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The boundary element method (BEM) relies on the fact that a linear par-
tial differential equation (PDE) with constant coefficients can be reduced to a
boundary integral equation (BIE). In this presentation, it is shown that a similar
reduction is possible for linear difference equations with constant coefficients.
The reduced equations involve a summation operator and are called boundary
summation equations (BSE).

There are two key properties that BSE and discretized BIE have in common; the
number of unknowns is low (compared to methods where the interior domain is
discretized) and the resulting linear system is full. The latter property implies
that special techniques are required in an iterative solver, especially in higher
dimensions. One example for BIE is the multipole method, which can be used to
apply an integral operator. For the BSE, it is possible to apply the summation
operator efficiently by FFT, provided that the domain is simple enough.

The concepts of BSE are illustrated by a two dimensional example. Let Pu = f
be the linear system that represents the usual five point Laplacian with Dirichlet
boundary conditions on a rectangular domain Ω̄ = (0, . . . , n1)×(0, . . . , n2). Let
E be a discrete fundamental solution, i.e.

P̂Ei =
{

1, i = 0
0, i 6= 0 ,

where P̂ represents the discrete Laplacian. Define the summation operator K
according to

Kvi =
∑
j∈Ω̄

Ei−jvj .

Now, P can be reordered such that(
PΓ PΓΩ

PΩΓ PΩ

) (
uΓ

uΩ

)
=

(
fΓ

fΩ

)
, (1)

1



where subscript Γ denoted boundary points and Ω denotes interior points.
Mixed subscripts denote the couplings. If the same ordering is applied when K
is represented by a matrix, one can show that(

PΓ PΓΩ

PΩΓ PΩ

) (
KΓ KΓΩ

KΩΓ KΩ

)
=

(
A B
0 I

)
, (2)

where

A = PΓKΓ + PΓΩKΩΓ and B = PΓKΓΩ + PΓΩKΩ.

A new vector v of unknowns is introduced, such that(
uΓ

uΩ

)
=

(
KΓ KΓΩ

KΩΓ KΩ

) (
vΓ

vΩ

)
.

By inserting the new vector into (1) and using (2), it is easy to see that vΩ = fΩ

and then, by elimination, that

AvΓ = fΓ −BfΩ. (3)

The original problem, with (n1 + 1)(n2 + 1) unknowns, is hence reduced to a
system of equations with 2(n1 + n2) unknowns. The additional cost for the
reduction process lies in the construction of a fundamental solution. An algo-
rithm requiring O(n1n2 log n1n2) arithmetic operations is given in H. Brandén
and P. Sundqvist An Algorithm for Computing Fundamental Solutions of Differ-
ence Operators Tech. Rep. 2003-006 Dept. of Information Technology, Uppsala
Univ., Uppsala, Sweden, 2003

In this case, where the domain is rectangular, it is possible to apply the matrix
A by an embedding technique, related to the way in which Toeplitz matrices can
be applied by embedding them in circulants. The complexity for this operation
is also O(n1n2 log n1n2). The same holds for computing the original vector
of unknowns from the solution of the reduced system. The over all cost for
solving the original problem is hence O(kn1n2 log n1n2), where k is the number
of iterations needed for the reduced system to converge to a desired level. One
detail that is worth pointing out is that there is no additional cost in determining
the residual of the original system when performing iterations on the reduced
system.

The reduction process generalizes to several dimensions and is not restricted
to any special kind of difference operator, as long as it is linear and has con-
stant coefficients. The fast application technique requires that the domain is
a hyper cuboid. Fast application techniques for more complicated domains is
a subject for future research. Numerical experiments for the solution of (3)
will be presented in the talk. Results for various difference equations and var-
ious boundary conditions will be shown and preliminary results indicate grid
independent GMRES iteration counts for discretizations of first order PDEs.
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