A FAST MULTIGRID METHOD FOR INVERTING LINEAR PARABOLIC PROBLEMS

ANDREI DRAGANESCU*

Abstract. We present and analyse a multigrid algorithm for linear I.2-regularized inverse parabolic equations, formulated
as an unconstrained optimization problem. The method requires only one iteration at the finest level in order to resolve the
problem to optimal order. The analysis is based on a two-grid approximation for the inverse Hessian that uses the smoothing
property of parabolic equations.
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This work started as a bid for a cost-efficient method for inverting time-dependent partial differential
equations. The original motivation comes from the problem of comparing simulations with experimental
results. Given that only partial information is available from experiments, we address the question of finding
the best possible match by controlling initial conditions and/or parameters. Since we may be talking about
large problems, for which the forward simulation may be taking many hours on a powerful machine, it
becomes clear that the attached optimization problem should take no longer than a factor of ten of that
time, a demand which is in conflict with the large size of the control space. Numerical experiments with two
model problems — two dimensional gas dynamics and a one dimensional advection-reaction-diffusion equation
— suggested that parabolic equations are harder to invert than hyperbolic ones, which motivated our decision
to investigate the former from a theoretical viewpoint. The results below indicate that the optimization can
be done in tis case with the needed efficiency. The work in this article is extended in [4] and [5].

1. Notation and problem formulation. Let  C R? be an open set. We shall denote by L?(Q2) and
H™(Q), H* () (m > 0, integer) the standard Lebesgue respectively Sobolev spaces, and by | - | = | - [2(q)
and | - |m (resp. |- |m) the corresponding norms (resp. semlnorms) furthermore (-,-) (resp. (:,-),,) will be
the standard inner product in L2(Q) (resp. H™(Q)). Let H~™(£) be the dual (in L?) of H™(Q) N HE()
for m > 0. For T € L(V1,V2) we denote the operator norm of T' by ||T'|lv;,v. = supyev;\qo3 [Tul/[ul, and
we write |||y for [|T|lv,v. L?, H™, etc., will stand for L*(2), H™(f2), unless otherwise specified.

We consider the following initial value problem

Ou + A(t)u , onQx(0,00),
u(z,t) =0 ,  ondQx(0,00), (1.1)
u(z,0) =up(x) , forzeQ,
where
- Z O z aij(z,t)05u + bi(z, t)u | + c(z,t)u , (1.2)

with a;;(z,t) = aji(=,1),bi(=,t),c(z,t) being smooth functions with uniformly bounded derivatives of all
orders on Q x [0,00). We define the time-dependent bilinear form a : (0,00) x H} x H} — R by

a(t;p,9) = > (aij0;6,0i) + Y (bih, 0ip) + (e, v}, for ¢,1p € Hy . (1.3)
i, i
It is assumed that a is coercive, i.e. there exists a constant ¢; > 0 independent of ¢ such that

a(t; ¢, ¢) > c1|¢l;, for ¢ € Hy , (1.4)
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and that the following regularity condition holds:
[6l2 < co| A(t)g|, for ¢ € Ho N H? . (1.5)

Cf. [6] and [7], for ug € L? there exists a unique solution u : (0,00) — H} to the weak formulation of (1.1):

{ (Opu, @) + a(t;u,¢) =0, forall p € HY, t >0, (1.6)

We denote the solution operator by S(t)ug def u(-,t) .

By inverse parabolic problem we mean the following unconstrained minimization problem: given a final
time T > 0, find

min Je(u) , (L.7)
where 7, : L? = R is defined by
41 1
Je(w) = e SIS@u— fI” +5|ul” (1.8)
—_—
T (u)

with f € L? a given “target” function.

We discretize the forward problem via the Galerkin method using continuous piecewise linear functions
in space, and backward Euler in time. Let T, be a triangulation of the domain  with hy = max{diam(7) :
T € Tho }, and let Ty /5 be defined inductively as the Goursat refinement of 75, (each triangle in T' € Ty, is cut
along the three lines obtained by joining the midpoints of its edges), for h € I = {ho2~* : i € N}. We define
the spaces

Vi ={f€C@Q) : YT €T fl|, linear, and f|aq =0}, for h €I, (1.9)

and denote by 7, the L2-projection onto V},. Note that Vap, C Vi, C H}. Let t,, = mk withm =0,1,..., M
so that 3y = T. Since our approximation in time is only first order accurate we choose k = k(h) = koT~'h?
and, consequently, M = M (h) = MoTh~2. The backward difference approximation U™ to u(t,,) is computed
succesively by

{ (U™, 9) + altmr1; U™, 6) =0, Vo€V, (1.10)

UO = TpUQ ,
where d,U™*! = k=1 (U™ — U™). We will write for ug € L2, S"(t;)uo ©ymom=1,2,...,M. We
denote by fr, = 7, (f) € Vi, and we consider the following discrete minimization problem associated to (1.7):

min 7 (u), (111)
with ¢ p : Vi = R given by
o) = € SISM(Thu = ful? +5 (112)
T w

Since the functional 7 is quadratic, its Hessian form b"(vi,vs) = €1 D27} (u)(v1,v2) + (v1,v2) is
independent of u € V},. We therefore define the discrete Hessian operator by

(HMu,v) =" (u,v), Yu,v €V, . (1.13)
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Note that H* = e"*H" + I, where H" is the Hessian operator corresponding to J;}. The symmetry of b"
implies that H" is symmetric. From the linearity of equation (1.10) we obtain

(HMu,u) = |S"(T)ul? (1.14)
hence, by taking (2.1) into account, we obtain
02
Jul? < (H!Mu,u) < (1 + T) |u|?, for u € Vj, . (1.15)
Similarly, J* is quadratic and continuous (again by (2.1)), and we define its Hessian to be the unique element
of H € £(L?) satisfying
(Huy,us) = D2 T (u)(uy,u2), Yui,us € L2, (1.16)
independently of u € L2. Tt follows that H satisfies
(Hu,u) = |S(T)ul* = (S*(T) - S(T)u,u) , (1.17)

where S*(T') denotes the dual of S(T'). Therefore

2
ful? < (e < (145 ) luf? (118)

where H. = e 1H + I is the Hessian operator associated to the entire cost functional J. Note that (1.17)
together with the symmetry of both H and S*(T') - S(T') and the polarization identity imply that

H = S*(T)-S(T) . (1.19)

In light of (1.15) and (1.18) we close the discussion with the following
REMARK 1.1. Since the continuous and discrete Hessians are positive definite (everywhere), we conclude

that the minimization problems (1.7) and (1.11) have unique solutions ™" and ul"™ respectively, namely

the unique zeros of the gradients of the corresponding functionals. Since VJ.(u) = Hou — e 1S*(T)f, we
obtain

u™t = Y H,)TL SN f (1.20)
and similarly
Wit = e L (HM) L (SMT)) fi - (1.21)

The main goal of this article is the construction and analysis of an efficient algorithm for finding an
approximation to uj™, that is for solving (1.21).

2. Preliminaries. In this section we first list (Theorem 2.1) some results on parabolic equations of
type (1.1) and their numerical approximation. These results, mostly contained in [6] and [7], are needed for
the multigrid analysis in §4 and §5. After that we prove the (optimal) estimates in Theorem 2.6.

THEOREM 2.1. There exists C = C(Q) such that the following hold for all T > 0,e > 0,h € I:

(a) L? - stability of the solution operators (both continuous and discrete)

max (|S(T)llz2, IS"(T)Iv..) < C ; (2.1)
(b) smoothing' : S(T)u is defined for u € H 2 and we have
ISTYull—n 1 < CT ; 22)

Lthis is an easy consequence of the following fact proved in [6]: |u(-,t)|me < Ct=P/2|uol|, for ¢t >0 and p € {0,1,2} .
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(c) smoothing and approrimation of the solution operator:
IS(T)u — S"(T)u| < CT'A*|u|, Yu €V . (2.3)

We would like to remark here that the operators adjoint (with respect to the L2-inner product) to S(T')
(resp. S*(T)), denoted by S*(T') (resp. (S?)*(T)), are defined almost like S(T') (resp. S*(T)) in the sense
that we only have to replace b; with —b; in (1.2) (resp. (1.3); here we assume that the linear system in (1.10)
is solved exactly at each step). Therefore Theorem 2.1 applies to S*(T') and (S")*(T) as well (see [4] for
details).

We state without proof the following well known result:

LeEMMA 2.2. There ezists a constant K = K(Q) such that for h € I

1T =7l 2 -2 < KB (2.4)
REMARK 2.3. The stability property (2.1) applied to S*(T') together with (2.2) and (1.19) imply that
there is a C = C(Q) such that

Il 77— g2 <C T (2.5)

REMARK 2.4. The next inequality is a consequence of Lemma 2.2 and the smoothing property (2.2):
max (|S(T)(I — mn)l|z2, IS*(T)(I = 7h)llz2) < CT~'H? (2.6)

for some C = C(R2) > 0.
LEMMA 2.5. There ezists a constant C = C(Q) such that

lzn (H" = H)llv;, < CT™'h? . (2.7)

Proof. For u € V}, we have

(mn(H" = Hyu,u) = |S*(T)yul? - [S(T)ul?

(2.1),(2.3)
<|SM(T)u = S(T)ul - (IS"(T)ul + IS(T)ul) < 2C°T'B?|ul? ,

and the symmetry of 7,(H" — H) € £L(V}) now implies (2.7). O
The following result shows that "™ approximates u™™ to optimal order in the L?-norm.
THEOREM 2.6. There exists a constant C = C(Q) such that for h < ho(e,T,Q) we have the following

stability and error estimates:

. . h2
min < C min _ 2-8
) < 0 (lameg+ 2is1) 28
min min c min
g — win < 2 (1] + ) 29)
€
Proof. Denote by e, = uM™ — 4™, A simple computation yields

Heep = € H{((8")*(T) — S*(T)) fn — S*(T)(I — mn) f + (H — H")uj™™} .
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Now

del? E e (Heenen)
— (8" T) = 85 D)) fu— S TYL =) fren) + ((H = HYYu™, ey
(2.3),(2.6)

CT 'W2|f1 len] + ((H — H")uy™, en)

I—mh)enLV) — min min
UmmlentVie 012 £ fen] + (mn(H — H"Yu™™, mnen) + (U™, (I = mh)en)

(2.7)

IN

CT™ W enl (1F] + ui™1) + (ST)ui™, S(T)I = ma)en)
(2:1),(2.6) —172 min
< CT R fenf(1F] + lub™1)

for some C' = C(Q), hence

min min c min
fuf™ =™ < k2 (1F] + ™) - (2.10)

T
The conclusions follow by a standard argument. O

3. Tools: the spectral distance between operators. In this section we introduce the spectral
distance between (symmetric) positive definite operators and show how it can be used in evaluating the
convergence of the simple iteration (3.2). For space economy we present the results only, and we refer the
reader to [4] or [5] for detailed proofs. Throughout this section (V, (-,-)) denotes a real, finite dimensional
Hilbert space, and £ (V') is the space of symmetric positive definite operators. As usual, |u| = \/(u,u) is

the Hilbert space norm of u € V; for A € L5 (V) we write |u|4 4 J(Au,u) = |Au|. Let H € L5 (V) and
b € V. Consider the equation

Hz=b. (3.1)
It is known that the sequence x,, defined by the simple iteration
Tpy1 = Tn + M(b— Hxy,) (3.2)

converges to the solution z* of (3.1) if M ~ H ! in some sense. If M € £ (V), the natural quantity for
measuring the rate of convergence in (3.2) is |I — Hz MHz||y. For aesthetic reasons, but not only, we
would prefer to use another measure instead, that is also a scale-free distance between M and H ! (unlike
IM — H Y|y, which is a distance, but not scale-free).

DEFINITION 3.1. We define the spectral distance between two operators Ty, T> € L5 (V') to be

<T1'LL,U)

dy(T1,T>) = sup (Tyuu)

ueV\{0}

In

Y
= sup ‘ln <T2 2T, 2u,u>‘ . (3.3)

luf=1

Definition 3.1 is extended in [4] to operators with positive definite symmetric part by replacing T1, T
in (3.3) with their complexifications, allowing u to be complex as well, and by using the standard branch of
the complex logarithm. This more general distance, a notion related to the field of values of an operator, is
particularly useful if nonsymmetric preconditioners are needed, as is the case with inverse parabolic equations
regularized with a multiple of the square H'-norm instead of the L2-norm used in this article.

PROPOSITION 3.2.
(i) dv is a distance function;

1 1
(i) for T, Ts € L3.(V),dy (T1,T») ~ |I - T2 T, ‘T2 as dy(Ti,T») — 0;
(iii) dy (T1,T) = dv((T1) ', (T2) ).



In sections 4 and 5 we design and analyse an algorithm for solving (3.1) with H = H" by means
of finding a recursively-defined, multilevel preconditioner for H". In light of this we prefer to
regard (3.2) an iteration of preconditioners. More precisely, we think of (3.2) as a sequence of single
iterations with “improved” preconditioners:

Ty = g + My(b— Hzxg) , (3.4)
with M, defined recursively by: My =0, My11 = M + M,, — MHM,,. A simple calculation shows that
My=H'-(I-MH"H'=H?% (I - (I - H%MH%)") H% . (3.5)
In particular My =0, My = M and My =2M — MHM.

REMARK 3.3. Note that M is the first Newton iterate with initial guess My = M of the operator-function

X — X~t — H. We define the following matriz-operator: Ng(X) fox - XHX. Performing one simple

iteration with Ng(X) as preconditioner is equivalent to two simple iterations with X as preconditioner.
THEOREM 3.4. Let M, H € L5 (V) and M, be defined as in (3.5). If dy(M,H ') <In2 then

dy (M, H') < go (dv(M,H ™)) (3.6)

where gn(z) = |In(1 — (e® — 1)")| = 2™ + O(z"™1), hence lim,,_,oo M,, = H=1 in the dy-metric.
COROLLARY 3.5. Under the conditions of Theorem 3.4, the sequence xz,, defined by (3.2) converges to
the solution x*, and we have the following estimates:
len] < 2 cond(H?) - g (dv (Mp, H 1)) - |eo (3.7)
lealer <2 g (dv(Ma, H)) - leol
where g(x) = e®* — 1 =z + o(x). We conclude with the following
REMARK 3.6. In light of the asymptotic behaviour of the functions g, and g above, we rewrite (3.7)
and (3.8) in the following way: for every C > 2 there exists §(C) > 0 such that, if dy (M, H~') < §(C), then
len]l < C cond(H?) - (dv (M, H™))" - Jeo , (3.9)
lealr < C (dv(M,H™)" - eo]lar - (3.10)

4. Two-level preconditioners for the discrete Hessian. In this section we construct a two-level,
symmetric, preconditioner for the Hessian H" introduced in §1. Recall that Vo, C V}, C H. We shall refer
to V3, as the fine space in relation to Vap, which will be the coarse space. Denote dp = dy;, .

Construction of a preconditioner. We have

HY = mop Hr oy + (I = map) H mop, 4+ mop HFN(I = 7op) + (I — mop) HA(I = 7o)

M, Mo Ms Ma

By analogy with Fourier analysis we regard the coarse space V2 as the “smooth” space (which is not exactly
true), and its orthogonal complement in V}, namely Im(I — o) NV}, as the “rough” space. Since the
operator H" is “very” smoothing, we think that H"(I — map,) & 0, hence H* (I—map) = (e *H"+1)(I—map) ~
I — mop. As a consequence M3z ~ o (I — m2p) = 0, and My ~ (I — mop)(I — m2n) = (I — w2s). Another
interpretation of the smoothing property of H" is that H" takes “smooth” functions into “smooth” functions,
that is H"(Vap) C Vap, which allows us to approximate M, ~ 0. The analysis of the large eigenvalues of H"
versus the ones of H2" for the of the inverse linear heat equation on a uniform grid also points to the fact
that for h < 1 we have map, H' oy, & H?"map,. It remains that

HY m M % B2y + (I — 1a)
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Since 7y, is a projection we have an explicit form for (M")~1, namely
def - -
LY = (MM = (H?)  mon + (I — m2n) - (4.1)

We propose the operator L € £(V},) as a candidate for a good approximation of (H?)"!, at least for the
case when h is small. Note that the operators M and L" are in £% (V},).
THEOREM 4.1. For h < ho(T,¢€,Q) there exists a constant C; = C1 () such that

2
dn (M MM < 0 (4.2)
eT

Proof. We have the following relation on Vj:
€ (Meh — Heh) = Tap (th — H) Ton + (7r2hH7r2h — 7th7l'h) + (7th7rh — Hh) .

v

A B c

Note that all operators in the above sum are symmetric in £(V}). We analyse the products (Au,u), (Bu, u),
(Cu,u) for u € Vy:

|(Au,u)| = |<7r2h (H2h - H) 7r2hu,u>| = |<(H2h - thH) 7r2hu,7r2hu>|

mma 2.5

Le 2.
<NH" — monHmonllva, - Im2nul® < CTH(2R)P|ul? .

The same Lemma 2.5 implies [(Cu,u)| < CT~'h?|u|?. For the middle term we have

ueVy

|(Bu,u)| = |((menHmap — mpHmp)u,u) | “=" | (Hmopu, mopu) — (Hu, u) |
= [IS@menul? = [ST)ul?| = [S(T)I — man)ul - (|S(T)mznul + |S(T)ul)
21),26) o1 1o
< 20T ) ul?
Putting the above estimates together we get

(Mru,u)

2 2 2
o Ju] h
e

- — . 4.3
SV T (Hruu) + ulE S €T (43)

Assuming C(eT)™1h2 = @ <1 and 0 < h < hg we obtain

sup  |In (M{u,u)| _ |In(1-a)| sup (Mpu,u) _il<c |In(1 —a)| B _
wevi\foy | (Hbu,u) | = a! wevi\{o} | (H!u,u) - a €T
C1

For the last inequality we have that for a € (0,1) and z € [1 — a, 1 + a] we have

In(1+ a) |In(1 — )

[1—2| <|lnz| < ||1—.z-|.
ad
In conjunction with Proposition (3.2) (i7), Theorem 4.1 has the following corollary, which legitimizes
the use of L" as a preconditioner for the Hessian:
COROLLARY 4.2. There exists a constant C; = C1(Q) such that
h2

dn (LQ, (Hf)_l) <O (4.4)



5. The multigrid algorithm. As pointed in §3, the multigrid iteration will be the simple iteration (3.2)
with H = H! and a recursively defined preconditioner denoted K". In light of (4.1) we define the affine
operator-function G : L(Vap) — L(V3,) by

G(T) =Trop + (I —7ap) - (5.1)
LEMMA 5.1. The function G is non-expanding, i.e. for Ty, Ty € L3 (Vap)
dn (G(T1),G(T2)) < don (T1, T3) - (5.2)
The simple proof (see [4]) is based on the fact that G(L% (Var)) C L5 (Van). Since, by Corollary 4.2,
G((H2")~1) approximates well (H*)~!, and (H2")~! ~ K2" holds by assumption, Lemma 5.1 would imply

that G(K2") ~ H! as well. However, errors may be adding up (see proof of Theorem 5.2), hence we prefer
to take K to be the first Newton iterate (see Remark 3.3) starting from G(K2"), that is:

K" € N (G(K2M)) = 2G(K2M) — G(KM) HM G (K2 (5.3)

This multigrid iteration resembles, and will be referred to as an W-cycle:

Algorithm 1.(multigrid iteration, W-cycle)
e Input: ug, h, b
e Output: u + ug + K"(b— Hlug)

o MG(ug,h,b)
1. if h > ho
2. then
3. u  uo + Ko (b — Hruyg)
4. return u
5. else
6. fori=1:2
7. r<b-— Hehu,-_l
8. re < TopT [/ restriction of residual to coarse grid
9. u. = MG(0,2h,r.) /] u. < K2hr,
10. U — Ui 1+ Te+T —T¢
11. end for

12. return us

We assume for simplicity that K = (H!)~1 i.e. at the coarsest level we perform an exact solve. It should
be noted that the choice of the coarsest level hy depends on € and T': it is the level where the approximation
in Theorem 4.1 starts to deteriorate, namely when h? &~ ¢T. We have the following error estimate:

THEOREM 5.2. Assume that h} < 27°C;' - €T, where C, is the constant from Theorem 4.1, and that
KMo = (H!M)™L. Then

4

h AN h
d (K2, (HM) ) < 8Cr oy » forhE L. (5.4)

We give a sketch of the proof and refer the reader to [4] for details.
Proof. Theorem 3.4 implies that, given operators M, H € L5 (V) with dp(M, H™') < 0.4, we have

dy(Ng(M),H™ ) < 2dp(M,H 1)? , (5.5)
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because |In(1 — (e® — 1)?)| < 22?2 for x € [0,0.4]. If ez, < 0.2 and C;(eT)~*h? < 0.1 then

triangle ineq.

en S ay (G2, (1)) i (G082, 1) +an (22, (1))

“ g (o () ) + o
R (k2 (12 7) +01?—; :
e2n
hence by (5.5) we obtain
B2 2
ep <2 (€2h +Ci e_T) ) (5.6)

It is the W-cycle that puts the square on the sum between ey, and the small term C f—; In particular
en < 2%0.32 =0.18 < 0.2 and a standard inductive argument will finish the proof. O

The bounds (1.15) imply that cond ((Hf)%) < Cez, with C independent of h, hence by Remark 3.6

and Theorem 5.2 we have the following
COROLLARY 5.3. Under the assumptions from Theorem 5.2 we have

4

Jup™ — MG(ug, h,b)| < C'ﬁ)ﬁ"u'ﬁ‘m —ug|, for hel. (5.7)

A practical implementation of Algorithm 1. would probably be a mixture between a V- and a W-cycle by

letting the loop on line 6 to run two times at coarse levels and one time at fine levels, with an adaptive way

of deciding when to switch. This would lead to an error bound with half the powers in the right-hand side

of (5.7).

Under natural assumptions we can prove:

PRrOPOSITION 5.4 (Work estimates for multigrid iteration ). Let W} be the work for computing the

residual (line 7 of Algorithm 1.) on Vi, (h; = ho27%, 0<i < N), and W; be the work for MG(-, h;,-). Then

2 h
Wn < mWR}ES + ﬁWo . (5.8)

Essentially what we see is that the work of the multigrid iteration is slightly larger than the cost of two
residual computations plus the added costs of all coarse-grid exact solves, in number of ho/hn.

The full multigrid algorithm consists, as described in standard texts such as [2] or [3], in using the
value obtained from a coarse-mesh calculation as an initial guess for the finer-grid calculation, and then
performing a sequence of multigrid iterations. For the standard multigrid algorithm for elliptic problems it
is shown that the multigrid iteration gives a resolution-independent error reduction, hence a fixed number of
multigrid iterations has to be performed on each grid. In our situation, by Corollary 5.3, the error reduction
on Vj, takes the form p; = C'h}/(€2*T?) (hence is decreasing as h*), therefore at fine resolutions only one
multigrid iteration is needed, and the error reduction will be drastic.

Algorithm 2.(full multigrid)
L dp, = upin =€t (HE’“’)_1 (8"9(T))" fno // use a direct method
2. fori=1:N
3. Gp; < MG(Gp,_,,h;, fr;) |/ one iteration at each level
4. end for
5. return Upy



THEOREM 5.5 (error and work estimates for the full multigrid algorithm). Suppose the conditions from
Theorem 4.1 hold and that p| x| < 272, Then

~1 pnh%

fany —uiie] < O (1-2p1y)) 22 (11 + Ju) (59)

with C = C(Q). For the work Wx we have the following estimate:
2 res ho
i-29a-279 W+ —W, . (5.10)

~2.44

WNS

We would like to note that the full multigrid method solves the system (1.21) much better than needed if
hn is very small; an error factor of (¢I') ~1h%; would have been enough, but the expression on the right-hand
side of (5.9) has an extra py factor at the numerator. The proof follows closely the idea from [1] and is
omitted here.

6. Conclusions and future work. We have shown that the regularized inverse linear parabolic prob-
lem (1.11) can be solved at a cost slighly larger than four times the cost of a forward solve (Hessian-vector
multiplication costs two forward solves). This work is extended in a few directions. The use of a different
regularizer — a multiple of the H'-norm as opposed to L?-norm — introduces a Hessian that is the sum of
a smoothing and a roughening operator. The preconditioner we use in the H'-case is defined similarly as
for the L2?-case, but it is slightly non-symmetric. The results, however, are similar with the ones discussed
in the present paper. We are also hoping to extend these results to mildy nonlinear parabolic equations by
adding an O(1) reaction term.
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