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We focus on the solution of a sequence of linear systems arising in electromag-
netic radar cross section, and having the same coefficient matrix but different
right-hand sides. The problem consists in solving M1AX = M1B, where M1

is a left preconditioner, A a large dense complex symmetric matrix that arises
from boundary element method, X the block of unknowns vectors, and B the
block of right-hand sides.

Our study starts from the observation that when the matrix M1A has some
eigenvalues near zero, the convergence of the Krylov methods is often slow. The
following proposition from [1] shows that we can construct an update M̃c from
spectral information of M1A to correct M1 such as the new preconditioned sys-
tem M2Au = M2b no longer has eigenvalues in a certain neighbourhood of zero.
Assume that M1A is diagonalizable:

M1A = V ΛV −1,

with Λ the diagonal matrix formed by the eigenvalues {λi}i∈{1,n} ordered by
increasing magnitude, and V the associated right eigenvectors. We consider the
k smallest eigenvalues and Vk the associated right eigenvectors.
Proposition 1. Let W be such that Ãc = WHAVk has full rank, M̃c =
VkÃ−1

c WH and M2 = M1 + M̃c. Then M2A is similar to a matrix whose eigen-
values are {

ηi = λi if i > k,
ηi = 1 + λi if i ≤ k.

The matrix M̃c is defined as the Spectral Low Rank Update (SLRU) for the
left preconditioner M1.

To illustrate the efficiency of this approach we consider a set of large and chal-
lenging real life industrial problems. We perform experiments with a parallel
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fast multipole code [2] to compute the matrix-vector products involving A. For
M1 we choose the preconditioner developed in [3], suitable for implementation
in a multipole framework on parallel distributed platforms. It is based on a
sparse approximate inverse using a Frobenius norm minimization with an a pri-
ori sparsity pattern selection strategy. The spectral information is computed in
a preprocessing phase by an external eigensolver: ARPACK [4].

In this talk, we present the gain in terms of times and matrix-vector prod-
ucts, for the complete monostatic calculations [6]. We also illustrate the effects
on the convergence rate of GMRES [5] of parameters such as the dimension of
the update, the accuracy of the spectral information, the quality of the original
preconditioner or the size of the restart. We conclude with some comments on
our on-going work where we combine the SLRU preconditioner and the Seed-
GMRES or the GMRES-DR [7] solver.

This work has been developed in collaboration with G. Alléon from EADS-
CCR and G. Sylvand from CERMICS-INRIA.
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Ponts et Chaussées.
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