
Andreas Stathopoulos
Iterative validation: a scheme for improving the reliability

and performance of eigenvalue block iterative solvers

Department of Computer Science
College of William and Mary

Williamsburg
VA 23187-8795

andreas@cs.wm.edu
James, R. McCombs

Being able to factor a matrix in large, sparse eigenvalue calculations, provides
fast convergence through shift and invert iterative methods, but it also allows
for calculating the matrix inertia, thus providing assurance that no required
eigenpairs have been missed.

In this work, we are interested in cases where the matrix is too dense or too large
to factor, and thus the above validation of results is not possible. In such cases,
the required eigenvalues are usually tightly clustered or multiple, causing Krylov
methods to converge slowly and often miss eigenpairs. Methods such as (Jacobi-
)Davidson and LOBPCG exploit preconditioning to improve convergence and
robustness of eigenvalue iterative codes, but still provide no assurance that no
eigenvalues are missed.

Block Krylov methods work on an orthonormal set of vectors simultaneously
instead of one vector. Provided that the initial set of vectors are not deficient
in the direction of required eigenvectors, block methods identify all clustered
or multiple eigenvalues within the size of the block. Yet, eigenvalues can still
be missed beyond the block size. Moreover, knowledge about the problem is
required to decide the appropriate block size. Computationally, block methods
usually require more floating point operations than single vector methods but
they are more cache efficient. For certain block sizes execution time is improved,
but such a choice is complicated as it affects the numerics of the problem.

Alternatively, a large number of eigenvalues can be obtained through a stable
form of deflation called locking. When an eigenvalue λ converges, all subsequent
computations are performed orthogonally to the corresponding eigenvector x.
This guarantees that the method will converge to a different eigenpair, but not
necessarily the next required one. In practice, locking does not miss eigenvalues
and it even identifies multiplicities for low enough tolerances. Although in
theory single vector Krylov methods cannot obtain multiplicities, floating point
arithmetic introduces noise in the direction of the invariant subspace that is
gradually amplified. In the presence of a very high multiplicity or a high number
of multiplicities, and with high convergence tolerances block methods are more

1



effective. Typically, however, single vector methods with locking are preferred
because of their efficiency, reverting to small block sizes when the problem is
known to have multiplicities.

To improve confidence on obtained results, eigenvalue practitioners traditionally
restart the iterative method with a new random initial guess, locking against
all previously computed eigenvectors. If the new eigenvalue is in the required
range, the computation must be continued. However, it is neither efficient nor
robust to rely on a single vector method to obtain highly clustered or multiple
eigenvalues, especially with lower accuracies.

We propose a new technique, which we call iterative validation, that acts as
a wrapper calling another eigenvalue block iterative method repeatedly until
no missed eigenvalues can be identified. The inner method can be any block
iterative method, such as block Lanczos or subspace iteration, that implements
locking against an externally provided set of vectors. We describe iterative
validation assuming the lower nev eigenpairs of a symmetric matrix are needed.

1. The user calls the inner block method as (s)he would normally do, specifying
the smallest necessary block size (usually one) to obtain efficiently most of the
required eigenpairs. After completion, if requested, our validation technique
starts from step 2. 2. Using error bounds on the nev Ritz values λ1, . . . , λnev,
we identify the largest numerical multiplicity obtained thus far, say m. 3. We
set the block size equal to m + 1, and call back the inner block method with
m + 1 random initial guesses, seeking the smallest eigenvalue of the matrix
with all previously computed eigenvectors locked. 4. After convergence, we
report all m + 1 lowest eigenpairs in the block (µ1, z1), . . . , (µm+1, zm+1). We
compute the error bound of µ1: ε1. 5. If µ1 − ε1 > λnev, report the original
λi eigenvalues and stop. 6. If µ1 < λnev, an eigenvalue was missed. Insert µ1

among the eigenvalues λi, and dispense with the eigenpair of λnev. Consider
(z2, . . . , zm+1) as initial guesses. The rest will be random vectors. Go to step
2. 7. if λj < µ1 − ε1 < λj+1, return to the user with a note that the provided
tolerance was not sufficient to resolve an eigenvalue between λj+1 and µ1.

The above technique has several advantages. First, it provides a relatively
unobtrusive way to validate results, dramatically improving robustness. If the
original code misses eigenvalues, the additional expense is more than justified.
Typically, the validation will be run once for each new class of problems, and
switched off afterwards. Second, it provides a dynamic way to fine tune the block
size without wasting previous effort. Third, assuming a multiplicity or a cluster
of m eigenvalues, a block size of m would be slower for many required eigenvalues
that do not belong to the cluster or the multiplicity. Iterative validation with an
original block size of 1 finds first the easier part of the spectrum and it only uses
the block size m at the clusters that need it. We have implemented iterative
validation as a Matlab wrapper for irbleigs and lobpcg eigenvalue codes, and as
a C wrapper for our block Jacobi-Davidson.

2


