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We present a new fast implementation of inverse iteration without reorthogo-
nalization for real symmetric tridiagonal matrices. We achieve this by choos-
ing initial vectors from well-defined subspaces generated using Godunov’s two-
sided Sturm sequence-based spectral deflation. We apply spectral deflation to
the tridiagonal matrix T ∈ Rn×n, T = TT to find a sequence of Givens rota-
tions to obtain matrices Tn−1 ∈ Rn−1×n−1, Tn−2 ∈ Rn−2×n−2, . . . , T1 ∈ R1×1,
such that Λ(T1) ⊂ Λ(T2) . . .Λ(Tn−1) ⊂ Λ(T ), where Λ(·) denotes matrix spec-
trum. Instead of computing eigenvectors of the matrix T directly from the
corresponding sequences of rotation parameters, as it is done in the Godunov
et al. version of the method (which in our studies fails to give satisfactory
residuals because of rounding errors), we compute eigenvector approximations
x̃n(Tn) ∈ Rn, x̃n−1(Tn−1) ∈ Rn−1, . . . x̃1(T1) ∈ R1 corresponding to the eigen-
values λn(T ) = λn(Tn) ≥ λn−1(T ) = λn−1(Tn−1) ≥ λ1(T ) = λ1(T1). We
construct initial vectors y0

k, k = 1, 2, . . . , n for inverse iteration by padding the
vector x̃k(Tk) with n − k zeros. Even if two consecutive eigenvalues λk and
λk−1 are very close or coincident, the corresponding vectors y0

k and y0
k−1 differ

in at least one component, while x̃k and x̃k−1 approximately solve the respec-
tive eigenproblems Tkx̃k ≈ λ̃kx̃k and Tkx̃k−1 ≈ λ̃kx̃k−1. This approach appears
sufficient to produce an accurate orthogonal eigensystem in two steps of inverse
iteration without reorthogonalization. We call this method Iteratively Refined
Spectral Deflation (IRSD). If a few extra digits of orthogonality are desired,
IRSD eigenvector may be reorthogonalized once. We call this variation of the
method Reorthogonalized Iteratively Refined Spectral Deflation (RIRSD).

We implemented IRSD and RIRSD along with an interval version of the eigen-
value bisection (which we use in both algorithms) in ANSI C (GNU C com-
piler, version 3.2) using IEEE double-precision arithmetic. In the table below
we present computational times and residuals for the test eigenproblem with
tridiagonal matrix T of size n = 2500 with main diagonal (0, 0, 0, . . . ) and co-
diagonals (10, 0.1, 10, 0.1, 10, 0.1, ... . . . ). This matrix has two very tight eigen-
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value clusters. We solve this test problem using IRSD (irsd), RIRSD (rirsd),
Godunov–Inverse Iteration (gii) and LAPACK dstexx routines on the 1800 MHz
Intel r© Pentium 4 Mobile r© CPU. We used the following LAPACK routines in
our tests: dstein, a double-precision implementation of inverse iteration which
uses bisection procedure dstebz; dsteqr, a double-precision implementation
of the QR algorithm; and, dstedc, a double-precision implementation of the
Divide and Conquer algorithm.

In the table below we report the following characteristics for the computed
eigenpairs (λ̃i, ỹi), i = 1, . . . , n: the maximum residual R(λ̃, Ỹ ) = maxi ‖(T −
λ̃iI)ỹi‖∞; the maximum deviation O(Ỹ ) of the approximate eigensystem Ỹ =
{ỹi}, i = 1, 2, . . . , n from the unit basis I = {ei}, i = 1, 2, . . . , n, where O(Ỹ ) =
(maxi ‖(Ỹ T Ỹ −I)ei‖∞; T (λ̃), the time in seconds spent computing all eigenvalue
approximations; T (Ỹ ), the time in seconds spent computing all eigenvector
approximations; and, the cumulative time, ΣT ≡ T (λ̃) + T (Ỹ ).

R(λ̃, Ỹ ) O(Ỹ ) T (λ̃), s T (Ỹ ), s ΣT , s
irsd 2.03e− 15 4.16e− 11 16.21 4.40 20.61
rirsd 7.66e− 15 5.05e− 15 16.21 46.09 62.30
dstein 9.77e− 15 5.06e− 15 11.76 119.33 131.09
dstedc 1.07e− 13 6.32e− 15 0.76 52.30 53.06
dsteqr 2.35e− 13 9.10e− 15 1.21 249.57 250.78
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