Consider the saddle point problem
\[
A \begin{bmatrix} u \\ x \end{bmatrix} = \begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix} \begin{bmatrix} u \\ x \end{bmatrix} = \begin{bmatrix} f \\ 0 \end{bmatrix}.
\]
Assuming that \(A\) is s.p.d., this problem is transformed, by a (computable) projection \(\pi\) such that \(B\pi = \hat{B}\), to an equivalent s.p.d. problem for \(u\),
\[
\left(I - \pi^T \right) A \left(I - \pi \right) + \pi^T A \pi \right) u = \left(I - \pi^T \right) f.
\]
We present a set of conditions for a smoother \(M^{-1}\) and an interpolation matrix \(\Pi\), such that if a current iterate in the resulting two–grid method belongs to the subspace \(\text{Null}(B)\), then after smoothing the iterate stays in \(\text{Null}(B)\), and finally, the (interpolated) coarse–grid correction also stays in the subspace \(\text{Null}(B)\).

Thus a multigrid method can be devised without explicit knowledge of a computable basis of \(\text{Null}(B)\). The tools needed are: computable projections \(\pi_k\), such that \(\pi_k^T\) are also computable, interpolation matrices \(P_k\) for the \(u\)–variable and interpolation matrices \(Q_k\) for the second unknown \(x\), at all levels \(k \geq 0\). Let \(B_0 = B\) and \(A_0 = A\) (i.e., \(k = 0\) stands for the finest level). The projections \(\pi_k\) have the form \(R_k B_k\) and satisfy \(B_k \pi_k = B_k\). There is a common “null–space preserving” assumption on \(Q_k, P_k,\) and \(B_{k+1} \equiv Q_k^T B_k P_k, B_{k+1} v_c = 0\) implies \(B_k P_k v_c = 0\).

Define a standard multigrid method based on the s.p.d. matrices
\[
(I - \pi_k^T), A_k (I - \pi_k) + \pi_k^T A_k \pi_k, \quad \lambda_k = P_{k-1} A_{k-1} P_{k-1}, \quad A_0 = A,
\]
smoothers (for given s.p.d. matrices \(M^{-1}\)), \(M^{-1}_k = (I - \pi_k) M^{-1}_k (I - \pi_k^T) + \pi_k M^{-1}_k \pi_k^T\), and (modified) interpolation matrices \(\Pi_k = P_k (I - \pi_{k+1})\). The resulting multigrid method (with zero initial iterate) keeps all iterates in \(\text{Null}(B)\) since the initial residual is \((I - \pi^T)f\) and all successive residuals also have the form \((I - \pi^T)r\).
We provide a specific construction of the (computable) projections π as well as alternative choices of the null–space preserving smoothers M^{-1} for some mixed finite element saddle–point matrices A.

This work was performed under the auspices of the U. S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract W-7405-Eng-48.