially and so removing columns
would cause the system to become under-determined. However for the Frobenius
norm we reduce the size of the least squares problems, see Figure 3.1. Then the en-
tries of ¢; can be formed via small dot products. Thus the construction of both a
target matrix and P requires less work than that of P alone! As well as removing
columns of A because of the introduction of the target matrix we can also remove
any columns which are zero in the selected (dark) rows, let’s call these ‘zero rows’.
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F1G. 3.1. Diagram showing how the rows of A are selected (dark) to find the preconditioner
with respect to the usual Frobenius norm, whereas the 2 identified columns are removed from
the target problem as these correspond to mon-zero (and non-diagonal) elements of T.

Occasionally too many entries in P and 7" could lead to the problem of obtaining an
under-determined system. This happens for row j if

dimension(A) — #zero rows — nnz(t;) + 1 > nnz(p;).

This happens rarely and can be easily remedied, for instance by choosing to remove
entries in p; and/or ¢;.

We will now show some results of iteration counts where such preconditioners
have been used to solve the 5-point Laplacian problem. This problem is difficult for
sparse approximate inverse preconditioners as the inverse of such an operator is not
only dense but also exhibits slow decay of the entries away from the main diagonal,
and we try to approximate it with a sparse banded matrix. We have given results (see
Table 3.1) for no preconditioning, for the usual Frobenius norm sparse approximate
inverse, and for a tridiagonal, lower triangular, and lower Hessenberg target in com-
bination with a matrix P. In the latter cases we use only the corresponding non-zero
entries of A to prescribe the sparsity pattern for T'.

grid no prec | P,||.||r | P, tridiag. T | P, lower triang. T' | P, lower H’berg T'

8x8 22 13 12 13 10

16x16 43 24 21 23 18

32x32 82 46 39 42 33

64x64 153 84 70 84 63
TABLE 3.1

Iteration Counts of (full) GMRES for the 5-point Laplacian Problem

We see that using a tridiagonal or Hessenberg target can give us reasonable im-
provements, and as we have discussed these preconditioners are cheaper to construct
than P alone. The improvement is not dramatic however, and we have not found real
problems for which this is the case.

4. Using Specific Target Matrices. The second version of the target matrix
is when we specify the exact matrix (as oppose to just the sparsity pattern). This idea
was briefly mentioned in [CS98] where they suggested using a block diagonal matrix,
although as we discussed previously, our only real restriction is that 7" should be easily
inverted. One of our motivating ideas with specific target matrices is that we may
have a problem consisting of several operators and for one of which we have a fast
solver (like multigrid or fast Fourier transforms). We may then target this operator,
and use P to ‘move the problem closer’ to this matrix. That is, we are using P to
map the more difficult problem towards our target, T, which we can solve efficiently.



The construction of T and P is exactly equivalent to the construction of P alone
in whichever norm is desired, with a row of T replacing the row of the identity in the
small linear least squares problems (in the Frobenius norm), or the small linear solves
(in the Frobenius A~'norm).

For a partial differential equation boundary value problem, the equivalent oper-
ator theory of Manteuffel and Parter in [FMP90] and [MP90] indicates that the use
of a preconditioner with the same boundary conditions is advantageous. This can be
achieved if S7 C S4, though the role of P makes this less clear.

5. Results. Let’s consider the advection-diffusion equation.

—eVu+wVu=f in Q (5.1)
u=u" onT

where w is some ‘wind’ function which is causing the advection. Clearly this system
is naturally split into two distinct parts. Firstly we have the diffusion of u, i.e. a
Laplacian system, and secondly the advection term. If the former quantity is signif-
icant it is sensible to target the Laplacian and to use a fast solver such as multigrid
for the action of T1.

We consider two test problems taken from [ESWO03]: @ = (-1,1)x(—1,1), with
bilinear finite elements on a uniform mesh of rectangles (Q1), and the streamline
upwind Petrov-Galerkin formation [BH82]. In each case the wind function is scaled
to have norm of O(1) and so the value of epsilon in equation (5.1) represents the ratio
of diffusion to advection in the problem.

Example 1 Constant wind.

w = (— sin T cos I)
B 6" 6
with boundary conditions
u(z,-1) =0, z € (—1,0), u(z,—1) =1,z € (0,1) u(z,1) =1,
U(—].,y) = 07 U(l,y) =1

which cause both internal and boundary layer formulation.
Example 2 Circular wind.

w = (2y(1 - 22),—22(1 — y?))
with boundary conditions

u(z,—1) =0, u(z,1) =0,

uw(-Ly) =0, wu(ly)=1

which also has layers.
In each case we target the 5-point Laplacian matrix, and the sparsity pattern of
P is that of AT.
We solve iteratively the preconditioned system

T 'PAz=T"1Pb

We compare results using several versions of our preconditioner against the no
preconditioning case. We consider preconditioning with:



the usual approximate inverse in the Frobenius norm
the usual approximate inverse in the Frobenius A~'norm
only a target (P =I)
a target and a diagonal P (denoted D for clarity) in the Frobenius Norm
a target and a P in the Frobenius norm
e a target and a P in the Frobenius A~ 'norm
The number of iterations required for full GMRES to reach a stopping criterion of
a relative residual of 10~ are tabulated in Tables 5.1 and 5.2. Left preconditioning
was used.

In each of the problems when epsilon is fairly large the target works very well, and
we achieve a solution which is independent of the size of the mesh. As the advection
operator becomes more important the 5-point Laplacian target is less effective, as we
would expect, but even when epsilon is as small as 0.01 we are still apparently doing
better than the O(n?) complexity that the usual approximate inverse preconditioners
dispBipally we show that the results are not dependent upon the type of elements we
are using. For a circular wind problem and a random vector b we present analogous
results to the above for
Example 3 linear elements on uniform mesh of triangles (P1)

Example 4 quadratic elements on uniform mesh of triangles (P2)
Example 5 biquadratic elements on uniform mesh of rectangles (Q2)
The corresponding full GMRES iteration counts are tabulated in Tables 5.3 - 5.5.

6. Conclusions. Target matrices in the context of sparse approximate inverse
preconditioners have been described and demonstrated to be an effective method for
an important class of partial differential equation problems. The efficiency inherent
in the use of the Frobenius A~'norm in this context has been highlighted.
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TABLE 5.1
Iteration Counts of (full) GMRES for Ezample 1
€ grid no prec | P .[[r PSH'HF,A—l T | T,D|lllr | T, |.IF T’PSH'HF,A—l
1.00 8x8 18 10 10 | 12 11 5 5
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TABLE 5.2

Iteration Counts of (full) GMRES for Ezample 2




€ grid | noprec | Plflr | Pllllpa-1 | T | T,Dllr | T,P s | T,P.llpa-1
1.00 8x8 20 11 11 6 4 4 4
16x16 43 24 23 6 5 4 4
32x32 87 48 45 6 4 4 4
64x64 172 94 89 6 4 4 4
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64x64 573 251 235 | 72 68 56 56
TABLE 5.3
Tteration Counts of (full) GMRES for Ezample 3 (P1)
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Iteration Counts of (full) GMRES for Ezample 4 (P2)
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