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Commonly used finite element and finite difference discretizations of the (Navier-
)Stokes equation lead to the saddle point problem
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where the unknown vector (u, p)T contains velocities and pressures respectively.
The matrix A is positive definite (not necessarily symmetric). This matrix
contains also the essence of matrices arising in ocean flow computations using
THCM [4]. In those matrices we have to deal with non-symmetry of A due to
the Coriolis force, which plays a very important role in the equations.

In literature one can find several good preconditioners for the matrix K. In
general they exploit somehow the structure of the matrix. We present two
alternative preconditioners:

K̂a =
(

A B
BT −I/ω

)
and K̂g =

(
A + ωBBT 0

0 −I/ω

)
,

the artificial compressibility preconditioner and the grad-div preconditioner re-
spectively. The preconditioners are related to each other: to solve an equation
with K̂a or K̂g we have to solve an equation with the matrix A + ωBBT .

In the table below we compare the number of iterations of our preconditioners
with that of simpler [3] and the preconditioner of Elman et al. [2] on the 2D
Stokes problem. In the iterations we used an exact factorization of A+ωBBT (in
case of K̂a and K̂g) and A (simpler and Elman). Clearly the preconditioners
perform better for ω large.

grad-div art. compr. Elman simpler
ω 1 16 256 1 16 256 - -
iter 4.5 3.0 3.0 4.0 2.0 1.0 5.5 16.5
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Of course, solving A + ωBBT by a direct method is to costly and therefore we
employ mrilu [1]. We observed that for large ω, the system became harder to
solve since then the matrix is far from diagonal dominant. Experiments showed
that good preconditioners are constructed for ω ranging from 0 to 2.

For ω = 1, we compared the performance of mrilu to the performance of
an exact factorization in matlab for a range of problem sizes. For the exact
factorization we used an approximate minimum degree ordering to reduce the
fill. For a repeated doubling of the number of variables in each direction it
appeared that the construction time in the exact factorization grows with almost
a factor 8, while the construction time in mrilu grows with a factor close to
4; the latter is also the increase in problem size. For a problem of size about 1
million the fill in the MRILU factorization is more than 4 times less than that
in the exact factorization, leading to a more than proportional reduction of a
factor 7 for the construction time. In order to gain 6 digits of accuracy 10 to 30
iterations where needed using only a modest amount of time.

In order to study whether the above is also applicable in the presence of a
Coriolis force we took a matrix from THCM and stripped it from parts related
to the vertical velocity, the salt transport and the energy transport. It turned
out that with an exact factorization of A+ωBBT the behavior is similar to that
shown in the table above. Using MRILU to solve the system with A + ωBBT

showed a behavior similar to that observed for the Stokes equation.

We concluded that for small values of ω, MRILU combined with the grad-
div or artificial compressibility preconditioner leads an effective method for the
considered saddle point problems.

In the talk we will present results of an eigenvalue analysis for both precondi-
tioners, which shows the effect of the parameter ω. Moreover we intend to show
more results on the performance of this approach, especially for the full ocean
flow equations.
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