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Meshfree discretizations construct approximate solutions to partial differential
equation based on particles, not on meshes, so that it is well suited to solve the
problems on irregular domains. Since the nodal basis property is not satisfied in
meshfree discretizations, it is difficult to handle essential boundary conditions.
In this paper, we employ the Lagrange multiplier approach to solve this problem,
but this will result in an indefinite linear system of a saddle point type. We
adapt a variation of the smoothed aggregation AMG method of Vaněk, Mandel
& Brezina to this saddle point system. We give numerical results showing that
this method is practical and competitive with other methods with convergence
rates that are ∼ c/ log N .

Meshfree discretizations are Galerkin approximations to the weak form of par-
tial differential equations, where each unknown corresponds to a “particle” — a
smooth function with compact support. In most meshfree methods these parti-
cle functions are not arbitrary, but are constructed to satisfy certain properties
in order to achieve good approximation properties. In particular, we work with
Reproducing Kernel Particle Methods (RKPM’s). In RKPM’s, an initial collec-
tion of smooth functions with compact support (kernel functions Φi with asso-
ciated nodes xi) are processed to construct new smooth functions with compact
support (basis functions Ψi) which satisfy the discrete reproducing condition∑

i

xα
i Ψi(x) = xα

where α is any multiindex |α| ≤ p.
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Since there is no particular relationship between the nodes and the kernel func-
tions, the nodal basis property fails for the RKPM and other standard meshfree
methods. The nodal basis property can be re-established by modifying the basis
functions using a variety of techniques (singular kernel functions, hybrid finite
element/meshfree methods, etc.). Instead we consider a Lagrange multiplier
method. Lagrange multiplier methods are often vulnerable to numerical insta-
bilities if the discrete Babuska–Brezzi conditions fail, as they typically do for
meshfree methods. To overcome this problem, we construct a separate family
of basis functions for the boundary for approximating the Lagrange multiplier
function.

The starting point for our preconditioner is a smoothed aggregation method of
Vaněk, Mandel & Brezina. However, to construct our smoothed interpolation
operator we use a different way of deriving the interpolation operator to that of
Vaněk et al.

We have a large-scale saddle point system to solve. Since we need to maintain the
discrete Babuska–Brezzi condition for the grid coarsenings, we also coarsen the
boundary discretization. Smoothed aggregation techniques similar to those for
the interior of the domain, are used to construct the boundary interpolation and
restriction operators. The coarse grid operators are constructed using a Galerkin
approach — pre-multiplying the fine-grid saddle-point operator with the block
diagonal matrix consisting of the interpolation operators for the interior and the
boundary, and post-multiplying by the transpose of the above block-diagonal
matrix. We use a saddle-point JOR-type method for the pre- and post-smoother.
The resulting multigrid V-cycle operator is then used to precondition GMRES.

The numerical results we obtain are certainly encouraging, giving a number of
iterations which grows like c log N log(1/ε) where N is the number of unknowns
and ε is the error tolerance. Unfortunately, the number of flops per V-cycle is
not constant because of reductions in the sparsity of the course-grid operators,
and the smoother used. In spite of these problems, the method out-performed
the methods we compared it with (including straight aggregation, using the
smoother as a preconditioner, and no preconditioner at all), especially for larger
problems. Good performance can be seen both in the number of iterations and
the total time taken. This is joint work with Koung Hee Leem and David
Stewart.
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