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We consider iterative methods for solution of the time-dependent Schrödinger
equation. The aim is to perform accurate computations of the dynamic behavior
of small molecular systems, describing fundamental chemical reactions occur-
ring on a femtosecond time-scale. Accurate predictions of such reactions allows
for a deeper understanding of the fundamentals of chemistry and complements
modern experimental techniques. For this type of computations, the Born-
Oppenheimer approximation is first applied for separating the problems for the
nucleii and electrons in the molecular system. We then solve the Schrödinger
equation for the wave functions representing the nucleii for l interacting elec-
tronic states. For example, for a two-state system, we solve
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Here, the kinetic energy operators are given by

K1,2 = − 1
2m

∇2,

where m is corresponds to a mass. We assume that the time-independent di-
agonal potential energy operators V1,2 and the diagonal,time-dependent cou-
pling operator C12 are given. In practice, these operators are described by ana-
lytic models or, in the case of V1,2, computed by solving the time-independent
Schrödinger equation for the electrons. In principle, the number of spatial di-
mensions grows as 3p, where p is the number of nucleii in the molecular system.
However, the number of dimensions is in practice normally reduced by intro-
ducing approximations and specific choices of coordinate systems. Still, to be
able to consider new and interesting problem settings in quantum chemistry,
the solution of high-dimensional PDE problems is required.

In applications, a standard time-integration method for the Schrödinger equa-
tion is based on operator splitting [1][2]. In the original original form of this
scheme, a pseudo-spectral spatial discretization is used while the discretization
in time is only second-order accurate. However, an important feature of the
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operator splitting method is that it preserves probability, which in many cases
reduces the error from the from the time marching. We examine several alter-
native methods for the time-integration of the Schrödinger equation, which are
all probability preserving. Using the trapezoidal method in time implies that
some standard iterative solver has to be applied to the arising system of equa-
tions. An interesting alternative to standard implicit time-discretizations is to
use the Lanczos method directly to approximate the time evolution operator
exp(−i~Ht) [3]. The formal order of accuracy of such a scheme is determined
by the number of Lanczos steps, and the method preserves probability by con-
struction. For a non-symmetric Hamiltonian matrix, the Arnoldi method is
used instead. Another class of schemes which is considered is partitioned runge-
kutta, PRK, methods [4][5]. It is possible to construct high-order PRK methods
which have the desired conservation property. For all these time-marching meth-
ods we use a pseudo-spectral spatial discretization and compare the accuracy
and computational work to the standard operator splitting method. We also
present some experiments where we combine the time-integration schemes with
high-order finite difference discretizations in space. The goal here is to employ
an adaptive spatial discretization, concentrating the grid points to the regions
where the wave function is located.
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