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Abstract

In [3] we propose a concept for a preconditioner to improve the conver-
gence rate of Krylov subspace methods applied to the Helmholtz equation.
The preconditioner is called the Shifted-Laplace preconditioner. In this
paper, we present some numerical experiments using different ways to
solve the preconditioner for heterogeneous, high wavenumber Helmholtz
problems. Although the preconditioner is solved iteratively, the conver-
gence is much faster than that of a standard ILU preconditioner based on
the original matrix A.

1 Introduction

We are concerned with solutions of the following boundary value problem

Lu ≡
(

∂xx + ∂yy + k2(x, y)
)

u = f in Ω ∈ R
2, (1)

lim
r→∞

√
r

(

∂u

∂n
− iku

)

= 0 on Γ = ∂Ω, (2)

– the Helmholtz problem – which governs wave propagations/scattering in a
2-d heterogeneous medium, with k = k(x, y) is the wavenumber. This kind of
problem arises in many applications, e.g. aeronautics, geophysics and electro-
magnetics. In particular we are interested in solutions of geophysical problems
and solve the system (1)–(2) numerically. In geophysical problems, the bound-
ary of the domain is usually simple (e.g. a rectangular shape in 2-d). In such
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a domain, finite differencing is easy to be done and accurate solutions can be
obtained by using a high order scheme.

Our primary iterative solution method is the Krylov subspace method ap-
plied to the discretized formulation of (1)–(2). The algorithm is in general easy
to implement, requiring only matrix/vector multiplication(s) and some vector
updates.

In the original setting, a Krylov subspace method usually faces slow conver-
gence when it is used to solve the Helmholtz equation. There are at least two
reasons for this slow convergence: (1) the indefiniteness of the system to solve,
and (2) an ill-condition system characterized by an extremely large condition
number. A standard remedy to enhance the convergence is by incorporating
a preconditioner so that the preconditioned system is better conditioned than
the original one. Finding an effective preconditioner for the Helmholtz equa-
tion, however, is not an easy task. Standard preconditioners, e.g. based on
ILU or approximate inverse (AI), do not seem to work quite effectively for high
wavenumbers, see, e.g., the recent study in [5]. For this type of preconditioner,
break down seems to occur even for small wavenumbers. As geophysical ap-
plications demand high wavenumbers, this type of preconditioner may become
inattractive.

Several authors have proposed special preconditioners for the Helmholtz
problems, e.g. [2, 8, 10]. In [3], we propose a preconditioner, the so-called
Shifted-Laplace, which can be considered as a generalization of the precondi-
tioners introduced in [1, 6]. The preconditioner is built based on the operator

∂xx + ∂yy − (α + iβ)k2, α, β ≥ 0. (3)

For fastest convergence, we found that α = 0 and β = 1 results in an opti-
mal condition number within this class of preconditioners. Furthermore, our
numerical examples do not show any breakdown, see [3] for more details.

In [3] this fastest convergence was, however, achieved with exact inversion
of the preconditioner. This is a difficult task and time consuming. (Solving
directly the original problem using direct methods is much cheaper than solving
exactly the preconditioner several times during iteration).

The main goal of this paper is to compare approximate methods for solving
the Shifted-Laplace preconditioner. We focus on two classes of methods for this
purpose: incomplete LU (ILU) and multigrid. As the discretization of (3) leads
to a complex, symmetric positive definite system, ILU and multigrid should be
the methods of choice. We expect to gain much in computational time.

This paper is organized as follows. In Section 2 we discuss briefly the fourth
order discretization used. Krylov subspace methods and the preconditioner are
discussed in Section 3. In Section 4, methods to solve the preconditioner are
explained. We present numerical results in Section 5.
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2 Discretization

We first discretize (1)–(2). For this purpose we use the fourth order finite
difference discretization derived from the Padé approximation of the differential
operator. For example, we can write the Padé approximation of ∂xx as

∂xx ≈ Dxx

1 + (h2/12)Dxx

, (4)

and similar for ∂yy. Substituting (4) into (1) yields

−
(

Dxx

1 + (h2/12)Dxx

ui,j +
Dxx

1 + (h2/12)Dxx

+ k2

)

ui,j = fi,j . (5)

To minimize dispersion and anisotropy, generalization is proposed in [4] by in-
troducing a coefficient γ:

−
(

Dxx + Dyy +
h2

6
DxxDyy

)

ui,j

− k2

(

1 +
h2

12
(Dxx + Dyy) + γ

h2

144
DxxDyy

)

ui,j =

−
(

1 +
h2

12
(Dxx + Dyy) + γ

h4

144
DxxDyy

)

fi,j . (6)

The value γ is chosen such that the dispersion or anisotropy are minimal. In
(6), the operator DxxDyy reads

DxxDyy =
1

h4
(σc − 2σs + 4φi,j) (7)

with

σc = φi−1,j−1 + φi−1,j+1 + φi+1,j−1 + φi+1,j+1, (8)

the sum of the corner points, and

σs = φi,j−1 + φi,j+1 + φi+1,j + φi,j−1, (9)

the sum of mid-side points. This finally gives a compact, nine-point stencil
with the high order property. Analysis in [4] shows that setting γ = 2

5
or

γ = 14

5
results in schemes with minimal dispersion or anisotropy, respectively.

We use the fourth order scheme to reduce the number of grid points needed per
wavelength to approximate high wavenumber solutions satisfactorily.

The resulting linear system

Ax = b, A ∈ C
N×N , x, b ∈ C

n×1 (10)

is in general indefinite for sufficiently large k.
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3 Krylov subspace methods

3.1 General

In Krylov subspace methods we construct iterants in the subspace

Kj(A, r0) = span{r0, Ar0, A
2r0, . . . , A

j−1r0}, (11)

where Kj(A, r0) is the j-th Krylov subspace associated with A and r0, r0 =
b − Ax0 is the initial residual. There are many ways to construct the Krylov
subspace, which leads to different algorithms. For a complete survey, see [11].

Since we are interested in a solution method which is less stringent in the
choice of preconditioners, we use algorithms for unsymmetric matrices instead.
Some advanced algorithms are Bi-CGSTAB [13] and GMRES [12]. We choose
Bi-CGSTAB which, despite requiring two matrix-vector multiplications, can
preserve a constant amount of work and storage per iteration.

If the linear system is badly conditioned, indicated by a large condition num-
ber κ, Krylov subspace methods typically converge very slowly and may break
down in some cases. As a remedy one preconditions the linear system, so that
the preconditioned linear system becomes better-conditioned. By precondition-
ing one solves the equivalent linear system

M−1
1 AM−1

2 x̃ = M−1
1 b, x̃ = M2x, (12)

where M = M1M2 is the preconditioning matrix. To reduce the number of
preconditioner solves, in our applications only right preconditioning is used.

As an addition to the condition that the preconditioned system should be
better-conditioned than the original one, the preconditioner must also be easy
to solve. For example, a preconditioner in the form of an incomplete LU factor-
ization is easy to solve using backward-forward substitution and this solution
process requires only O(N) operations.

3.2 Preconditioner

We distinguish two classes of preconditioners for the Helmholtz equation. The
first one is classified as ”matrix-based”. Examples of this class are incomplete
LU (ILU) and approximate inverse (AI), applied to matrix A resulting from
the Helmholtz discretization. ILU preconditioners, however, may require extra
storage due to fill-in and this storage requirement can exceed that for storing
A. A recent study on the application of ILU preconditioners for the Helmholtz
equation is given in [5]. The results, however, are not satisfactorily for high
wavenumbers, indicated by a stagnation of the methods.

The second class is the so-called “operator based” preconditioners. In this
class, the preconditioner is determined on the continuous level (and not in the
matrix level). Within this class are Analytic ILU (or AILU) [2], the Separation
of Variables preconditioner [10], and the well-known Laplace preconditioner [1].
Preconditioning using the Laplace operator proposed in [1] is further generalized
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for the Helmholtz equation in [6] by adding a positive zero-th order term with
the constant k2, which results in a positive definite preconditioning operator.
In [3] we propose a further generalization in this class by adding an imaginary
shift to the zero-th order term for improved convergence. We call this class of
the preconditioners “ Shifted-Laplace preconditioners”. Our variant takes the
form

M = ∂xxu + ∂yyu − ik2u, (13)

where i2 = −1, the complex identity. A first motivation for this preconditioner
can be given by means of a spectral analysis of the homogeneous 1-d case.

Consider the homogeneous 1-d Helmholtz equation in Ω = (0, 1) with Dirich-
let boundary at both ends. For the preconditioner, we use the 1-d version of (13).
The eigenvalue problem related to the preconditioned system can be expressed
in continuous form as

(

d2

dx2
+ k2

)

uv = λ

(

d2

dx2
− ik2

)

uv, (14)

where uv is an eigenfunction, and λ is the eigenvalue. After some arithmetic we
find that

λn =
k2

n − k2

k2
n + ik2

, kn = nπ, n ∈ Z. (15)

If one considers the normal equations representation of (13), the eigenvalue
becomes

|λn|2 =
(k2

n − k2)2

k4
n + k4

. (16)

For an indefinite system, the latter is easier to be used for the convergence
analysis than (15).

Assuming a finite k, one finds that

lim
n→∞

|λn|2 = lim
n→0

|λn|2 = 1. (17)

Furthemore, for finite kn,

lim
k→∞

|λn|2 = 1. (18)

Therefore, in these kinds of situations the eigenvalues are bounded above by
one. Consider the condition that for the smallest eigenvalue |λn|2 = k2 + ε
holds. Subsituting this relation into (15) and omitting terms with ε2 one finds

|λmin|2 = 2
( ε

k

)2

. (19)

Hence, the condition number is κ = 1

2
(k/ε)

2
. A similar analysis also holds for

the discrete case and in higher dimensions, see [3].
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We summarize some spectral properties of the preconditioned system (i.e.
M−1A), related to the normal equations formulation: (1) the spectrum is
bounded above by one, and (2) the spectrum has a lower bound which is of
order O(ε2/k2). Also we can determine from the analysis that the convergence
becomes slower as k increases.

4 Solution method

The preconditioner is promising from theoretical point of view. As we have
shown in [3], an exact inverse of this preconditioner can effectively accelerate
the convergence for heterogeneous, high wavenumber Helmholtz problems. We
have, however, use direct methods to solve the preconditioner. As the direct
methods are too expensive, especially in 3-d, this version of the preconditioner
seems impracticable. In this paper, we give some numerical results verifying that
approximately inverting the preconditioner by cheaper iteration still results in
fast convergence and w.r.t. computational time is much more acceptable.

It is important to note that, whereas matrix A has been set up with a high
order discretization, for M it appears to be sufficient to keep a second order
discretization of (13). This is beneficial for the iterative solutions.

4.1 Incomplete LU

The first method we use to approximate the inverse of the preconditioner is the
ILU factorization. In this case, we construct the LU factors based on M and
not A. This is somewhat uncommon as one usually tries to build LU as an
approximation to A. As M is not an approximation of A, but of (13), neither
is LU if constructed based on M .

An ILU factorization is obtained from an approximate Gaussian elimination
and, by nature, introduces fill-in. This fill-in will require extra storage. The
simplest ILU factorization is ILU(0), obtained from standard LU factorization
by dropping all fill-in elements. In many situations, however, ILU(0) is not
sufficiently accurate. A general ILU(p) factorization is obtained by the same
procedures but by dropping the fill-in elements according to the ”levels” in the
elimination process.

In this study, we limit ourselves to ILU(0) and ILU(1). Furthermore, since
the preconditioning matrix is built by using finite differencing, the LU factors
can be constructed based on the stencil [11] and not on the Gaussian elimination.
This procedure offers a cheaper initialization process.

4.2 Multigrid

One advantage of the Shifted-Laplace preconditioner (13) is that the precondi-
tioning matrix is complex, symmetric positive definite. For this type of matrices,
iterative solution using (algebraic) multigrid has been reported in [7]. In our
case, however, geometric multigrid is sufficient.
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Figure 1: Domain with transparent wedge (left) and solution (<(u)) for k = 100
(right)

For multigrid, we use one of the multigrid algorithms discussed in [9], called
MG1. Prolongation operator P is bi-linear interpolation. For the restriction
operator, the full weighting, i.e. transpose of the prologation is used. Coarse
grid discretization is done with Galerkin coarsening. For the smoother, red-
black Gauss-Seidel is used. It is able to handle, however, a complex main
diagonal. For solving the linear system, the V-cycle with one pre- and post-
smoothing is used (V(1,1)). In our current implementation, there are no special
enhancements incorporated to make the multigrid algorithm especially efficient
for complex-valued matrices.

5 Numerical experiments

We present numerical results for the following two problems.

Problem 1. We first consider a very simple test case which mimics a geo-
physical problem in homogeneous medium. The domain is a unit square Ω =
(0, 1) × (0, 1). The wavenumber varies between 10 and 100,200. In real situa-
tions, the last two wavenumbers can be considered as problems with “medium
frequencies”. A source term is included at the center of the upper surface.

Problem 2. In this case, a domain with a transparent wedge (see Figure 1) is
considered for various wavenumbers with k2 = 2k1. As in Problem 1, a source
is generated at the center of upper surface. The wavenumbers here are as in
Problem 1. A picture of the solution for this problem is also presented in Figure
1.

All computations are performed on an Intel PIII 550 Mhz processor with 256
Mb of RAM. The code is compiled with GNU F77. To limit the storage, the
matrix A is not stored and is recomputed whenever necessary. For ILU(0), only
the diagonal entries are stored whereas the remaining parts are recomputed
whenever needed. For ILU(1), the diagonal and two off-diagonal entries are

7



stored. As the termination criteria, we use ‖r/r0‖2 = ‖(b−Ax)/(b−Ax0)‖2 ≤
10−6.

Numerical results for Problem 1 are shown in Table 1 with, both, the num-
ber of iterations and the (total) CPU time. Approximate preconditioners (either
based on A or M) improve the convergence and computational time consider-
ably. Preconditioning based on M , however, results in better numerical per-
formance as compared to a preconditioner based on A. With multigrid applied
to M the performance is even better. The number of iterations is reduced by
almost factor of 40 as compared to the unpreconditioned case and this factor
tends to become larger for higher k (we did not compute the solution for the
unpreconditioned cases with k = 100 and 200). This indicates the effective-
ness of the Shifted-Laplace preconditioner. Furthermore, the Shifted-Laplace
preconditioner handled with one multigrid iteration also reduces CPU time sig-
nificantly. However, compared to the simple-to-construct ILU(M,1) (meaning
ILU(1) based on M) this CPU time is still comparable. This can be understood
from the large (complex) diagonal elements in M for high wavenumbers.

From Table 1 it is also seen that for M there does not seem to be a break-
down. The increase in number of iterations for large problems behaves well,
with approximately a linear increase with respect to k. Also, the convergence
becomes faster as M is solved more accurately.

Table 1: Numerical results from Problem 1. Number of iterations and (in brack-
ets) CPU time in sec. are shown for various k.

k 10 20 30 40 50 100
grid 322 642 962 1282 1922 3842

No-Prec 154(0.4) 1028(12) 1922(67) 2715(164) 4901(628) –
ILU(A,0) 69(0.25) 316(7.9) 473(25) break 1165(227) –
ILU(A,1) 37(0.21) 126(3.6) 215(13) 333(35) 551(125) –
ILU(M ,0) 69(0.31) 240(6.1) 391(21) 594(53) 899(176) 1837(1440)
ILU(M ,1) 37(0.17) 117(3.3) 195(12) 295(30) 489(110) 838(746)
MG(V(1,1)) 18(0.22) 40(2.8) 62(10) 84(25) 107(75) 206(595)

– not computed

Figure 2 shows a comparison of the convergence history for Problem 1 for k =
30. This convergence behavior is representative for most of our computations
at different wavenumbers for Problems 1 and 2.

Table 2 shows numerical results for Problem 2. The results are in general
analogous to those for Problem 1. As Problem 2 is more difficult to solve, the
number of iterations increases. A preconditioner solve using multigrid seems
to result in a more robust method than using ILU (the number of iterations
with ILU grows much faster than that with multigrid) for this heterogeneous
problem. This suggests the importance of a more accurate inversion of M in the
case of heterogeneous media. Using ILU based on A in the case of heterogeneous
problem does not seem to be attractive.

Actually, we have also solved the k = 200 case on a 5122 grid with the
multigrid preconditioner based on M . Problem 1 takes 376 iterations and 1921
seconds; for Problem 2, 553 iterations and 2867 seconds.
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Figure 2: Convergence history for Problem 1. k = 30

Table 2: Numerical results from Problem 2. Number of iterations and (in brack-
ets) CPU time in sec. are shown for various k2 and k2 = 2k1.

k2 10 20 30 40 50 100
grid 322 642 962 1282 1922 3842

No-Prec 201(0.56) 1028(12) 3464(125) 5170(316) – –
ILU(A,0) 55(0.36) 348(9) 831(48) 1484(131) 2344(498) –
ILU(A,1) 26(0.14) 126(4) 317(20) 577(62) 894(207) –
ILU(M ,0) 57(0.29) 213(8) 784(44) 1289(122) 2072(451) –
ILU(M ,1) 28(0.28) 116(4) 244(16) 443(48) 763(191) 2021(1875)
MG(V(1,1)) 13(0.21) 38(3) 68(12) 94(28) 115(82) 252(850)

– not computed

6 Conclusion

In this paper, Krylov subspace iterative methods applied to the Helmholtz prob-
lem have been presented with the complex Shifted-Laplace operator used as the
preconditioner. This preconditioner is very effective to enhance the convergence
of the Krylov subspace methods for our target problem: high wavenumber,
heterogeneous Helmholtz problems. Two methods have been used to solve the
preconditioner: ILU and multigrid. For the preconditioner solves, it is con-
cluded from numerical results that multigrid is more effective and efficient. The
effectiveness of multigrid becomes more prominent for cases involving hetero-
geneous media. However, constructing ILU factors from the Shifted-Laplace
operator improves the numerical performance as compared to constructing ILU
from the original system.

So far, only a standard multigrid solver with a straightforward extension
to complex-valued matrices has been used. In a future paper, a more efficient
multigrid method for complex-valued matrices will be investigated to further
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increase the computational efficiency.
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