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Computer codes simulating high energy density physics consist of modules
for distinct physical processes, e.g., compressible hydrodynamics and radiation
transport. For the latter, one model assumes tight coupling between radiation
and matter. The dependent variables are the spectral radiation energy density
u(x, ν, t) and the matter temperature T (x, t), where x, ν, and t denote position,
frequency, and time, respectively. The system is of parabolic form,

∂tu = ∇ · (D∇u) + c ρ κ (B − u) , (1)

ρ cv ∂tT = −c ρ

∫ ∞

0

dν κ (B − u) . (2)

In (1)-(2), c is the speed of light, ρ the mass density, κ the opacity, and cv the
specific heat. The Planck function B ∝ y3/(ey − 1), where y ∝ ν/T . In our
context, ρ(x, t) is a known function. The opacity is a complicated function of
ρ, T , and ν. For “free-free transitions”, κ ∝ ν−3. The coefficient D depends on
the mean free path `

.= 1/ρ κ and, to mitigate unphysical propagation speeds,
a flux limiter is introduced. One common description is D = c/[f(u) + 3/`],
where f = |∇u|/u.

Equations (1)-(2) are solved by discretizing the spectrum 0 ≤ ν ≤ ∞ into
G groups defined by {νj}G

j=0. Integration over each interval (νj−1, νj), yields
the multigroup equations in which the integral over ν is replaced by a sum of G
terms. The system is difficult to solve because of its nonlinearity and wide ranges
of time and spatial scales. The ranges are evidenced by the coupling c ρ κ (= c/`)
and diffusion D ∼ c` terms. High frequency radiation is characterized by ` � 1,
i.e., slow coupling and fast transport. The opposite holds for low frequencies.
In simulations, the coefficients can vary over 10 to 30 orders of magnitude. The
difficulty is compounded by nonlinearity and material composition since the
coefficients depend on ρ and T .

In this talk we describe a scheme to solve (1)-(2) for multiphysics codes con-
taining a separate hydrodynamic module. Since such codes typically run at the

1This work was performed under the auspices of the U.S. Dept. of Energy by the Univ. of
Calif. Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

1



Courant-limited sound speed, for our applications, the time step ∆t is arbitrarily
large. Hence, we use backward Euler temporal differencing. After multiplying
through by ∆t, we obtain,

0 = u0
j − uj +∇ · (D′

j∇uj) + kj (Bj − uj) , j = 1, . . . , G , (3)

0 = ρ cv (T 0 − T )−
G∑

j−1

kj (Bj − uj) , (4)

where D′
j = ∆t Dj , kj = c∆t ρ κj , and the superscript 0 denotes the solution

at the prior time level. The index j replaces the frequency dependence. Thus,
uj =

∫
dν u and similarly for B, where the integration is over (νj−1, νj). The

coefficients Dj and κj denote averages over the interval.

Viewing (3)-(4) as a nonlinear elliptic system, we introduce pseudo transient
continuation (Ψtc). On the LS of (3), we place (uj − u∗j )/∆τ , where ∆τ is the
Ψtc parameter and u∗j is the solution at the previous pseudo time. Similarly,
the LS of (4) becomes ρ cv (T − T ∗)/∆τ . The desired solution is the pseudo
time steady-state.

For each Ψtc step, we linearize Bj about the previous iterate, Bj = B∗
j +

(∂Bj/∂T )|T=T∗(T − T ∗). Remaining coefficients, e.g., kj , are evaluated at
T = T ∗. We avoid a full Newton linearization in order to maintain robust-
ness. (Coefficients such as κj are only known approximately and are given in
tabular form.) For the first Ψtc step, u∗j = u0

j and T ∗ = T 0.

The energies uj are directly coupled to T through the coefficients kj . The
equation for T does not contain any spatial derivatives. After linearizing, we
solve for T analytically and substitute the result into the uj equations, (Schur
complement). This yields G equations in which each uj is explicitly coupled to
the rest. The linear system is of order N G, where N is the number of spatial
points and is of the form

(Λ−M1 −M2)u = b . (5)

In (5), Λ is diagonal, M1 contains the offdiagonal terms stemming from diffusion
and M2, from intergroup coupling. The parameter 1/∆τ appears in both Λ and
b; in both places, it contributes to robustness.

We derive conditions on 1/∆τ that yield diagonal dominance and non-negative
RS, b ≥ 0. The conditions determine the initial value of 1/∆τ . Our strategy
ensures that each Ψtc iterate, yields a physically reasonable result. In “real”
problems, the requirement is crucial since the solution of (5) is used to obtain
T , which in turn determines updates of kj , Bj , etc. A conventional Newton
iteration may generate an unphysical value, e.g., T = −1, causing the code to
halt.

The scheme has been implemented in a radiation-hydrodynamic code. Results
will be presented comparing the Ψtc scheme with a more conventional one.
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